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Abstract

The entropy of a quantum system is a measure of its randomness, and has applications
in measuring quantum entanglement. We study the problem of measuring the von Neumann
entropy, S(ρ), and Rényi entropy, Sα(ρ) of an unknown mixed quantum state ρ in d dimensions,
given access to independent copies of ρ.

We provide an algorithm with copy complexity O(d2/α) for estimating Sα(ρ) for α < 1, and
copy complexity O(d2) for estimating S(ρ), and Sα(ρ) for non-integral α > 1. These bounds
are at least quadratic in d, which is the order dependence on the number of copies required for
learning the entire state ρ. For integral α > 1, on the other hand, we provide an algorithm
for estimating Sα(ρ) with a sub-quadratic copy complexity of O(d2−2/α). We characterize the
copy complexity for integral α > 1 up to constant factors by providing matching lower bounds.
For other values of α, and the von Neumann entropy, we show lower bounds on the algorithm
that achieves the upper bound. This shows that we either need new algorithms for better upper
bounds, or better lower bounds to tighten the results.

For non-integral α, and the von Neumann entropy, we consider the well known Empirical
Young Diagram (EYD) algorithm, which is the analogue of empirical plug-in estimator in classical
distribution estimation. As a corollary, we strengthen a lower bound on the copy complexity of
the EYD algorithm for learning the maximally mixed state by showing that the lower bound holds
with exponential probability (which was previously known to hold with a constant probability).
For integral α > 1, we provide new concentration results of certain polynomials that arise in
Kerov algebra of Young diagrams.

∗The authors are listed in alphabetical order. Part of the work performed when II was a student at Cornell
University. JA was supported by a start-up grant from Cornell University. II, NVS, ABW were supported by US
National Science Foundation under grants CCF-1704443 and CCF-1513858.
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1 Introduction
We consider how to estimate the mixedness or noisiness of a quantum state using measurements of
independent copies of the state. Mixed quantum states can arise in practice in various ways. Classical
stochasticity can be intentionally introduced when the state is originally prepared. Pure states can
become mixed by a quantum measurement. And the states of the subsystems of bipartite states can
be mixed even when the overall bipartite state is pure, which forms the basis for purification.

In the third case, the level of mixedness of the subsystems indicates the level of entanglement in
the pure, bipartite system. The possibility of entanglement of two separated systems is arguably
the most curious, and the most powerful, way in which quantum systems differ from classical
ones. Indeed, entanglement has been fruitfully exploited as a resource in a number of quantum
information processing protocols [BW92, BBC+93, BSST02, DHW04, HW10]. The subsystems of a
pure bipartite state are pure if and only if the bipartite state itself is unentangled, and likewise they
are maximally mixed if and only if the bipartite state is maximally entangled. Thus the mixedness
of the subsystems’ states can be used as a measure of entanglement of the bipartite system.

Mixedness can be measured in multiple ways. We shall use the von Neumann and (the family
of) Rényi entropies, which correspond to the classical Shannon and (the family of) Rényi entropies
of the eigenvalues of the density operator of the state, respectively. A density matrix (or operator)
ρ is a complex positive semidefinite matrix with unit trace; thus its eigenvalues are nonnegative and
sum to one. The von Neumann entropy of a density matrix ρ is

S(ρ) def= −tr(ρ log ρ).

For α > 0, α 6= 1, the Rényi entropy of order α of ρ is

Sα(ρ) def= 1
1− α log tr(ρα).

In the limit of α→ 1,
lim
α→1

Sα(ρ) = S(ρ).

The classical Shannon and Rényi entropies are well-accepted measures of randomness, and can be
derived axiomatically [CK81, pp. 25-27]. Both the classical and quantum versions can be justified
operationally as a measure of compressibility [CK81, Sch95, JS94, Lo95]. The quantum versions
have been explicitly proposed for quantifying entanglement [Car12].

In principle, both the von Neumann and Rényi entropies for a quantum state ρ can be computed
if the state is known. We consider how to estimate these quantities for an unknown state given
independent copies of the state, to which arbitrary quantum measurements followed by arbitrary
classical computation can be applied. This problem arises when characterizing a completely unknown
system and when one seeks to experimentally verify that a system is behaving as desired. Since
generating independent copies of a state can be quite costly in the quantum setting [HHR+05,
MHS+12], it is desirable to minimize the number of independent copies of the state that are required
to estimate the von Neumann and Rényi entropies to a desired precision and confidence. We thus
adopt this copy complexity as our figure-of-merit.

Using standard results in quantum state estimation, we reduce our problem to one that is fully
classical. We first describe this fully-classical problem, which is potentially of interest in its own
right.
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1.1 Quantum-Free Formulation

Let p be a distribution over [d] def= {1, , . . . ,d}. A property f(p) is a mapping of distributions
to real numbers. A property f is said to be symmetric (or label-invariant) if it is a function of
only the multiset of probability values, and not the ordering. For example, the Shannon entropy
H(p) = −

∑
i p(i) log p(i) is symmetric, since it is only a function of the probability values.

Classical symmetric property estimation. We are given independent samplesXn def= X1, . . . , Xn

from an unknown distribution p, and the goal is to estimate a symmetric property f(p) up to a ±ε
factor, with probability at least 2/3.

Quantum state property estimation. The problem of estimating von Neumann and Rényi
entropies of a quantum state can be shown to be equivalent to estimating a symmetric property
f(p) of some distribution. However, instead of being given independent samples X1, . . . , Xn from
the distribution p as in the classical case, we are given access to a function λ(Xn) = λ1 ≥ λ2 ≥ . . .
of Xn. Here λ1,λ2, . . . are integers satisfying the following property.
• For any k ≥ 1,

∑k
i=1 λi is equal to the largest possible sum of the lengths of k disjoint

non-decreasing subsequences of Xn.
Equivalently, we may view the observations as the output of the Robinson–Schensted–Knuth (RSK)
algorithm applied to the sequence Xn, instead of being Xn itself. The reader is referred to [OW17b]
for more details on the procedure. The copy complexity of estimating quantum entropy turns out to
be equivalent to the problem of estimating classical entropy when given access to λ(Xn). A simple
data processing of the form p→ Xn → λ(Xn) shows that the complexity of estimating a quantum
state property is at least as hard as estimating the same property in the classical setting.

1.2 Organization

The paper is organized as follows. In Section 1.3, we state our results, followed by a brief description
of our tools in Section 1.4, and related work in Section 1.5. Section 2 gives a summary of the
quantum set-up. Section 3 provides the preliminary results needed for setting up the paper. In
particular, Section 3.1.1 describes the optimal quantum measurement for the class of properties we
are interested in. Section 4 proves our bounds for integral order Rényi entropy. Section 6 proves the
upper bounds for non-integral orders, and Section 7 shows the lower bounds on the performance of
the empirical estimator.

1.3 Our Results

We consider the following problem.

Π(f, d, ε): Given a property f , and access to independent copies of a d-dimensional
mixed state ρ (e.g. output of some quantum experiment), how many copies are
needed to estimate f(ρ) to within ±ε?1

1We seek success with probability at least 2/3, which can be boosted to 1−δ by repeating the algorithm O(log(1/δ))
times and taking the median.
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We study the copy complexity of estimating the entropy of a mixed state of dimension d. The
copy complexity, denoted by C(f, d, ε), is the minimum number of copies required for an algorithm
that solves Π(f, d, ε). Copy complexity is defined precisely in Section 2.2.

We will use the standard asymptotic notations. We will be interested in characterizing the
dependence of C(S, d, ε), and C(Sα, d, ε), as a function of d and ε. We assume the parameter α to
be a constant, and focus on only the growth rate as a function of d and ε.

We will now discuss our results, which are summarized in Table 1 and Table 2. For comparison
purposes, it is useful to recall the copy complexity of quantum tomography, in which the goal is to
learn the entire density matrix ρ. The problem has been studied in various works using various
distance measures; and up to poly-logarithmic factors, for the standard distance measures, the copy
complexity depends quadratically on the dimension d. Namely, it is Õ(d2).2 Similar to the sample
complexity of estimating Rényi entropies of classical distributions from samples, our bounds are also
dependent on whether α is less than one, and whether it is an integer. (See Table I of [AOST17],
and Section 1.5.1 for the sample complexity in classical settings.) We organize our results as a
function of α as follows.

Integral α > 1. We obtain our most optimistic and conclusive results in this case. In Theorem 1,
we show that C(Sα, d, ε) = Θ

(
max

{
d1−1/α

ε2 , d
2−2/α

ε2/α

})
. We note that the lower bounds here hold for

all estimators, not just of the estimators used in the upper bound. Furthermore, these bounds are
sub-quadratic in d, namely we can estimate the Rényi entropy of integral orders even before we have
enough copies to perform full tomography. The upper bounds are established by analyzing certain
polynomials from representation theory that are related to the central characters of the symmetric
group. The main contribution is to analyze the variance of these estimators, for which we draw
upon various results from Kerov’s algebra. For the lower bound, we design the spectrums of two
mixed states such that their Rényi entropy differ by at least ε, but require a large copy complexity
to distinguish between them. We use various properties of Schur polynomials and other properties
of integer partitions [Mac98, HR18].
Remark 1. The first term in the complexity dominates when ε < 1/

√
d, and is identical to the

sample complexity of estimating Rényi entropy in the classical setting.

α < 1. We analyze the Empirical Young Diagram (EYD) algorithm [ARS88, KW01] for estimating
Sα(ρ) for α < 1. The EYD algorithm is similar to using a plug-in estimate of the empirical
distribution to estimate properties in classical distribution property estimation. We show that
C(Sα, d, ε) = O(d2/α/ε2/α). Since α < 1, this growth is faster than quadratic, namely the EYD
algorithm requires more copies than is required for tomography. We complement this result by
showing that in fact the EYD algorithm requires Ω(d1+1/α/ε1/α) copies, showing that the super-
quadratic dependence on d is necessary for the EYD algorithm. The upper bound is proved in
Theorem 4, and the lower bound in Theorem 8. In comparison, in the classical setting the exponent
of d is almost 1/α.

von Neumann entropy, α = 1. Again using the EYD algorithm, in Theorem 2 we show that
C(S, d, ε) = O(d2/ε2). We formulate an optimization problem whose solutions are an upper bound
on the bias of the empirical estimate, and we bound the variance by proving that the estimator has

2We discuss the copy complexity of some other problems in related work (Section 1.5).
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Upper Bound Lower Bound

O

(
max

{
d2− 2

α

ε
2
α
, d

1− 1
α

ε2

})
Ω
(

max
{
d2− 2

α

ε
2
α
, d

1− 1
α

ε2

})

Table 1: Copy complexity of Sα(ρ) for inte-
gral α > 1.

α Upper Bound Lower Bound
α > 1 O(d2/ε2) Ω(d2/ε)
α < 1 O(d2/α/ε2/α) Ω(d1+1/α/ε1/α)
α = 1 O(d2/ε2) Ω(d2/ε)

Table 2: Copy complexity of
empirical estimators.

a small bounded difference constant. In Theorem 7 we show a lower bound of Ω(d2/ε) for the EYD
estimator to estimate the entropy of the maximally mixed state. This complexity is still similar to
that of full quantum tomography.

Non integral α > 1. Again using the EYD algorithm, in Theorem 3, we show that C(Sα, d, ε) =
O(d2/ε2). We also provide a lower bound of Ω(d2/ε) for the EYD estimator in Theorem 7.

In addition to these results, we improve the error probability of the lower bounds on the conver-
gence of EYD algorithm to the true spectrum. In particular, for the uniform distribution [OW15]
have shown that unless the number of copies is at least Ω(d2/ε2) the EYD has a total variation
distance of at least ε with probability at least 0.01. We show that in fact unless the number of
copies is at least Ω(d2/ε2) the trace distance is at least ε with probability at least 1− exp(c · d2) for
some constant c.

1.4 Our Techniques

In this section, we provide a high level overview of the technical contributions of our paper.
The entropy functions that we consider are unitarily invariant properties (Section 2.3), namely

they depend only on the multiset of eigenvalues of the density matrix. For example, a density matrix
ρ with eigenvalyes η1, . . . ,ηd, we have S(ρ) = −

∑
i ηi log ηi, and Sα(ρ) = log(

∑
i η

α
i )/(1 − α),

meaning that von Neumann, and Rényi entropy are unitarily invariant properties. For such
properties, it is known that an optimal measurement scheme over the set of all measurements is
the weak Schur Sampling (WSS) (Section 3.1.1). The output of this measurement is a partition of
λ ` n, usually denoted by a Young diagram (Section 3.1), the number of independent copies of ρ
used. The goal is then to estimate the entropy from the output Young diagram supplied by WSS.

Estimating Rényi entropy is equivalent to obtaining multiplicative estimates of the power sum
Mα (η) def=

∑
ηαi . In the classical setting, it turns out that for integral α > 1, there are simple

unbiased estimators of Mα (η). In the quantum setting, for integral α, there are unbiased estimators
for Mα (η). These estimators are now polynomials (called p#) over Young tableaus obtained from
Kerov’s algebra. While the estimator itself is simple to state in terms of p# polynomials, bounding
its variance requires a number of intricate arguments. Using results from representation theory
about p#, we first write the variance of the estimator as a linear combination of p# polynomials.
We use combinatorial arguments about the cycle structure of compositions of permutations, and use
that to show that only a certain subset of p#’s can appear in the variance expression. Moreover, the
number of p#’s can be bounded using the Hardy-Ramanujam bounds on the partition numbers. We
also provide bounds on the coefficients to finally obtain the upper bound for integral α (Theorem 1).
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For the lower bound for integral α, one of the terms follows from the classical lower bounds, and
the fact that estimation is easier in the classical setting than in the quantum setting. To prove a
lower bound equal to the second term, we invoke the classical Le Cam’s method combined with
results on Schur polynomials and partition numbers.

Our upper bounds for von Neumann entropy and for non-integral α use the Empirical Young
Diagram (EYD) algorithm (Section 3.1.2). This is akin to the empirical plug-in estimators for
distribution property estimation. Our upper bounds require various bias and concentration results
on the Young-tableaux. Fortunately, in the recent works of O’Donnell and Wright, a number of
such bounds were proved. We build upon their results, and prove some additional results to show
the copy complexity bounds for the EYD algorithm.

To prove the lower bounds for the EYD algorithm, we design eigenvalues such that unless the
number of copies is large enough, the EYD algorithm cannot concentrate around the true entropy.

One of our contributions pertains to the convergence of the empirical Young diagram to the true
distribution. A lower bound of d2/ε2 was shown by [OW15]. However, their results only holds with
a constant probability (with probability 0.01 to be precise). We show very sharp concentration by
invoking McDiarmid’s inequality. We show that unless the number of samples is more than d2/ε2

the empirical Young diagram’s lower bound holds with probability 1− exp(−cd) for some constant
c. This exponential concentration result could be of independent interest.

1.5 Related Work

Our work is related to symmetric distribution property estimation in classical setting, property
estimation of classical distributions using quantum queries, and the property estimation of quantum
states (as in the set-up of this paper). We briefly mention some closely related works. The reader is
encouraged to read the survey by Montanaro and de Wolf [MdW13], and the thesis by Wright [Wri16]
for more details on the recent literature.

1.5.1 Symmetric Property Estimation of Discrete Distributions

A property of a distribution is symmetric if it is a function of only the probability multiset. A
number of properties, such as the Shannon entropy, Rényi entropy, KL divergence, support size,
distance to uniformity, are all symmetric. While there is a long literature on some of these
problems, the optimal sample complexity for these problems was established only over the last
decade [VV11, WY16, JVHW15, AOST17, JHW16, WY15, OSVZ04, BZLV16, HJW14, ADOS17].
We mention the state of the art results, and the reader can consult the related papers and references
therein to learn more about the landscape of symmetric distribution property estimation problems.
Similar to the quantum setting, let S(f, d, ε) be the minimum number of samples needed from a
discrete distribution p over d elements to estimate a property f(p) up to ±ε, again with probability
at least 2/3.

For the Shannon entropy H(p) = −
∑
x p(x) log p(x), a long line of work culminated in [VV11,

WY16, JVHW15] showing that S(H, d, ε) = Θ
(

d
ε log d + log2 d

ε2

)
.

The problem of estimating Rényi entropy Hα(p) = log (
∑
x p(x)α)/(1 − α), was studied in

[AOST15, AOST17, OS17]. The sample complexity dependence in the classical setting seems to
suggest the same qualitative behavior as our results. They show that for α < 1, S(Hα, d, ε) =
O
(

d1/α

ε1/α log d

)
, and for α > 1, α /∈ N, S(Hα, d, ε) = O

(
d

ε1/α log d

)
. Moreover, their information theoretic

lower bounds show that the exponent of d cannot be improved by any algorithm. For the case
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of integral α, larger than one, they characterize the sample complexity up to constant factors by
showing that S(Hα, d, ε) = Θ

(
d1−1/α

ε2

)
. We note that this complexity is indeed one of the terms in

our copy complexity for integral α, which happens for large n. [OS17] provide bounds that improve
the sample complexity of Rényi entropy estimation, for distributions with small Rényi entropy.

1.5.2 Quantum Property Estimation of Mixed States

While we are not aware of a lot of literature on property estimation of mixed states, there are now
many works on the related problem of quantum property testing, where the goal is to find the copy
complexity of deciding whether a mixed state has a certain property of interest, and on the problem
of quantum tomography, where the goal is to learn the entire density matrix ρ.

The copy complexity of quantum tomography is quadratic in d, and the complexity for tomography
in various distance measures have been studied in [HHJ+17, OW16, OW17a].

Testing whether ρ has a particular unitarily invariant property of interest was studied in [OW15]
for a number of properties. They show that for testing whether ρ is maximally mixed, namely
whether all elements of η are 1/d, requires Θ(d/ε2) copies. They also studied the problem of testing
the rank of ρ, and also provide bounds on the performance of the EYD algorithm for estimating the
spectrum. Recently, [BOW17] obtained tight bounds on the copy complexity of testing whether an
unknown density matrix is equal to a known density matrix. The optimal measurement schemes for
some of these problems can be computationally expensive. Testing properties under simpler local
measurements was studied recently in [PML17].

In a personal communication, Bavarian, Mehraban, and Wright [BMW16] claim an algorithm
with copy complexity O(d2/ε) for the von Neumann entropy estimation, which is an ε factor
improvement over our bound.

1.5.3 Quantum Algorithms for Classical Distribution Properties

Testing and estimating distribution properties using quantum queries has been considered by
various authors. Problems of testing properties such as uniformity, identity, closeness under
the regular quantum query model, and conditional quantum query models have been studied
in [BHH11, CFMDW10, SSJ17].

Recently Li and Wu [LW17] studied the quantum query complexity of estimating entropy of
discrete distributions. They provide bounds on the query complexity for estimating von Neumann
entropy, and Rényi entropy. For certain values of α, the bounds on query complexity can in fact be
at times quadratically better than the corresponding sample complexity bounds.

2 Quantum Measurements and Property Estimation

2.1 Density Matrix and Quantum Measurement

A quantum state is described by a density matrix ρ, which is a d-dimensional positive semi-definite
matrix with unit trace. The joint state of n independent copies is given by the tensor product
ρ⊗n = ρ⊗ · · · ⊗ ρ, which is a density matrix of dimension dn × dn.

Quantum measurements are described by a set of matrices {Mm} called measurement operators,
where index m denotes the measurement outcome. Measurement operators satisfy the completeness
condition,

∑
mM

†
mMm = I. If the pre-measurement state is ρ then probability of measurement

6



outcome m is tr
(
M †mMmρ

)
, and the post-measurement state is MmρM

†
m/tr

(
MmρM

†
m

)
. The

measurement operators are also allowed to have an infinite outcome set, in which case a suitable
σ-algebra on the set of outcomes and a probability measure on this space are defined. For a detailed
discussion of these concepts see [NC10].

2.2 Property Estimation

A property f(ρ) maps a mixed state ρ to R. Given n and d, an estimator is a set of measurement
matrices {Mm}∞m=1 for the state space Cdn×dn and a “classical processor” g(·), which maps the
natural numbers to R. Given n copies of a state ρ, the estimator proceeds by applying the
measurement {Mm}∞m=1 to the state ρ⊗n and then applying g(·) to the resulting outcome. Given a
property f , accuracy parameter ε, error parameter δ, and access to n independent copies of a mixed
state ρ, we seek an estimator f̂ such that with probability at least 1− δ∣∣∣f(ρ)− f̂(ρ⊗n)

∣∣∣ < ε.

The copy complexity of f is

C(f, d, ε, δ) def= min
{
n : ∃f̂ : ∀ρ, f̂ is a ± ε estimate of f(ρ) with probability > 1− δ

}
,

the minimum number of copies required to solve the problem. Throughout this paper we will consider
δ to be a constant, say 1/3. We can boost the error to any δ by repeating the estimation task
O(log(1/δ)) times, and taking the median of the outcomes. This causes an additional O(log(1/δ))
multiplicative cost in the copy complexity. We denote

C(f, d, ε) def= C(f, d, ε, 1/3). (1)

2.3 Unitarily Invariant Properties

Suppose U(d) is the set of all d× d unitary matrices.

Definition 1. A property f(ρ) is called unitarily invariant, if f(UρU †) = f(ρ) for all U ∈ U(d).

Let η = {η1, . . . ,ηd} be the multiset the eigenvalues (also called as spectrum) of ρ. Two density
matrices ρ, and σ have the same spectrum if and only if there is a unitary matrix U such that
σ = UρU †. Therefore, unitarily invariant properties are functions of only the spectrum of the
density matrix. Since density matrices are positive semi-definite with unit trace, then

∑
i ηi = 1,

and we can view η as a distribution over some set. Unitarily invariant properties are analogous to
properties in classical distributions that are a function of only the multiset of probability elements,
called symmetric properties.

For a density matrix with eigenvalues η1, . . . ,ηd, we have S(ρ) = −
∑
i ηi log ηi, and Sα(ρ) =

log(
∑
i η

α
i )/(1− α). Quantum entropy can be viewed as the classical entropy of the distributions

defined by η, and in particular they are unitarily invariant.
Working with unitarily invariant properties is greatly simplified by the following powerful

result [KW01, CHW07, Har05, Chr06] (See [MdW13, Section 4.2.2] for details).

Lemma 1. A quantum measurement called weak Schur sampling is optimal for estimating unitarily
invariant properties.

Weak Schur sampling is discussed in Section 3.1.1.
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3 Preliminaries
We list some of the definitions and results we use in the paper.

Definition 2. The total variation distance, KL divergence, and χ2 distance between distributions
p, and q over X are

dTV (p, q) def= sup
A⊂X

p(A)− q(A) = 1
2‖p− q‖1, (2)

dKL(p, q) def=
∑
x∈X

p(x) log p(x)
q(x) , (3)

χ2(p, q) def=
∑
x∈X

(p(x)− q(x))2

q(x) . (4)

The distance measures satisfy the following bound.

Lemma 2.
2dTV (p, q)2 ≤ dKL(p, q) ≤ χ2(p, q).

The first inequality is Pinsker’s Inequality, and the second follows from concavity of logarithms.
We now state some concentration results that we use.
Let f : [d]n → R be a function, such that

max
z1,...,zn,z

′
i∈[d]

∣∣∣f(z1, . . . , zn)− f(z1, . . . , zi−1, z
′
i, . . . , zn)

∣∣∣ ≤ ci, (5)

for some c1, . . . , cd.
The next two results show concentration results of functions f that satisfy (5). The following

lemma is [BLM13, Corollary 3.2].

Lemma 3. For independent variables Z1, . . . , Zn,

Var(f(Z1, . . . , Zn)) ≤ 1
4

n∑
i=1

c2
i .

The next result is McDiarmid’s inequality [BLM13, Theorem 6.2].

Lemma 4. For independent variables Z1, . . . , Zn,

Pr (f(Z1, . . . , Zn)− E [f(Z1, . . . , Zn)] > t) ≤ e
− 2t2
c2
1+...+c2

n .

3.1 Schur Polynomials and Power-Sum Polynomials

A partition λ of n is a collection of non-negative integers λ1 ≥ λ2 ≥ . . . that sum to n. We write
λ ` n and we write Λn for the set of all partitions of n. We denote the number of positive integers
in λ by `(λ), which we call its length. An partition λ can be depicted with an English Young
diagram, which consists of a row of λ1 boxes above a row of λ2 boxes, etc., as showed in Fig. 1. The
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Figure 1: English Young diagram for the partition λ = (6, 4, 3, 3, 1).

partition associated with a Young diagram is called its shape. Note that the number of rows in the
Young diagram of λ is `(λ) and the total number of boxes is n. A Young tableau over alphabet
[d] is a Young diagram in which each box has been filled with an element of [d]. A Young tableau
is called standard if it is strictly increasing left-to-right across each row and top-to-bottom down
each column. A Young tableau is semistandard if it is strictly increasing top-to-bottom down each
column and nondecreasing left-to-right across each row. Given λ ` n and d, the Schur polynomial
is the polynomial in the variables x1, x2, . . . , xd defined by

sλ(x) =
∑
T

d∏
i=1

x
#(T,i)
i , (6)

where the sum is over the set of all semistandard Young Tableaus over alphabet [d] corresponding to
the partition λ and #(T, i) is the number of times i appears in T . Schur polynomials turn out to be
symmetric, meaning that they are invariant to the ordering of the variables x1, . . . , xd [Mac98, Sta99].

We shall also consider polynomials obtained from power sums. Given α ∈ R≥0 and a distribution
η on [d],3 define

Mα (η) def=
d∑
i=1

ηαi .

Given λ ` r, we define the power sum polynomial by

Mλ (η) =
`(λ)∏
i=1

Mλi (η)

The following is Lemma 1 in [AOST17], which describes a number of inequalities that hold for the
power sums of distributions.

Lemma 5. Suppose η is a distribution over d elements, then
(i) For α < 1,

1 ≤Mα (η) ≤ d1−α,

and for α > 1,
d1−α ≤Mα (η) ≤ 1.

3Power sums can are usually defined for general vectors. We will consider them only for distributions in this paper.
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(ii) For every α ≥ 0 and β ≥ 0,
Mα+β (η) ≤Mα (η)

α+β
α .

(iii) For every α ≥ 0,
M2α (η) ≤Mα (η)2.

(iv) For α > 0 and 0 ≤ β ≤ α,
Mα−β (η) ≤ d

β
α Mα (η)

α−β
α .

(v) For α ≥ 1 and 0 ≤ β ≤ α,

Mα+β (η) ≤ d(α−1)(α−β)/αMα (η)2 ,

and
Mα−β (η) ≤ dβMα (η) .

Schur polynomials and power-sum polynomials are related through a change of basis. There
exists a function χ·(·) : Λ2

n 7→ R such that [Sta99, Theorem 7.17.3]

Mµ(·) =
∑

λ

χλ(µ)sλ(·). (7)

The χ·(·) function in fact comprises the characters of the irreducible representations of the symmetric
group on [n] = {1, . . . , n} [Sta99, Sec. 7.18], although this fact is not needed. The χ·(·) function can
also be defined combinatorially [Sta99]. The quantity χλ(µ) is difficult to compute in general [Hep94],
although we shall only be interested in particular µ, as follows. Let dim(λ) denote the number of
standard Young tableaus over alphabet [n] with shape λ. For λ ` n and µ ` r define

p#
µ (λ) def=

nr ·
χλ(µ∪1n−r)

dim(λ) if n ≥ r,
0 otherwise.

where nr is the falling power, i.e., nr = n · (n− 1) · (n− 2) · (n− (r − 1)) and µ ∪ 1n−r denotes the
partition of [n] consisting of µ followed by n− r ones.

3.1.1 Weak Schur Sampling (WSS)

We describe some of the key results about weak Schur sampling (WSS) that we will use in this
paper. The readers can refer to [MdW13, Section 4.2.2], [Wri16, Chapter 3], and references therein
for further details.

Weak Schur Sampling is a measurement that takes n independent copies of a mixed state ρ
(denoted ρ⊗n), and outputs a λ ` n. The output distribution over partitions is called Schur-Weyl
distribution, denoted SWη, and the probability of λ ` n is given by

SWη(λ) = dim(λ) · sλ(η), (8)

where, recall from the previous section that dim(λ) is the number of Standard Young Tableaux of
shape λ, and sλ(η) is the Schur polynomial with variables η, and shape λ. Since Schur polynomials
are symmetric, this probability is only a function of the multiset of eigenvalues, namely a function
of the eigenvalue spectrum.

10



An alternate combinatorial characterization of the output of WSS is given next. Some of the
intermediate steps involving the Robinson-Schensted-Knuth (RSK) correspondences, and Green’s
theorem are not invoked later in the paper, and are omitted. We simply describe the method by
which the final diagram is obtained. The reader can refer to the short survey [OW17b] for details
on the combinatorial procedure.
Suppose ρ is a mixed state with the multiset of eigenvalues {η1, . . . ,ηd}.

1. Consider a distribution over [d], where i has probability ηi.
2. Draw Xn independently from this distribution.
3. Let λ = λ1 ≥ λ2 ≥ . . ., be such that for any k > 0, λ1 + . . .+ λk is equal to the largest sum

of lengths of k disjoint non-decreasing subsequences of Xn.
The output distribution of this process is the same as that of weak Schur Sampling [Wri16].
Furthermore, one of the results proved in [Wri16] is that the output distribution of the procedure
above is independent of the ordering of ηi’s, and only depends on the multiset of the eigenvalues. For
example, when d = 2, the distributions η1 = 0.2,η2 = 0.8, and the distribution η1 = 0.8,η2 = 0.2
have the same output distributions over Young tableaux generated by the procedure above.

Since the Young tableaux is a function of the sequence generated by the spectrum distribution,

Lemma 6. The copy complexity of estimating a unitarily invariant property of a mixed state is at
least the sample complexity of estimating the same symmetric property of the spectrum distribution.

The p#
λ (µ) polynomial defined in the last section is useful to us due to the following lemma, which

states that the (normalized) polynomial p#
λ (r) is an unbiased estimator of the rth moment of η. The

lemma follows from the definitions and results already mentioned, and is implicit in [Mél10, IO02],
and explicit in [Wri16, Proposition 3.8.3].

Lemma 7. Fix a distribution η, a natural number r, and any partition µ of r. If λ is randomly
generated according to the distribution in (8) then

E
[
p#

µ (λ)
]

= nr ·Mµ (η) = nr ·
∏
i

Mµi (η). (9)

In the special case when µ = (r), a partition with only one part, we have

E
[
p#

(r)(λ)
]

= nrMr (η) . (10)

Proof. Plugging in the probability of λ from (8), and the definition of p#
(r)(λ) from Section 3.1, and

finally using (7) gives the lemma.

3.1.2 The EYD algorithm, and classical plug-in estimation

The EYD algorithm is a simple algorithm for estimating f(ρ). The algorithm works in two steps.
• Compute the empirical distribution, which assigns probability λi/n to the symbol i.
• Output the property f of a mixed state with eigenvalues equal to λi/n.
The EYD algorithm is a quantum analogue of the classical empirical/plug-in estimator, which

works as follows. Consider the step 2 of the weak Schur sampling procedure explained in Section 3.1.1,
which generates Xn, n i.i.d. samples from the distribution η over {1, , . . . ,d}. Let p̂ be the empirical
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distribution of Xn, which assigns a probability p̂(i) = Ni/n to a symbol x, where Ni is the number
of times symbol i appears in Xn. The plug-in estimator, upon observing Xn, outputs f(p̂). The
plug-in estimator has been widely studied in statistics literature.

An observation from the non-decreasing subsequence interpretation of the weak-Schur sampling
is that for any sequence Xn, the distribution λi/n majorizes the corresponding empirical distribution.
This follows from the fact that the length of longest k disjoint non-decreasing sub-sequences is
always at least the sum of the k largest Ni’s. In particular, we can state the following result.
Lemma 8. Consider the sorted plug-in distribution p̂ of Xn, and the distribution λi/n obtained
from Xn by the WSS procedure. λ/n majorizes p̂, namely, for all j,

∑j
i=1 λi/n ≥

∑j
i=1 p̂(i).

3.2 Proving Upper Bounds on Copy Complexity

Consider α 6= 1 and ε̂ ∈ (0, 1). Suppose M̂α (η) satisfies∣∣∣M̂α (η)−Mα (η)
∣∣∣ ≤ ε̂Mα (η) .

Then ∣∣∣∣ 1
1− α log M̂α (η)− Sα(ρ)

∣∣∣∣ =

∣∣∣∣∣∣ 1
1− α log M̂α (η)

Mα (η)

∣∣∣∣∣∣
≤
∣∣∣∣ 1
1− α max {log(1 + ε̂), |log(1− ε̂)|}

∣∣∣∣
=
∣∣∣∣ log(1− ε̂)

1− α

∣∣∣∣ . (11)

Therefore, to obtain a ±ε estimate of Sα(η), it suffices to derive a 1−e−ε|1−α| multiplicative estimate
of Mα (η). Note that 1− e−ε|1−α| ≥ ε|1−α|

1+ε|1−α| since e
−x ≤ 1

x+1 for x > −1. Moreover, in the regime
in which ε does not grow with d, ε|1−α|

1+ε|1−α| = θ(ε). Therefore, in the remainder of the paper, we will
be interested in 1 + ε multiplicative estimators.

Finally note that for any X,

Pr
(
|X − E[X]|2 > 9 ·Var(X)

)
<

1
9

by Markov’s inequality. Since E
[
p#

(α)(λ)
]

= nαMα (η) (by Lemma 7), then we get an 1 + ε

multiplicative estimator of Mα (η) with probability at least 8/9 if(
ε · E

[
p#

(α)(λ)
])2
≥ 9 ·Var

(
p#

(α)(λ)
)
. (12)

4 Measuring Sα(ρ) for integral α
Our main result for integral α ≥ 1 is the following tight bound (up to constant factors) on the copy
complexity of estimating Sα(ρ).
Theorem 1. For α ∈ N\{1},

C(Sα, d, ε) = Θ
(

max
{
d1−1/α

ε2 ,
d2−2/α

ε2/α

})
,

where the hidden constants depend only on α.
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4.1 Achievability

Our Renyi entropy estimator is simple, and is described in Algorithm 1.

Algorithm 1 Estimating Renyi entropy for integral α’s.
1: Input: n independent copies of the state ρ, and α ∈ N
2: Run weak Schur sampling to obtain λ ` n.
3: Let (α) be the partition of α with one part.

4: Compute p#
(α)(λ) = nα ·

χλ
(α)∪1n−α

dim(λ) .

5: Output: 1
1−α log

(
p#

(α)(λ)
nα

)
.

Note that we could have simply removed the nα terms from the algorithm’s description, but
these polynomials have a number of applications in representation theory to study the Symmetric
group, and we simply keep the notation and definitions intact.

To prove the theorem, we bound the expectation and concentration of p#
(α)(λ).

Lemma 9. There is a constant Cα depending only on α such that

E
[
p#

(α)(λ)
]

= nαMα (η) (13)

Var
(
p#

(α)(λ)
)
≤ Cα · nα

(
1 + nα−1M2α−1 (η)

)
. (14)

4.1.1 Proof of Theorem 1 using Lemma 9

We want (12) to hold, which happens if

(εnαMα (η))2 ≥ 9Cα · nα
(
1 + nα−1M2α−1 (η)

)
. (15)

We claim that n = Θ
(
max

{
d1−1/α

ε2 , d
2−2/α

ε2/α

})
is sufficient for (15) to hold. Note that nα = Θ(nα) and

let c̃α > 0 be such that nα ≥
√
c̃αn

α. Now suppose n ≥ cα max
{
d1−1/α

ε2 , d
2−2/α

ε2/α

}
for some constant

cα ≥ max{(18Cα/c̃α)1/α, 18Cα/c̃α}. Then

(εnαMα (η))2 ≥ c̃αε2n2αMα (η)2

≥ c̃α
2 ε

2n2α
( 1
d2α−2 + M2α−1 (η)

d1−1/α

)
(16)

≥ c̃α
2 ε

2n2α
(

cαα
ε2nα

+ cαM2α−1 (η)
nε2

)
(17)

= c̃α
2 n

α
(
cαα + cαn

α−1M2α−1 (η)
)

≥ 9Cα · nα
(
1 + nα−1M2α−1 (η)

)
,

where (16) follows from the fact that Mα (η) ≥ d1−α and M2α−1 (η) ≤ d1−1/αMα (η)2 (by Lemma 5
(i) and (v)), and (17) follows from the assumption that n ≥ cα d

1−1/α

ε2 and n ≥ cα d
2−2/α

ε2/α .
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4.1.2 Proof of Lemma 9

Equation (13) has already been established (cf. Lemma 7). It remains to bound the variance of the
estimator.

Var
(
p#

(α)(λ)
)

= E
[
p#

(α)(λ)2
]
− E

[
p#

(α)(λ)
]2
.

The second term is evaluated from the means of the p#
α (λ) polynomials, which we know. For the

first term, we need to bound the expectation of the products of such polynomials. In fact, there is a
general result [IO02, Proposition 4.5][Wri16, Corollary 3.8.8] that states that for any µ1, µ2,

p#
µ1(λ) ·p#

µ2(λ) = p#
µ1∪µ2(λ)+ linear combination of p#’s for partitions of size at most |µ1 ∪ µ2| − 1.

In our case, both the partitions are (α). So we can write

p#
(α)(λ) · p#

(α)(λ) = p#
(α)∪(α)(λ) +

∑
µ∈S

Cµp
#
µ (λ),

where Cµ is at most (α!)2 < exp(O(α logα)), and S is the set of all partitions µ that can be obtained
through the following procedure:

1. Let j be an integer in the set {0, . . . ,α− 1}.
2. Let σ1 be a permutation over [α+ j] that has a cycle over the elements {1, . . . ,α}, and all the

remaining elements are fixed points (the set {α+ 1, . . . ,α+ j} for j ≥ 1).
3. Let σ2 be a permutation over [α+ j] that has a cycle over the elements {j + 1, . . . ,j +α}, and

all the remaining elements are fixed points (the set {1, . . . ,j} for j ≥ 1).
4. Let µ be the cycle structure of σ1 ◦ σ2.
The set of partitions that can be obtained through the above procedure for a fixed j ∈ {0, . . . ,α−1}

will be denoted by Sj . Now consider,

Var
(
p#

(α)(λ)
)

=E
[
p#

(α)(λ)2
]
− E

[
p#

(α)(λ)
]2

=E

p#
(α,α)(λ) +

∑
µ∈S

Cµp
#
µ (λ)

− E
[
p#

(α)(λ)
]2

=n2αM(α,α) (η) +
∑
µ∈S

Cµn
|µ|Mµ (η)− (nαMα (η))2

=
(
n2α − (nα)2

)
Mα (η)2 +

∑
µ∈S

Cµ · n|µ|Mµ (η) ,

where we have used that Mα (η)2 = M(α,α) (η). To bound Mµ (η) for µ ∈ S, we use the following
two lemmas. Lemma 10 is proved in Appendix A and Lemma 11 is proved in Appendix B. Recall
that for a partition µ, `(µ) denotes the length of the partition.

Lemma 10. For all j ∈ {0, . . . ,α− 1} and µ ∈ Sj, `(µ) ≤ α− j.

Definition 3. Let µ and µ′ be partitions of the same integer r. Then µ is said to majorize µ′,
denoted µD µ′, if for all j ≥ 1,

j∑
i=1

µi ≥
j∑
i=1

µ′i
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Lemma 11. Let µD µ′. Then for any distribution η, Mµ (η) ≥Mµ′ (η).

Noting that n2α < (nα)2, we obtain

Var
(
p#

(α)(λ)
)
<
∑
µ∈S

Cµ · n|µ|Mµ (η)

(a)
≤cα

α−1∑
j=0

∑
µ∈Sj

n|µ|Mµ (η)

(b)
≤cα

α−1∑
j=0

∑
µ∈Sj

n|µ|Mα+j−`(µ)+1 (η)

(c)
≤cα

α−1∑
j=0

∑
µ∈Sj

nα+jM2j+1 (η)

≤cαnα
α−1∑
j=0

∑
µ∈Sj

njM2j+1 (η)

(d)
≤cαnα|S|max{1, nα−1M2α−1 (η)}, (18)

where (a) follows from the fact that Cµ ≤ (α!)2 := cα, (b) follows from Lemma 11 and the fact
that [(α + j − l(µ) + 1) ∪ 1l(µ)−1] D µ, (c) follows from Lemma 10 and the fact that Mr (η) is a
non-increasing function in r for fixed η, and (d) follows from the fact that for j ∈ {1, . . . ,α− 2},

nj−1M2j−1 (η) ≤ njM2j+1 (η)⇒ njM2j+1 (η) ≤ nj+1M2j+3 (η) .

Note that the above implication follows from Lemma 11 applied to the partitions (2j + 1, 2j + 1)
and (2j − 1, 2j + 3):

(njM2j+1 (η))2 ≤ nj−1M2j−1 (η) · nj+1M2j+3 (η) .

Finally, note that |S| depends only on α. Hence, the lemma follows by setting Cα = cα|S|.

4.2 Converse

Notice that there are two terms in the copy complexity in Theorem 1. The first term is d1−1/α/ε2.
[AOST17] showed that even in the classical setting, a lower bound of Ω(d1−1/α/ε2) holds. Invoking
Lemma 6 gives the first term.

We use the classical Le Cam’s method to prove the lower bound. We define a hypothesis testing
problem below.

Two Point Testing. Given density matrices ρ and σ with spectrums η and ν, respectively. Let
n be given.
• Let X be a uniform random variable over {0, 1}.
• If X = 0, generate a Young tableau λ ∼ SWη.
• If X = 1, generate a Young tableau λ ∼ SWν .
• Given λ, predict X with X̂.
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Let Pe = minX̂ Pr
(
X̂ 6= X

)
. From basic hypothesis testing results, we can deduce that

Pe = 1
2 −

1
2dTV (SWη, SWν).

We construct two spectrums η and ν, such that Sα(η)− Sα(ν) = Θ(ε), and
1
2dTV (SWη, SWν) < 0.05,

unless n = Ω(d2−2/α/ε2/α). This will prove that unless n is large enough, there is no classifier that
can test between the spectrums η and ν with probability greater than 2/3, implying our lower
bound.

Note that the second term in the complexity expression of Theorem 1 dominates when ε > 1/
√
d.

We henceforth assume in the remainder of this section that ε > 1/
√
d.

Consider the following two spectrums:

η =

1 + (εd)1/α

d
,
1− (εd)1/α

d−1
d

, . . . ,
1− (εd)1/α

d−1
d

, (19)

ν =
(1
d
, . . . ,

1
d

)
. (20)

Note that for any d > 2, assuming that4 ε < log d, we have
(εd)1/α < d− 1. (21)

Thus η is a valid distribution. ν corresponds to the maximally-mixed state.

Lemma 12. Suppose ε > 1/
√
d and d > (3α)

2α
α−1 . Then

|Sα(ν)− Sα(η)| ≥ 1
α− 1 log

(
1 + 2ε

3

)
.

Proof. Computing the moments of η, we have

Mα (η) = 1
dα

((
1 + (εd)1/α

)α
+ (d− 1)

(
1− (εd)1/α

d− 1

)α)
.

For α ≥ 1 and x ≥ 0, note that (1 + x)α > 1 + xα, and, if x ≤ 1, (1− x)α > 1−αx. Using these two
inequalities above with x = (εd)1/α in the first term, and with x = (εd)1/α/(d− 1) in the second
term (and using (21)), we obtain

Mα (η) = 1
dα

((
1 + (εd)1/α

)α
+ (d− 1) ·

(
1− (εd)1/α

d− 1

)α)

≥ 1
dα

(
1 + εd+ (d− 1) ·

(
1− α(εd)1/α

d− 1

))

≥ 1
dα

(
d+ εd− α(εd)1/α

)
≥ d

dα

(
1 + 2

3ε
)

= Mα (ν) ·
(

1 + 2
3ε
)
,

4If ε ≥ log d, then Ŝα = 0 is a valid estimate and the problem becomes trivial.
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whenever d > (3α)
α
α−1

ε , which is implied by the conditions ε > 1/
√
d and d > (3α)

2α
α−1 .

Lemma 13. Any algorithm that can test between η and ν with probability at least 2/3 requires at
least Ω

(
d2−2/α

ε2/α

)
copies.

Proof. We prove that dTV (SWη, SWν) < 0.05. Bounding the total variation distance is hard to
handle, and therefore other distance measures are used to bound the total variation distance. By
Lemma 2, we know that

2dTV (SWη, SWν)2 ≤ χ2(SWη, SWν).

The objective is to bound the χ2 distance between the SW distributions for the two states with n
copies. We use the following formula, derived in [Wri16, Corollary 6.2.4]. The result in this form
was obtained from related results on Schur functions [OO96].

Lemma 14. Let x1, . . . , xd be such that
∑
xi = 0, and xi ≥ −1. Let η be the spectrum with

ηi = (1 + xi)/d, and ν be the spectrum of the maximally mixed state, namely νi = 1/d. Then,

χ2(SWη, SWν) =
∑

µ:1≤`(µ)≤d

sµ(x)2

dµd|µ|
n|µ|,

where for a partition µ, dµ is defined below.

Definition 4. Let µ be a partition. Index each box in the Young tableaux for µ with an entry (i, j),
where i the row number and j is the column number of the box. For each box � in the tableaux,
let c(�) = j − i be the content of �. Then for a real number z ∈ R,

zµ =
∏
�

(z + c(�)).

We will use the following bound on these falling powers of partitions to prove our lower bound.

Lemma 15. Let µ be a partition such that `(µ) ≤ d, where `(µ) is the number of non-zero entries
of µ (which is also the number of non-empty rows in the Young tableaux. Then

dµ ≥
(
d

e

)|µ|
.

This result is proved in Appendix C, and we now prove our result using this lemma.
The distribution ν corresponds to the spectrum defined in (20), and we choose the xi’s to make

the spectrum η equal to (19). In particular, let x1 = (εd)1/α, and xi = − (εd)1/α

d−1 for i = 2, . . . , d. Let
y1 = 1, and yi = −1/(d− 1) for i = 2, . . . , d. Then,

xd1 = (εd)1/α ·
(

1, −1
d− 1 , . . . ,

−1
d− 1

)
= (εd)1/α · yd1 .

Recall that the Schur polynomial sµ
(
xd1

)
is a homogeneous symmetric polynomial of degree |µ|.

This implies,

sµ
(
xd1

)
= (εd)

|µ|
α sµ

(
yd1

)
. (22)
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Let yd+ be the vector of absolute values of yd1 , namely

yd+ =
(

1, 1
d− 1 , . . . ,

1
d− 1

)
.

Then,
∣∣∣sµ(yd1)∣∣∣ ≤ ∣∣∣sµ(yd+)∣∣∣. Using the fact that dµ ≥ (d/e)|µ|, and nm ≤ nm,

χ2(SWη, SWν) =
∑

µ:1≤`(µ)≤d

sµ(x)2

d|µ|d|µ|
n|µ|

=
∑

µ:1≤`(µ)≤d
1<|µ|≤n

sµ(x)2

d|µ|d|µ|
n|µ|

≤
∑

µ:1≤`(µ)≤d
1<|µ|≤n

sµ
(
yd+

)2
·
(
n(εd)2/α

(d/e) · d

)|µ|

=
∑

µ:1≤`(µ)≤d
1<|µ|≤n

sµ
(
yd+

)2
·
(
e · nε2/α

d2−2/α

)|µ|

≤
n∑

m=2

(enε2/α

d2−2/α

)m
·

 ∑
µ:|µ|=m

sµ
(
yd+

)2
,

where the second equality follows from the fact that n|µ| = 0 for |µ| > n. Let p(m) denote the
partition number of m, the number of unordered partitions of m. Bounds on the growth of partition
numbers are well established [HR18]. We only require the following loose upper bound that holds
for all m

p(m) < e3
√
m.

This gives

χ2(SWη, SWν) ≤
n∑

m=2

(
e3
√
m

(
nε2/α

d2−2/α

)m
· max
µ:|µ|=m

sµ
(
yd+

)2
)
. (23)

The entries of yd+ have the following structure. The first entry is 1, and all other entries are
1/(d− 1). This allows us to use the “branching rule” of Schur polynomials. The general form can
be found in [Mac98, Eq 5.10]. A special case appears in the following form in [LW11, Eq. 1.4].

Lemma 16. The Schur polynomial sµ
(
zd1

)
can be decomposed as:

sµ
(
zd1

)
=
∑
λ≺µ

(z1)|µ|−|λ|sλ
(
zd2

)
, (24)

where the summation is over all partitions λ such that and µ1 ≥ λ1 ≥ µ2 ≥ λ2 ≥ µ3 ≥ . . .,
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Applying this with zd = yd+,

sµ
(
yd+

)
=
∑
λ≺µ

( 1
d− 1

)|λ|
sλ
(
1d−1

)
. (25)

From (6), we see that sλ
(
1d−1

)
is the number of semistandard Young tableaux with shape λ and

entries from [d− 1]. We can trivially bound sλ
(
1d
)
≤ (d− 1)|λ|, the total number of ways of filling

the Young tableaux with entries from [d], without any regard to ordering.
We need one final definition.

Definition 5. For a partition µ, let prec(µ) be the number of partitions λ such that λ ≺ µ.

Lemma 17.

prec(µ) =
∞∏
i=1

(µi − µi+1 + 1) < m
√

2m.

Proof. The equality is due to a simple counting argument. For the inequality, let µi1 > µi2 > . . . >
µik ≥ 1 be the distinct elements in µ. If k = 1, the inequality is easy to show, so assume that k > 1.
Then, k(k+1)/2 ≤ µi1 +. . .+µik ≤ m, implying that k <

√
2m. Moreover, µi1−µik ≤ |µ|−1 = m−1

since µik > 1.

prec(µ) ≤
k∏
j=1

(
1 + µij − µij+1

)
≤ mk < m

√
2m.

Therefore,

sµ
(
yd+

)
=
∑
λ≺µ

( 1
d− 1

)|λ|
sλ
(
1d−1

)
≤
∑
λ≺µ

( 1
d− 1

)|λ|
(d− 1)|λ| = prec(µ) ≤ |µ|

√
2|µ| . (26)

Plugging (26) in (23),

χ2(SWη, SWν) ≤
n∑

m=2

(
e3
√
m

(
enε2/α

d2−2/α

)m
· max
µ:|µ|=m

sµ
(
yd+

)2
)

≤
n∑

m=2

(
e3
√
m

(
enε2/α

d2−2/α

)m
·m2

√
2m
)

≤
n∑

m=2

(
(em)3

√
m

(
enε2/α

d2−2/α

)m)
.

Finally note that m
√
m < 2 · 2m for all m > 1. Therefore,

χ2(SWη, SWν) ≤
n∑

m=2
8
(

(2e)4nε2/α

d2−2/α

)m
.

Therefore, unless n ≥ Ω
(
d2− 2

α

ε
2
α

)
, the χ2 distance is small, proving the result.
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5 von Neumann Entropy

5.1 Empirical Entropy Upper Bound

Analogous to the classical setting, the empirical distribution is

η̂i
def= λi

n
.

The empirical estimate of S(ρ) is

Ŝ(λ) def=
d∑
i=1

λi
n

log n

λi
=

d∑
i=1

η̂i log 1
η̂i
.

We prove the following bound on the mean squared error of this estimator.

Theorem 2. The empirical entropy estimate satisfies:

E
[(
Ŝ(λ)− S(ρ)

)2
]
≤ O

(
d4

n2 + d2

n
+ log2 n

n

)
.

An immediate corollary is the following sample complexity bound.

Corollary 1.

C(S, d, ε) = O

(
d2

ε2 + log2(1/ε)
ε2

)
.

Proof. By Markov’s Inequality on Theorem 2, there is a constant C such that with probability at
least 0.9, ∣∣∣(Ŝ(ρ)− S(ρ)

)∣∣∣ < C

√
d4

n2 + d2

n
+ log2 n

n
< C

(
d2

n
+ d√

n
+ logn√

n

)
.

Bounding each term to at most ε/3C gives the sample complexity bound.

Proof of Theorem 2.

For an estimator X̂ of a parameter x, the mean-squared error can be decomposed as

E
[
(x− X̂)2

]
= E

[(
x− E

[
X̂
])2
]

+ E
[(
X̂ − E

[
X̂
])2
]
,

where the first term is the squared bias, and the second term is the variance. In particular,

E
[(
Ŝ(λ)− S(ρ)

)2]
=
(
S(ρ)− E

[
Ŝ(λ)

])2
+ Var

(
Ŝ(λ)

)
. (27)

The theorem follows by plugging the following two bounds on the bias and variance into (27).

Lemma 18. ∣∣∣S(ρ)− E
[
Ŝ(λ)

]∣∣∣ ≤ d2

n
+ 9 d√

n
.

Lemma 19.
Var

(
Ŝ(λ)

)
= O

(
log2 n

n

)
.
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5.1.1 Bounding the Bias (Proof of Lemma 18)

The bias of the empirical estimate can be bounded as:∣∣∣S(ρ)− E
[
Ŝ(λ)

]∣∣∣ =
∣∣∣∣∣E
[
d∑
i=1

(
ηi log 1

ηi
− η̂i log 1

η̂i

)]∣∣∣∣∣
=
∣∣∣∣∣E
[
d∑
i=1

(
ηi log 1

ηi
− η̂i log 1

ηi
+ η̂i log 1

ηi
− η̂i log 1

η̂i

)]∣∣∣∣∣
≤
∣∣∣∣∣E
[
d∑
i=1

(ηi − η̂i) log 1
ηi

]∣∣∣∣∣+
∣∣∣∣∣E
[
d∑
i=1

(
η̂i log η̂i

ηi

)]∣∣∣∣∣
≤
∣∣∣∣∣
d∑
i=1

(ηi − E [η̂i]) log 1
ηi

∣∣∣∣∣+ E
[
d∑
i=1

(η̂i − ηi)2

ηi

]
. (28)

The second term is the expected χ2-distance of the empirical distance and the underlying
distribution. Theorem 4.7 of [OW17a] states that

E
[
d∑
i=1

(η̂i − ηi)2

ηi

]
≤ d2

n
,

which bounds the second term of (28). We now bound the first term. We again use the following
result from [OW17a] that bounds the expected value of η̂i around ηi.

Lemma 20 (Theorem 1.4 of [OW17a]).

|ηi − E [(η̂i)]| ≤ 2

√
min {1,ηid}

n
.

Let c1, . . . , cd be the constants such that ηi − E [η̂i] = ci

√
dηi
n , then, by Lemma 20, |ci| ≤ 2.

Since
∑d
i=1 ηi =

∑d
i=1 η̂i = 1,√

d

n

(
d∑
i=1

ci
√

ηi

)
=

d∑
i=1

(ηi − E [η̂i]) = 0,

implying that
∑d
i=1 ci

√
ηi = 0. Therefore,

d∑
i=1

(ηi − E [η̂i]) log 1
ηi

=

√
d

n
·
(

d∑
i=1

ci
√

ηi log 1
ηi

)
. (29)

Since
√

d
n is a constant, to bound the first term of (28) it will suffice to upper bound the following

maximization problem.

P1 : maximize
∣∣∣∣∣
d∑
i=1

ci
√

ηi log 1
ηi

∣∣∣∣∣
subject to |ci| ≤ 2, and

d∑
i=1

ci
√

ηi = 0.
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By the triangle inequality,∣∣∣∣∣
d∑
i=1

ci
√

ηi log 1
ηi

∣∣∣∣∣ ≤
∣∣∣∣∣
d∑
i=1

ci
√

ηi log 1
c2
iηi

∣∣∣∣∣+
∣∣∣∣∣
d∑
i=1

ci
√

ηi log c2
i

∣∣∣∣∣ (30)

We bound the terms individually. We first consider the second term. Since |ci| ≤ 2, the largest
value of |ci log c2

i | is 2 log 4. Therefore,∣∣∣∣∣
d∑
i=1

ci
√

ηi log c2
i

∣∣∣∣∣ ≤ 2 log 4 ·
(

d∑
i=1

√
ηi

)
≤ (2 log 4) ·

√
d,

where we use that
∑d
i=1
√

η
i
<
√
d by concavity of square root.

Let xi = ci
√

η
i
, then

∑
i xi = 0, and since

∑
ηi = 1,

∑
i x

2
i ≤ 4. Therefore, to bound the first

term of (30), it will suffice to solve P2 below.

P2 : maximize
d∑
i=1

xi log 1
x2
i

(31)

subject to
d∑
i=1

xi = 0, and
d∑
i=1

x2
i ≤ 4. (32)

We show in Appendix D that

Lemma 21. The maximum value of the optimization problem P2 is at most 16
e

√
d.

Plugging this in (30), the maximum of P1 is at most (16/e+ 2 log 4)
√
d. Therefore,∣∣∣∣∣

d∑
i=1

(ηi − E [η̂i]) log 1
ηi

∣∣∣∣∣ ≤
(16
e

+ 2 log 4
)
d√
n
≤ 9d√

n
.

Plugging this in turn into (28) yields∣∣∣S(ρ)− E
[
Ŝ(λ)

]∣∣∣ ≤ d2

n
+ 9d√

n
,

thus bounding the bias.

5.1.2 Proof of Lemma 19.

We will use the bounded difference variance bound (Lemma 3). In particular, we consider the
non-decreasing subsequence interpretation of weak Schur sampling. Let Xn ∈ [d]n, and let λ be the
shape of its young tableaux through the RSK correspondence. Let λ′ be the shape of the Young
tableaux corresponding to a sequence with Hamming distance at most one from Xn. Let S(λ),
and S

(
λ′
)
denote their respective empirical von Neumann entropy. The next lemma states that

changing one of the n symbols has small effect on the empirical entropy.

Lemma 22. Let λ, and λ′ be two Young tableaux shapes obtained from the LIS of two length-n
samples that differ in at most one symbol. If n ≥ 27, then∣∣∣∣Ŝ(λ)− Ŝ

(
λ′
)∣∣∣∣ ≤ 15 logn

n
.
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This lemma is proved in Appendix E.
We invoke the bounded difference inequality (Lemma 3) along with Lemma 22. The empirical

entropy estimate changes by at most 15 logn/n when one symbol is changed. Therefore, the variance
is at most

Var
(
Ŝ(λ)

)
≤ 1

4n ·
(15 logn

n

)2
≤ 225 log2 n

4n .

6 Non Integral α

6.1 α > 1
We prove the following sample complexity bound for estimating Sα(ρ) for α > 1.

Theorem 3. For α > 1, the empirical estimator of Sα(ρ) outputs a ±ε estimate with O
(
d2

ε2

)
copies

of ρ with probability at least 0.9.

Proof. Recall that n =
∑

λi. Define

Mα (λ) def=
d∑
i=1

(
λi
n

)α
.

We show that when n is large enough, Mα (λ) is within a small multiplicative factor of Mα (η). The
following result shows each term (λi/n)α concentrates around ηαi .

Lemma 23. Let β > 1, and further suppose that the sorted probabilities are ηi. Then there is a
constant Cβ such that

E
[∣∣∣λiβ − (ηin)β

∣∣∣] < Cβ ·
(
nβ/2 +

√
n(ηin)β−1

)
.

This lemma is proved in Appendix G.
Then,

E [|Mα (λ)−Mα (η)|] = E
[∣∣∣∣∣

d∑
i=1

((
λi
n

)α
− ηαi

)∣∣∣∣∣
]

≤ 1
nα

d∑
i=1

E [|λiα − (ηin)α|]

≤ Cα
nα

d∑
i=1

(
nα/2 +

√
n(ηin)α−1

)
(33)

= Cα

(
d

nα/2
+ 1√

n

d∑
i=1

ηα−1
i

)

= Cα

(
d

nα/2
+ Mα−1 (η)√

n

)
, (34)

where (33) uses Lemma 23.
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By Lemma 5, for α > 1, Mα (η) ≥ d1−α, and Mα−1 (η) ≤ dMα (η). Substituting in (34),

E [|Mα (λ)−Mα (η)|] ≤ Cα
(

d

nα/2
+ Mα−1 (η)√

n

)
≤ Cα

(
dαMα (η)
nα/2

+ dMα (η)√
n

)
≤ Cα

(
dα

nα/2
+ d√

n

)
Mα (η) .

By Markov’s Inequality,

Pr (|Mα (λ)−Mα (η)| > εMα (η)) ≤ E [|Mα (λ)−Mα (η)|]
εMα (η) ≤ Cα

ε

(
dα

nα/2
+ d√

n

)
.

Therefore, when n > Cd2
(

1
ε2 + 1

ε2/α

)
, the result follows. Since α > 1, the first term dominates.

6.2 α < 1
In this section, we will prove the following:

Theorem 4. The empirical estimator of Sα(ρ) outputs a ±ε estimate with O
((

d
ε

)2/α
)

copies.

Similar to the case of large α, we need the following result, which is proved in Appendix H.

Lemma 24. Let β < 1 and suppose that the sorted probabilities are ηi. Then there is a constant
Cβ such that

E
[∣∣∣λiβ − (ηin)β

∣∣∣] < Cβ · nβ/2.

We now prove the copy complexity bound assuming this result.

Proof of Theorem 4. Recall that n =
∑

λi. Define,

Mα (λ) def=
d∑
i=1

(
λi
n

)α
.

Then by the triangle inequality,

E [|Mα (λ)−Mα (η)|] ≤ 1
nα

d∑
i=1

E [|λiα − (ηin)α|]

≤ Cα
nα

d∑
i=1

nα/2 (35)

= Cα
d

nα/2
, (36)

where (35) follows from Lemma 24. For α < 1, Mα (η) ≥ 1. Substituting in (36),

E [|Mα (λ)−Mα (η)|] ≤ Cα
d

nα/2
≤ Cα

d

nα/2
Mα (η) .
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By Markov’s Inequality,

Pr (|Mα (λ)−Mα (η)| > εMα (η)) ≤ E [|Mα (λ)−Mα (η)|]
εMα (η) ≤ Cα

ε

(
d

nα/2

)
.

Therefore, when n > C
(
d
ε

)2/α
, the result follows.

7 Lower bound on the performance of empirical entropy estimate

7.1 Stronger error probability bounds for performance of EYD

The EYD algorithm for estimating the multiset of probability elements simply outputs the empirical
probabilities of the Young tableaux, namely ηi = λi/n. The performance of the EYD algorithm has
been well studied. We will consider the special case of the uniform distribution, and the performance
metric of total variation. It is known [OW16] that the EYD algorithm using O(d2/ε2) samples from
the uniform distribution satisfies with high probability,

E [dTV (η, u)] < ε.

The best known lower bounds for the performance of the EYD algorithm is the following result
of [OW15].

Theorem 5. There is a constant ε0 > 0, such that for ε ≤ ε0,

Pr
(

d∑
i=1

∣∣∣∣λin − 1
d

∣∣∣∣ > ε

)
> 0.01

unless n = Ω(d2/ε2).

We will strengthen their error probability bound as follows.

Theorem 6. There are constants ε0 > 0, c1, and c2 such that when ε ≤ ε0, and n < c1d
2/ε2, and

ρ is maximally mixed,

Pr
(

d∑
i=1

∣∣∣∣λin − 1
d

∣∣∣∣ > ε

)
> 1− exp(−c2 · d).

Proof. Let

Z(λ) =
d∑
i=1

∣∣∣∣λin − 1
d

∣∣∣∣ .
By the LIS interpretation of the Young tableaux, we will show that if λ, and λ′ are two Young
tableaux corresponding to sequences that differ at at most one position, then the difference of their
total variation distances from the uniform distribution is small. In particular,

Lemma 25.
|Z(λ)− Z(λ′)| ≤ 14

n
.
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This lemma is proved in Section F.
To prove Theorem 6, we first show that it holds for small n (at most O(d/ε2)). This is proved in

the following two lemmas and relies only on results about the empirical distribution in the classical
setting. These are proved in Appendix F.

Lemma 26. Let p̂ be the empirical distribution from n draws from the uniform distribution u over
[d]. There are constants ε0, and c, such that for any ε < ε0, unless n = Ω(d/ε2),

Pr (dTV (p̂, u) < ε/2) < exp(−c · d).

Using a coupling argument, we prove the following lemma.

Lemma 27. Unless n = Ω(d/ε2),

Pr (Z(λ) < ε) ≤ Pr (dTV (p̂, u) < ε/2) < exp(−c · d),

where c is the same constant as Lemma 26.

We henceforth assume that n > Cd/ε2 for some constant C. By Theorem 5 with appropriate
normalization, we can claim that for ε < ε0 (for some constant ε0), unless n = Ω(d2/ε2),

E [Z(λ)] > ε. (37)

Therefore, when (37) is satisfied, and n > Cd/ε2

Pr
(
Z(λ) < ε

2

)
= Pr

(
E [Z(λ)]− Z(λ) > E [Z(λ)]− ε

2

)
≤Pr

(
E [Z(λ)]− Z(λ) > ε

2

)
≤ exp

(
− 2(ε/2)2

n · (14/n)2

)

= exp
(
−nε

2

392

)

≤ exp
(
−Cd392

)
, (38)

proving Theorem 6.

7.2 Lower bound for α ≥ 1
In this section we show that empirical estimation of entropy requires at least quadratic (in d) samples
for α ≥ 1. This shows that the analysis of empirical estimation is tight in the dimensionality.

Theorem 7. There is a constant ε0, such that for ε < ε0, the empirical estimate of entropy requires
Ω(d2/ε) samples to estimate von Neumann entropy, and any Rényi entropy of order greater than
one.

The proof uses two claims. The second is on the monotonicity of Rényi entropy (See [BS93]).
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Lemma 28. Sα(ρ) is a non-increasing function of α.

We show that when the state is maximally mixed, namely each eigenvalue is 1
d , the empirical

estimator cannot estimate the entropy unless we have enough samples.

Lemma 29. For any α ≥ 1, there exist constants c1, and c2 such that when the distribution is
maximally mixed, and n < c1d

2/ε2, with probability at least 1− exp(−c2d
2),

Sα

(
λ

n

)
< log d− ε2.

Proof. Suppose u denotes the maximally mixed state. Then,

S(u)− Ŝ(λ) =
d∑
i=1

(
λi
n

log d− λi
n

log n

λi

)

=
d∑
i=1

(
λi
n

log n/λi
d

)
=dKL

(
λ

n
, u

)
≥2dTV

(
λ

n
, u

)2
, (39)

where the last step is from Lemma 2. By Lemma 28, whenever the total variation of the empirical
distribution from the uniform distribution is at least ε, all Rényi entropies of order at least one at
Ω(ε2) away from log d. Combining with Theorem 6 gives the result.

Proof of Theorem 7. The last lemma says that to estimate the entropy to ±ε2, the empirical estimate
requires Ω(d2/ε2) samples. Substituting ε = ε2 gives the result.

7.3 Lower bound for α < 1
The lower bounds for the empirical algorithm for α ≥ 1 were shown for the uniform distribution.
However, for α < 1, the uniform distribution only provides a quadratic dependence on d. This is
similar to the classical setting, where [AOST17] designed another distribution for analyzing the
case α < 1. We will consider their distributions as our eigenvalues (for ease of notations we use the
dimension to be d+ 1):

ν1 = 1− ε

d
1
α
−1
,νi = ε

d
1
α

, for i = 2, . . . , d+ 1. (40)

Thus we assume that ε < d1/α−1. [AOST17] consider ν as a distribution for the classical setting
and showed that the empirical plug-in estimator requires Ω((d/ε)1/α) samples to output an ±ε
estimate of Sα(ρ). In particular, they show that unless Ω(d1/α/ε), the plug-in estimator of Renyi
entropy (See Section 3.1.2) Hα(p̂) is at most Sα(ν)− εα. We can now invoke the following inequality
from [HLP29], and [MOA11, Equation (1), Chapter 1].

Lemma 30. If f is a concave function, and x1, . . . , xm majorizes y1, . . . , ym, then
m∑
i=1

f(xi) ≤
m∑
i=1

f(yi).
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Since xα is a concave function, and λ/n majorizes the profile, this implies that Sα(λ/n) is at
most Hα(p̂). This proves a lower bound of Ω((d/ε)1/α) to estimate Sα(ρ) to ±εα in the present
setting. We now provide an improved lower bound. Suppose ρ is a density matrix with eigenvalues
ν.

Theorem 8. The EYD algorithm requires Ω(d1+1/α/ε1/α) copies to estimate Sα(ρ) to ±ε.

We will consider the LIS interpretation of the Young tableaux, generated by a distribution over
[d + 1] that assigns probability νi to symbol i. Recall that the ordering of eigenvalues does not
affect the output distribution of Young tableaux.

Let λ be the Young tableaux generated from n independent samples. Fix β > 0, and consider
the following events.
E1 : λ1 is equal to the number of occurrences of symbol 1.
E2 : If M = n− λ1 =

∑d+1
i=2 λi then

d+1∑
i=2

∣∣∣∣λiM − 1
d

∣∣∣∣ > 2β. (41)

E3 :
Mα

nα
d1−α < εα

(
1 + β2α(1− α)

2

)
.

The following lemma, proved in Appendix I, states that these events occur unless n is large.

Lemma 31. If n = Ω(d1/α−1/ε) and n = O(d1+1/α/ε), then with probability at least 0.9, E1, E2, E3
all occur.

We now prove Theorem 8 assuming Lemma 31. By the reasoning before Theorem 8, we may
assume that n = Ω(d1/α/ε), and thus n is in the range assumed by Lemma 31. We will use the
following lemma, which states that if a distribution is far from the uniform distribution, its αth
moment is far from that of the uniform distribution.

Lemma 32. Let p be a distribution over [d] such that
∑d
i=1 |p(i)− 1

d | = 2γ, then for α < 1,

d∑
i=1

pαi ≤
(
1− α(1− α) · γ2

)
· d1−α.

The lemma is proved in Appendix J. We can now consider λi/M for i = 2, . . . ,d+ 1 as a distribution
over d elements. Applying the lemma, when E2 holds,

d+1∑
i=2

(
λi
M

)α
< (1− α(1− α)β2)d1−α.
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When this happens,

d+1∑
i=1

(
λi
n

)α
=
(

λ1
n

)α
+
(
M

n

)α
·
(
d+1∑
i=2

(
λi
M

)α)

<1 +
(
M

n

)α
· (1− α(1− α)β2)d1−α

≤1 + εα
(

1 + β2α(1− α)
2

)
(1− β2α(1− α)) (42)

≤1 + εα
(

1− β2α(1− α)
2

)
, (43)

where (42) follows from E3.
We now relate this to Mα (ν).

Mα (ν) =
(

1− ε

d
1
α
−1

)α
+ d ·

(
ε

d
1
α

)α
.

For any x < 0.5, (1− x)α > 1− 2αx, and therefore, for ε < 0.1,

Mα (ν) ≥ 1− 2α ε

d
1
α
−1

+ εα. (44)

Suppose d1/α−1 > 10
β2(1−α) . Then

Mα (ν) ≥ 1 + εα ·
(

1− β2α(1− α)
5

)
(45)

Now simply comparing (45), and (45), and using the fact that log(1 + x) = x+ Θ(x2) for |x| < 1/2,
we note that the EYD Rényi entropy is a factor Ω(εα) away from the true entropy. Therefore, by
Lemma 31, unless n = Ω(d1+1/α/ε) we cannot estimate entropy up to ±εα. Substituting ε with
ε1/α gives the theorem.
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A Proof of Lemma 10
Fix j ∈ {0, . . . ,α − 1}. First we prove that each cycle in σ = σ1 ◦ σ2 contains an element in
{j + 1, · · · , α}. Let

S = {j + 1, · · · , α}, F1 = {α+ 1, · · · , α+ j}, and F2 = {1, · · · , j}.
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F1 is fixed under σ1, and F2 is fixed under σ2. Now consider any cycle in σ, and pick an element k
in the cycle. If k ∈ S, then the claim is true. Otherwise:
Case 1: k ∈ F2.
Let nk be the largest integer such that σ1(k), σ2

1(k), . . . , σnk1 (k) ∈ F2. (If σ1(k) /∈ F2, define nk = 0.)
Note that, since σ1 performs a cycle on F2 ∪ S, there must exist m such that σm1 (k) ∈ S. Hence, nk
is finite. Then,

σnk+1(k) = (σ1 ◦ σ2)nk+1(k) (a)= (σ1 ◦ σ2)nk(σ1(k)) (b)= σnk+1
1 (k)

(c)
∈ S,

where (a) follows from the definition of nk and the fact that points in F2 are fixed under σ2, (b)
follows similarly (by induction), and (c) follows from the definition of σ1 and nk.
Case 2: k ∈ F1.
Let nk be the largest integer such that σ2(k), σ2

2(k), . . . , σnk2 (k) ∈ F1. (If σ2(k) /∈ F1, define nk = 0.)
Note that, since σ2 performs a cycle on F1 ∪ S, there must exist m such that σm2 (k) ∈ S. Hence, nk
is finite. Then,

σnk+1(k) = (σ1 ◦ σ2)nk+1(k) (a)= (σ1 ◦ σ2)nk(σ2(k)) (b)= σ1 ◦ σnk+1
2 (k),

where (a) follows from the definition of nk and the fact that points in F1 are fixed under σ1, and
(b) follows similarly (by induction). Now, by definition of σ2 and nk, σnk+1

2 (k) ∈ S. Then, by
definition of σ1, σ1 ◦ σnk+1

2 (k) ∈ F2 ∪ S. If σ1 ◦ σnk+1
2 (k) ∈ S, then the claim is true. Finally, if

σ1 ◦ σnk+1
2 (k) ∈ F2, this falls back to case 1 which has been resolved.

Since |{j + 1, · · · , α}| = α− j it follows that `(µ) ≤ α− j.

B Proof of Lemma 11
Let ` = `(µ1) = `(µ2), µ1 = (x1, . . . , x`), and µ2 = (y1, . . . , y`). Then

Mµ1 (η) =
∏̀
i=1

Mxi (η) =
∏̀
i=1

d∑
j=1

ηxij =
∑

j1,...,j`∈[d]`
ηx1
j1
. . . ηx`j` .

We define an equivalence relation on [d]` as follows: (j1, . . . , j`) ∼ (ĵ1, . . . , ĵ`) if there exists a
permutation σ on [`] such that σ(j1, . . . , j`) = (ĵ1, . . . , ĵ`). We denote by E the set of equivalence
classes created by this relation, and for each E ∈ E we pick a representative element and denote it
by (j1, . . . , j`)E . For each E, define gE : E → [`!] as

gE(j1, . . . , j`) =
∣∣∣ {σ : σ

(
(j1, . . . , j`)E

)
= (j1, . . . , j`)

} ∣∣∣, (j1, . . . , j`) ∈ E.

Now note that, for each E, gE(.) is a constant function. Indeed, if (j1, . . . , j`) and (ĵ1, . . . , ĵ`) belong
to E, then there exists σ1 such that σ1(j1, . . . , j`) = (ĵ1, . . . , ĵ`). Therefore if σ((j1, . . . , j`)E) =
(j1, . . . , j`), then σ1 ◦ σ((j1, . . . , j`)E) = (ĵ1, . . . , j`). Similarly, if σ((j1, . . . , j`)E) = (ĵ1, . . . , ĵ`), then
σ

(−1)
1 ◦ σ((j1, . . . , j`)E) = (j1, . . . , j`). So define g : E → [`!] as g(E) = gE((j1, . . . , j`)E). Now
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consider

Mµ1 (η) =
∑

j1,...,j`∈[d]`
ηx1
j1
. . . ηx`j`

=
∑
E∈E

∑
(j1,...,j`)∈E

ηx1
j1
. . . ηx`j`

=
∑
E∈E

1
g(E)

∑
σ

ηx1
σ(j1,E) . . . η

x`
σ(j`,E)

≥
∑
E∈E

1
g(E)

∑
σ

ηy1
σ(j1,E) . . . η

y`
σ(j`,E)

= Mµ2 (η) ,

where the inequality follows from Muirhead’s theorem [Mui02][MOA11, p. 125].

C Proof of Lemma 15
Let |µ| = qd+ r, where 0 < r < d, and q are non-negative integers. We will show that of all µ with
|µ| = qd + r and `(µ) ≤ d, the tableaux that has q columns with d boxes, and one last column
with r boxes, minimizes dµ. Toward this end consider a tableaux that has at least two non-empty
columns that have less than d boxes in them. Then we can move a box from the last row with
length µ1, and move it to the end of the first column that does not have length equal to d. This
operation moves a box to the left and below, thereby decreasing the value of c(�) for it.

We now assume that the partition µ has q columns with d boxes and one column with r boxes.
For this partition µ, by Definition 4,

dµ =(d+ q)r
q−1∏
j=0

(d+ j)d

≥(d!)q · (d)r. (46)

We will show that for any integer 0 ≤ t ≤ d,

dt ≥
(
d

e

)t
. (47)

Plugging this bound in (46), and noting that d! = dd, we obtain,

dµ ≥
((

d

e

)d)q
·
(
d

e

)r
=
(
d

e

)|µ|
(48)

We now prove (47). Let

f(t) = dt(
d
e

)t .
Then for any t ≤ d,

f(t+ 1)
f(t) = (d− t)

(d/e) ,
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and this ratio is monotonically decreasing with t. Therefore, the smallest value of f(t) occurs at
either t = 0 or t = d. At t = 0, (47) is true since both sides are 1, and at t = d, we need to show
that

d! >
(
d

e

)d
,

which follows from Stirling’s approximation.

D Proof of Lemma 21
We will first show that at the maxima, there can be at most three distinct values that the xi’s can
take, of which at most one is positive.
Consider xi > 0 and xj > 0. Then, by the concavity of logarithm, if we replace both of them by
(xi + xj)/2 the objective value increases. The constraints, on the other hand, are still valid.
We now consider the negative values. Writing the Lagrangian,

L(x1, . . . ,xd, γ1, γ2) =
d∑
i=1

(
xi log 1

x2
i

)
+ γ1

(
4−

∑
i

x2
i

)
+ γ2

(∑
i

xi

)
. (49)

Differentiating with respect to xi,

∂L(x1, . . . ,xd, γ1, γ2)
∂xi

= − log 1
x2
i

− 2− 2γ1xi + γ2 = 0,

and therefore,
2γ1xi + log 1

x2
i

− γ2 − 2 = 0

This function is strictly convex on (−∞, 0), and therefore has at most two roots.
Therefore, there are at most three distinct values that xi’s can take, and at most one of them is

positive. Let y1 > 0 > −y2 > −y3 be these values, and let d1, d2, d3 be the multiplicities of these.
Therefore, the optimization problem can be written as:

P3 : maximize d1y1 log 1
y2

1
− d2y2 log 1

y2
2
− d3y3 log 1

y2
3

subject to d1y1 − d2y2 − d3y3 = 0, d1y
2
1 + d2y

2
2 + d3y

2
3 ≤ 4, and d1 + d2 + d3 ≤ d.

Substituting d1y1 = d2y2 + d3y3 the objective becomes

(d2y2 + d3y3) log 1
y2

1
− d2y2 log 1

y2
2
− d3y3 log 1

y2
3

= d2y2 log y
2
2
y2

1
+ d3y3 log y

2
3
y2

1
.

Since d1y1 ≥ d2y2, we have y2/y1 ≤ d1/d2, and

d2y2 log y
2
2
y2

1
≤ 2d2y2 log d1

d2
= 2

√
d1 ·

(√
d2
d1

log d1
d2

)
·
(√

d2y2
)
.

Since d2y
2
2 ≤ 4,

√
d2y2 < 2. Moreover, for any z > 0,

z log 1
z2 = 2z log 1

z
≤ 2
e
.
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This shows that
d2y2 log y

2
2
y2

1
≤ 8
e

√
d1 ≤

8
e

√
d.

By a similar argument,

d3y3 log y
2
3
y2

1
≤ 8
e

√
d.

Summing up the two terms bounds the objective of P3, and plugging in (29), we obtain∣∣∣∣∣
d∑
i=1

(ηi − E [η̂i]) log 1
ηi

∣∣∣∣∣ ≤ 16
e

√
d ·

√
d

n
= 16

e

d√
n
.

E Proof of Lemma 22
Proof. In the classical setting, changing one element can change at most two probabilities of
the empirical distribution, using which one can bound the variance of the empirical entropy
estimator [Pan03]. However, in our case, changing one symbol can change the length of more than
one of the rows of the Young tableaux. [OW17a, Prop. 2.2] showed that the cumulative row sums
are bounded (see also [BL12]). In particular, for any j = 1, . . . , d,∣∣∣∣∣∣

j∑
i=1

λi −
j∑
i=1

λ′i

∣∣∣∣∣∣ ≤ 1.

Suppose ∆i
def= λi

′ − λi, then for all j = 1, . . . , d,

−1 ≤
j∑
i=1

∆i ≤ 1. (50)

This also implies that the for each i, −2 ≤ ∆i ≤ 2. This proves a bounded difference condition on
λi, which can be used to prove its concentration using McDiarmid’s inequality (Lemma 4).

Note that λi changes by at most two when one of the inputs changes, and hence c = 2. This
gives

Pr (|λi − E [λi]| > t) ≤ 2 · e−
t2
2n . (51)

Without loss of generality assume that `(λ) ≥ `(λ′), i.e., the number of rows in λ is at least the
number of rows in λ′.

By the Taylor series, for any −x ≤ δ ≤ x,

(x+ δ) log(x+ δ) = x log x+ δ(1 + log x) +
∞∑
j=2

δj

(j − 1)j
(−1)j

xj−1 . (52)
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Let f(x) = x log x. Then

Ŝ
(
λ′
)
− Ŝ(λ)

=
`(λ)∑
i=1

λ′i
n

log n

λ′i
− λi
n

log n

λi

=
`(λ)∑
i=1
−f
(

λi + ∆i

n

)
+ f

(
λi
n

)

=
∑

λi>1
−

∆i

n

(
1 + log λi

n

)
+ 1
n

∞∑
j=2

(∆i

λi

)j−1 ∆i(−1)j

(j − 1)j

+
∑

λi=1

[1 + ∆i

n
log n

1 + ∆i
− 1
n

logn
]
.

We now consider the terms separately, and prove the following series of (simple) claims.
1. If (50) holds, and λi’s are non-increasing, then∣∣∣∣∣∣

∑
λi>1

[∆i

n

(
1 + log λi

n

)]∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑

λi>1

∆i

n

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑

λi>1

∆i

n
log λi

n

∣∣∣∣∣∣ ≤ 1
n

+ 2
n

log n2 .

Proof. The first term is a direct consequence of (50). The second term follows from the
following lemma.

Lemma 33. Let x1 ≥ x2 · · · ≥ xm ≥ 0 be real numbers. Further, let ∆1, . . . ,∆m satisfy
−1 ≤

∑j
i=1 ∆i ≤ 1. Then

∑m
i=1 ∆ixi ≤ x1.

2. For λ ∈ N, let Iλ = {i : λi = λ} be the set of rows with length λ. Then,

|{i ∈ Iλ : ∆i 6= 0}| ≤ 4,

i.e., there are at most four non-zero ∆i’s for each distinct value of λi.
Proof. Let λi = λ for i ∈ {h1, . . . , h2}. However, since the λ′i’s are non-increasing, ∆i’s are
non-increasing for all i ∈ {h1, . . . , h2}. If more than four of these are non-zero, then there are
at least three consecutive positive, or three consecutive negative ∆i’s. However, this would
violate (50).

3. There are at most
√

2n non-empty Iλ’s.
Proof. The sum of row lengths equals n. Therefore, the maximum number of distinct row
lengths is the largest value of j such that

∑j
i=1 i = j(j + 1)/2 is at most n. This proves that j

is at most
√

2n.
4. For λi ≥ 2, ∣∣∣∣∣∣

∞∑
j=2

(∆i

λi

)j−1 ∆i(−1)j

(j − 1)j

∣∣∣∣∣∣ ≤ 2.

Proof. Using |∆i| ≤ 2, and λi ≥ 2, we have |∆i| /λi ≤ 1. This implies that for any j ≥ 1,
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(|∆i| /λi)j ≤ |∆i| /λi. This gives∣∣∣∣∣∣
∞∑
j=2

(∆i

λi

)j−1 ∆i(−1)j

(j − 1)j

∣∣∣∣∣∣ ≤
∞∑
j=2

( |∆i|
λi

)j−1 |∆i|
(j − 1)j

≤
( |∆i|

λi

)
·
∞∑
j=2

|∆i|
(j − 1)j

=∆2
i

λi
≤ 2.

5. The second summation satisfies∣∣∣∣∣∣
∑

λi=1

[1 + ∆i

n
log n

1 + ∆i
− 1
n

logn
]∣∣∣∣∣∣ ≤ 8 logn

n

whenever n ≥ 27.
Proof. ∣∣∣∣∣∣

∑
λi=1

[1 + ∆i

n
log n

1 + ∆i
− 1
n

logn
]∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

λi=1,∆i 6=0

[1 + ∆i

n
log n

1 + ∆i
− 1
n

logn
]∣∣∣∣∣∣

≤
∑

λi=1,∆i 6=0

∣∣∣∣[1 + ∆i

n
log n

1 + ∆i
− 1
n

logn
]∣∣∣∣

≤4
∣∣∣∣[ 3
n

log n3 −
1
n

logn
]∣∣∣∣

≤8 logn
n

, (53)

where the middle inequality holds whenever n ≥ 27.
Using these five simple claims, we can bound the difference between Ŝ(λ) and Ŝ

(
λ′
)
.

F Proofs of Lemmas 25 through 27
Proof of Lemma 25. The proof follows the same tools as that of proving the Lipschitzness of
empirical entropy. By the relation between total variation and `1 distance, we know that

Z(λ) = 2 ·
∑

i: λi
n
> 1
d

λi
n
− 1
d
.

Let j, and j′ be the largest indices such that λj/n > 1/d, and λ′j′/n > 1/d. From the fact that
for any `, −1 ≤

∑`
i=1(λi − λ′i) ≤ 1, we conclude that |j′ − j| ≤ 3. Moreover, at each of these

three locations the value of λ′i and λi differ by at most two. Combining these results proves the
bound.

Proof of Lemma 26. Define

Z(p̂) def=
d∑
i=1

∣∣∣∣p̂(i)− 1
d

∣∣∣∣ .
We will use following bound on the expected value of Z(p̂) for the uniform distribution.
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Lemma 34.

E [Z(p̂)] ≥ min

1
2 ,

8
81

√
d

n

 .
Assuming this result, we can prove Lemma 26 in the following two cases.

Case 1: n < d/4. In this case, at least 3d/4 p̂(i)’s are zero. Therefore, with probability one,

Z(p̂) ≥ 3d
4 ·

1
d

= 3
4 .

Case 2: n ≥ d/4. In this case, the second term in Lemma 34 controls the minimum. Suppose
ε < 1/(2c1). We can find a constant c3 such that when n < c3d/ε

2, E [Z(p̂)] > 2ε, which implies
E [Z(p̂)]− ε > E [Z(p̂)] /2. Applying McDiarmid’s inequality on p̂, noting that changing one symbol
changes Z(p̂) by at most 2/n,

Pr (Z(p̂) < ε) = Pr (E [Z(p̂)]− Z(p̂) > E [Z(p̂)]− ε)

≤Pr
(
E [Z(p̂)]− Z(p̂) > E [Z(p̂)]

2

)

≤ exp

−2
(
E[Z(p̂)]

2

)2

n · (2/n)2


= exp

(
−n · E [Z(p̂)]2

8

)

≤ exp
(
− d

8c2
2

)
,

where the last step used that E [Z(p̂)] ≥ 1
c2

√
d
n .

Proof of Lemma 34. np̂(i) is distributed Bin(n, 1
d). Suppose X ∼ Bin(n, 1

d), then by the linearity
of expectations,

E [Z(p̂)] = d · E
[∣∣∣∣Xn − 1

d

∣∣∣∣] = d

n
· E
[∣∣∣∣X − n

d

∣∣∣∣] . (54)

There is clean expression for the expected absolute deviations of Binomial random variables [Mat03,
Lemma 1.4]:

Lemma 35 (De Moivre’s mean absolute deviation identity). Let b(n, p; k) =
(n
k

)
pk(1− p)n−k be the

Binomial probability, and let Y ∼ Bin(n, p). Then

E [|X − np|] = 2np(1− p) max
k

b(n− 1, p; k).

We will be interested in p = 1
d , and would like to bound maxk b(n− 1, p; k). It is possible to use

Stirling’s approximation for specific values of k, but we find it easier to simply apply Chebychev’s
inequality. By Chebychev’s inequality, for any a > 0,

Pr
(∣∣∣∣X − n

d

∣∣∣∣ > a ·
√
n

1
d

(
1− 1

d

))
<

1
a2 .
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Suppose a = 3. Then
Pr
(∣∣∣∣X − n

d

∣∣∣∣ > 3 ·
√
n

d

)
<

1
9 .

When n ≤ d/2, then with probability one, Z(p̂) ≥ 1
2 . When n > d/2, then at least one integer

lies in the interval
[
n
d − 3 ·

√
n
d ,

n
d + 3 ·

√
n
d

]
. The number of integers in this interval is at most

6
√

n
d + 1 < 9

√
n
d . Therefore, there is some ` such that

Pr (X = `) > 8
9 ·

1
9

√
d

n
.

We can plug in this expression into Lemma 35 to obtain

E
[∣∣∣∣X − n

d

∣∣∣∣] ≥ 2n1
d

(
1− 1

d

)
· 8

81

√
d

n
≥ 8

81 ·
n

d
·

√
d

n
.

Plugging this in (54) proves the lemma.

Proof of Lemma 27. Recall the LIS interpretation of WSS. Suppose the underlying distribution is
uniform, namely the state is maximally mixed. Let p̂, be the sorted plug-in distribution, and λ/n is
the EYD distribution. Then, Lemma 8 states that λ/n majorizes p̂. Let j be largest index such
that p̂(i) > 1/d. Then,

Z(p̂) =2 ·

 j∑
i=1

p̂(i)− 1
d


≤2 ·

 j∑
i=1

∣∣∣∣λin − 1
d

∣∣∣∣
 (55)

≤Z(λ), (56)

where (55) follows from Lemma 8, and the last step uses Definition 2. Invoking Lemma 26 proves
the claim.

G Proof of Lemma 23
We first show two results that will be used to prove Lemma 23. The first is a simple application of
the mean value theorem.

Lemma 36. Let β > 1, and x > y > 0. Then

xβ − yβ ≤ (x− y)βxβ−1.

Proof. By the mean value theorem,

xβ − yβ

x− y
≤ max

z∈[y,x]

dzβ

dz
≤ βxβ−1.

The next result bounds the moments of a random variable that has exponential tail decay
probability.
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Lemma 37. Suppose Z is a random variable such that

Pr (|Z| > t) < 2e−t2/2n,

then for any β > 0, there is a constant Cβ such that

E
[
|Z|β

]
< Cβn

β/2.

Proof. For a non-negative random variable X,

E [X] =
∫ ∞

0
Pr (X > t)dt.

Using this for |Z|β,

E
[
|Z|β

]
=
∫ ∞

0
Pr
(
|Z|β > tβ

)
dtβ

=
∫ ∞

0
βtβ−1 Pr (|Z| > t)dt

≤
∫ ∞

0
2βtβ−1e−t

2/2ndt.

Using the transformation u = t2/2n, we have dt =
√

2n/udu/2. This implies

E
[
|Z|β

]
≤
∫ ∞

0
β
(√

2nu
)β−1

e−u
√

2n
u
du.

= β(2n)β/2
∫ ∞

0
uβ/2−1e−udu

=
(

2β/2βΓ
(
β

2

))
nβ/2,

where Γ(x) is the Gamma function. Choosing Cβ = 2β/2βΓ(β2 ) proves the lemma.

Proof of Lemma 23. Theorem 1.4 of [OW17a] implies that

ηin− 2
√
n ≤ E [λi] ≤ ηin+ 2

√
n.

Let E [λi] = ηin+B, then |B| ≤ 2
√
n. By the triangle inequality,

E
[∣∣∣λiβ − (ηin)β

∣∣∣] ≤ E
[∣∣∣λiβ − (E [λi])β

∣∣∣+ ∣∣∣(E [λi])β − (ηin)β
∣∣∣]

= E
[∣∣∣λiβ − (ηin+B)β

∣∣∣]+
∣∣∣(ηin+B)β − (ηin)β

∣∣∣ .
Consider the second term. By Lemma 36, and |B| < 2

√
n,∣∣∣(ηin+B)β − (ηin)β

∣∣∣ ≤ β · 2
√
n
(
ηin+ 2

√
n
)β−1

< β2β ·
(√

n · (ηin)β−1 +
(
2
√
n
)β)

.
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Let Zi = λi − E [λi] = λi − ηin− B. Then Zi is a zero mean random variable. Recall from (51),
Pr (|Zi| > t) ≤ e−t2/2n. Again applying Lemma 36 to the first term,

E
[∣∣∣λiβ − (ηin+B)β

∣∣∣] = E
[∣∣∣(Zi + ηin+B)β − (ηin+B)β

∣∣∣]
≤ βE

[
|Zi| (|Zi|+ ηin+ |B|)β−1

]
≤ β3β−1E

[
|Zi|

(
|Zi|β−1 + (ηin)β−1 + |B|β−1

)]
= β3β−1

(
E
[
|Zi|β

]
+ (ηin)β−1 · E [|Zi|] + |B|β−1 · E [|Zi|]

)
Applying Lemma 37 to Zi proves the lemma.

H Proof of Lemma 24
For x1, x2 . . . xn ∈ R such that

∑
i xi ≥ 0 and β < 1,

(x1 + . . .+ xn)β ≤ |x1|β + . . .+ |xn|β . (57)

Using this and the notation from the proof of Lemma 23, we first show that∣∣∣λiβ − (ηin)β
∣∣∣ =

∣∣∣(Zi + ηin+B)β − (ηin)β
∣∣∣ ≤ |Zi|β + |B|β .

If Zi + ηin+B ≥ ηin, then this follows by (57) because

(Zi + ηin+B)β ≤ (ηin)β + |Zi|β + |B|β .

If Zi + ηin+B ≤ ηin, then this follows by (57) because

(ηin)β = (Zi + ηin+B − Zi −B)β ≤ (Zi + ηin+B)β + |Zi|β + |B|β .

Therefore,

E
[∣∣∣λiβ − (ηin)β

∣∣∣] ≤ E
[
|Zi|β + |B|β

]
≤ Cβ · nβ/2, (58)

where we used by Lemma 37 that E
[
|Zi|β

]
< Cnβ/2, and that |B| ≤ 2

√
n.

I Proof of Lemma 31
We first show that for d large enough, with probability at least 0.98, λ1 is equal to the number of
1’s. In other words, the longest non-decreasing subsequence simply corresponds to all the 1’s in the
sequence.

The proof uses the following result on the probability that a biased random walk never returns
to the origin.

Lemma 38. Let S1, . . . , be a biased random walk of length n starting at the origin. Let p > 0.99 be
the probability of taking a step to the right. Then with probability at least 0.98 Si > 0 for all i > 0.

43



Proof. This is “the drunkard on the cliff” problem [Jac12, Section 2.12]. The probability is
1− 0.01/0.99 > 0.98.

Let E ′1 denote the event that there are more 1’s than all other elements combined in Xi, . . . , Xn,
for all i ≥ 1. By the lemma, it follows that when 1− ε

d
1
α−1 > 0.99, E ′1 has probability at least 0.98.

The event E ′1 in turn implies that λ1 is equal to the number of 1’s, as desired. It follows that on
E ′1 all the rows except the first one are determined by the appearances of the remaining symbols,
which are from a uniform distribution.

We now bound the probability of E2. We first note that λ1 is always at least the number of
occurrences of 1. Therefore, M is at most a Binomial Bin(n, ε/d1/α−1). Now, if n is at most
cd1+1/α/ε, then E [M ] ≤ c · d2. Therefore, by the Chebychev’s inequality we can assume that
M < 2cd2 with probability at least 0.98. When we condition on E ′1, using the fact that the νi’s are
all the same for i > 1, the distribution of λ2, . . . ,λd+1 is the same as obtained by M independent
draws from a uniform distribution over d symbols. Therefore, we can invoke Theorem 6 to prove
that E2 happens.

Finally, E3 holds when

M <
εn

d1/α−1 (1 + β2α(1− α)/2)1/α.

Note that M has expected value of at most nε/d1/α−1. Therefore, by Binomial concentration
bounds, there is a constant C such that when nε/d1/α−1 > C, the equation above holds with
probability at least 0.98. This only requires that n > Cd1/α−1/ε, which is guaranteed by the
hypotheses of the lemma.

J Proof of Lemma 32
Let S = {i : pi > 1

d}, and |S| = j. Then,

dTV (p, u) =
∑
i∈S

(
pi −

1
d

)
= pS −

j

d
.

Let p̄ be a distribution over [d] defined as follows. For i ∈ S, let p̄i = pS
j , and for i ∈ [d] \ S,

p̄i = (1−pS)
d−j . Since dTV (p, u) = γ, we have pS = j

d + γ, and for i ∈ S, p̄i = 1
d + γ

j , and for i ∈ [d] \ S,
p̄i = 1

d −
γ
d−j . Since probabilities are non-negative, d− j ≥ γd, implying that

1− γ ≥ j

d
. (59)

p̄ is a two step distribution. Moreover, all elements with probability larger than 1
d in p have a

probability larger than 1
d in p̄, and all elements with probability at most 1

d have probability at most
1
d in p̄. Therefore,

dTV (p̄, u) = dTV (p, u) = γ > ε.

Note that xα is a concave function in x, for α < 1. Therefore,

d∑
i=1

p̄αi ≥
d∑
i=1

pαi .
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Now, we bound
∑d
i=1 p̄

α
i .

d∑
i=1

p̄αi = j ·
(1
d

+ γ

j

)α
+ (d− j) ·

(1
d
− γ

d− j

)α
= j1−α ·

(
j

d
+ γ

)α
+ (d− j)1−α ·

(
d− j
d
− γ

)α
= d1−α ·

((
j

d

)1−α
·
(
j

d
+ γ

)α
+
(

1− j

d

)1−α
·
(

1− j

d
− γ

)α)
.

Let x = j
d , then from (59), 0 < x ≤ 1− γ. Then,

d∑
i=1

p̄αi = d1−α ·
(
x1−α · (x+ γ)α + (1− x)1−α · (1− x− γ)α

)
. (60)

To complete the proof, we show that the term in the parentheses is at most 1−α(1−α)γ2. Suppose
0 < α < 1, and 0 < ε < 1. Then, we show that for x ∈ [0, 1− ε]

x1−α(x+ ε)α + (1− x)1−α(1− x− ε)α < 1− α(1− α)ε2. (61)

Proof of (61). We use the generalized Binomial theorem (Binomial series). For 0 < y ≤ 1, and
α > 0,

(1− y)α =
∞∑
`=0

α`

`! · (−y)`,

where α` = α(α− 1) . . . (α− `+ 1) as before denotes the falling powers. When α ∈ (0, 1) and y > 0,
note that for all ` > 1, the signs of α` and (−1)` are different, implying that all the terms beyond
the first (` = 0) are at most zero. For α ∈ (0, 1), and y > 0, truncating beyond two terms above,

(1− y)α < 1− αy − α(1− α)
2 y2. (62)

We now proceed to bound (61).

x1−α(x+ ε)α + (1− x)1−α(1− x− ε)α

= (x+ ε) ·
(

x

x+ ε

)1−α
+ (1− x) ·

(1− x− ε
1− x

)α
= (x+ ε) ·

(
1− ε

x+ ε

)1−α
+ (1− x) ·

(
1− ε

1− x

)α
< (x+ ε)

(
1− (1− α)ε

x+ ε
− α(1− α)

2
ε2

(x+ ε)2

)
+ (1− x)

(
1− αε

1− x −
α(1− α)

2
ε2

(1− x)2

)
(63)

= 1− ε2 · α(1− α)
2

( 1
x+ ε

+ 1
1− x

)
< 1− α(1− α) · ε2 (64)

where (63) uses (62), and (64) uses x+ ε ≤ 1 and 1− x ≤ 1.
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