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Abstract—We consider a distributed learning problem in which
the computation is carried out on a system consisting of a master
node and multiple worker nodes. In such systems, the existence of
slow-running machines called stragglers will cause a significant
decrease in performance. Recently, coding theoretic framework,
which is named Gradient Coding (GC), for mitigating stragglers
in distributed learning has been established by Tandon et al. Most
studies on GC are aiming at recovering the gradient information
completely assuming that the Gradient Descent (GD) algorithm is
used as a learning algorithm. On the other hand, if the Stochastic
Gradient Descent (SGD) algorithm is used, it is not necessary to
completely recover the gradient information, and its unbiased
estimator is sufficient for the learning. In this paper, we propose
a distributed SGD scheme using Low Density Generator Matrix
(LDGM) codes. In the proposed system, it may take longer time
than existing GC methods to recover the gradient information
completely, however, it enables the master node to obtain a high-
quality unbiased estimator of the gradient at low computational
cost and it leads to overall performance improvement.

I. INTRODUCTION

Recent advances in machine learning have achieved remark-

able successes in various fields, such as image processing and

natural language processing. The amount of data processed by

machine learning algorithms has been increasing dramatically,

and it is difficult to process by a single computer or a single

processor. Therefore, the distributed computing system, in

which data is distributed to many computers or processors

and processed in parallel, is widely used.

Gradient-based methods such as Gradient Descent (GD)

algorithm are one of the most widely used algorithms to fit

the machine learning models over the training data. In order

to handle massive amounts of data, developing distributed im-

plementations of GD is important. A common implementation

of distributed GD is via a master/worker system where the

data is distributed by a master node across multiple worker

nodes. Each worker computes a partial gradient based on its

locally stored data and sends it to the master as soon as its

computation is completed. The master node aggregates all the

partial gradients to update the model parameters.

In such systems, the master node needs to wait until all

the worker nodes complete their computations and send their

partial gradients. Therefore, the run-time of each iteration of

distributed GD is limited by slow-running workers, which is

often called stragglers.

Recently, coding-theoretic strategies to mitigate stragglers

have been attracting a lot of attention [1]–[4]. They add some

redundancy for the data to mitigate stragglers. In particular, for

the distributed GD, Gradient Coding (GC) has been proposed

in [5]. In the GC framework, the data is divided into some

batches and the workers compute some partial gradients that

correspond to the local data batches, and then send a linear

combination of them. By carefully designing the allocation

of data batches and the linear combination coefficients, the

master can recover the full gradient from a subset of workers’

computation results. There have been some further researches

on GC to improve the performance [6]–[8].

Most existing GC schemes are aiming at recovering the full

gradient. However, when the amount of data is tremendously

large, an approximate gradient is often used. Stochastic Gradi-

ent Descent (SGD) and its variants use an unbiased estimator

of the full gradient [9]–[11]. For SGD, the approximation

accuracy of the approximate gradient determines the number

of updates of the learning algorithm. The authors in [12]

proposed to use LDPC codes and iterative decoding algorithm

in the GC framework. They also indicated that the proposed

scheme can be viewed as the SGD. A disadvantage of their

scheme is that it can only be applied to the case where the loss

function is the squared loss. The authors in [13] also proposed

to use an approximate gradient in the GC framework.

In this paper, we propose a distributed SGD scheme using

LDGM codes and peeling based decoding algorithm. Although

our work is similar to [12] in that a code with a sparse structure

is used, the proposed scheme can be applied to loss functions

other than the squared loss. Another advantage of the proposed

scheme is that the encoding and decoding complexity of it is

very low. In the proposed scheme, the obtained approximate

gradient has a smaller approximation error compared to the

case where no coding scheme is used and it results in the

faster convergence of the learning algorithm.

The rest of the paper is organized as follows. In Section 2,

we introduce basic notations and definitions for the distributed

learning problem. In Section 3, we establish the distributed

SGD scheme using LDGM codes and peeling based decoding

algorithm. A Density Evolution (DE) based analysis of the

proposed scheme is also given. In Section 4, we evaluate

the effectiveness of the proposed scheme through numerical

simulations. Finally, we give a summary and future works in

Section 5.

http://arxiv.org/abs/1901.04668v1


II. PRELIMINARIES

In this section, we briefly review the model and definition

of the distributed learning in a master/worker system. Assume

that we are given n samples D = {(xi, yi)}i∈[n], where xi ∈

R
d is a feature vector and yi ∈ R is its label1. Let w ∈ R

d

be a parameter and ℓ(w,x, y) be a loss function for a sample

(x, y)2. For example, if the linear model and squared loss is

assumed,

ℓ(w,x, y) =
1

2
(y − x

T
w)2. (1)

We are interested in minimizing the following empirical loss

function.

L(w) =

n
∑

i=1

ℓ(w,xi, yi) (2)

Since the empirical loss function is the sum of the loss function

of each sample, the gradient of the empirical loss with respect

to w has the following form.

∇wL(w) =
n
∑

i=1

∇wℓ(w,xi, yi) (3)

A popular approach to minimizing the empirical loss is via

the GD. The GD iteratively updates the estimated parameter

vector w
(t) by moving along the negative gradient direction

as follows.

w
(t+1) = w

(t) − η(t)∇wL(w(t)), (4)

where, η(t) is the learning rate in the tth iteration.

When the size of the training data is too large to process on a

single machine or a single processor, one way to implement the

GD updates is to calculate the gradient in a distributed fashion

over many computing nodes. We consider a master/worker

system that consists of a master node and N worker nodes.

Without any coding scheme, a naive implementation of the

distributed GD is that we first divide the data into N chunks

{D1, . . . ,DN} of size n
N and each chunk Dj is stored on

worker j. Within each iteration of the GD updates, the master

broadcasts the current estimate w
(t) to all the workers and

then each worker j calculates
∑

(x,y)∈Dj
∇wℓ(w(t),x, y), and

sends it to the master. The master waits for the results from

all the workers and sums them up to obtain the full gradient

∇wL(w(t)) =

N
∑

j=1

∑

(x,y)∈Dj

∇wℓ(w(t),x, y). (5)

In this scheme, the master has to wait until all the workers

complete their computations. Therefore, even a single straggler

can significantly delay the computation time in each iteration.

The GC scheme enables the system that the master can

recover the full gradient with the results from a subset of

workers by adding some redundancy on the data stored in the

1In this paper, [x] denotes {1, . . . , x}
2It is not necessary that the dimension of the parameter equals to that of

the feature vector. However, for the sake of the simplicity, we assume that
they are the same.
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Fig. 1. Tanner graph representation of the gradient coding scheme.

workers. Here, we describe the GC scheme using an (N,K)
code. The data divided into K chunks {D1, . . . ,DK} of size
N
K . Let N (j) ⊆ [K] and assume that each worker j stores

{Dk}k∈N (j). Then, each worker j computes the following

partial gradients

gk =
∑

(x,y)∈Dk

∇wℓ(w,x, y), k ∈ N (j) (6)

and sends their linear combination
∑

k∈N (j) bj,kgk to the

master. Here, for the sake of simplicity, we drop the super-

script (t) denoting the iteration number of GD. By carefully

designing {N (j)}j∈[N ] and {bj,k}j∈[N ],k∈N (j), the master can

recover the full gradient based on the results from some fastest

workers. See [5] for more details.

III. DISTRIBUTED STOCHASTIC GRADIENT DESCENT

USING LDGM CODES

A. Encoding

First, we present a bipartite graph representation of the GC

scheme. We consider a graph that consists of two sets of nodes

(V , C), where V = {v1, . . . , vK} denotes the set of the partial

gradients {gk}k∈[K] and C = {c1, . . . , cN} denotes the set

of linear combinations of the partial gradients computed by

workers. In our scheme, the linear combinations are simply

the sum of the partial gradients. An edge is connected between

vk and cj if k ∈ N (j). An example of the graph is shown

in Fig. 1 for K = 4 and N = 5. In Fig. 1, the circle nodes

represent the partial gradients that need to be recovered and

the square nodes denote the generator nodes which represent

that the worker j computes the sum of the partial gradients
∑

k∈N (j) gk. The graph can be seen as a Tanner graph for

a low-density generator matrix (LDGM) code [14]. Here, the

sum operation at the generator nodes is over the real filed

vector, whereas in an LDGM code, the sum is over the finite

field scalar.

An ensemble of LDGM codes is determined by degree

distributions [14]. Let L(x) =
∑

i Lix
i and λ(x) =

∑

i λix
i−1 denote the variable-node degree-distributions from

the node and edge perspectives, respectively. A variable node

is connected with i generator nodes with the probability

Li and λ(x) = L′(x)
L′(1) . Similarly, let R(x) =

∑

iRix
i

and ρ(x) =
∑

i ρix
i−1 denote the generator-node degree-

distributions from the node and edge perspectives, respectively.



A generator node is connected with i variable nodes with the

probability Ri and ρ(x) = R′(x)
R′(1) .

B. Decoding

In our scheme, the master tries to recover a subset or all

of the partial gradients {gk}k∈[K] by an iterative algorithm,

which is similar to the peeling decoding algorithm for the

binary erasure channel (BEC) using the Tanner graph. For

ease of analysis, we assume that workers that could not

complete their computations within time t0 as stragglers and

the master starts running the decoding algorithm based on

the computation results of other than stragglers. (In practice,

the master can start running the decoding algorithm as soon

as it receives computation results of the workers who have

completed their computations.) Each variable (generator) node

sends an outgoing message along each edge connected to

the generator (variable) node whose value is an erasure or

a real value vector. At a generator node of degree 1, if

the corresponding worker is not a straggler, the outgoing

message along the edge is the computation result itself that the

corresponding worker computed. At a generator node of larger

degree, the outgoing message along the edge is not an erasure

if the corresponding worker is not a straggler and the incoming

messages along the other edges connected to that generator

node are not erasures. In this case, the outgoing message is the

computation result of the corresponding worker minus the sum

of the incoming messages along the other edges. In cases other

than the above cases, the outgoing message from a generator

node is an erasure. At a variable node, the outgoing message

is an erasure if the incoming messages along all the other

edges connected to the variable node are erasures. Otherwise,

the outgoing message is any one of the non-erasure incoming

messages along the other edges.

C. Density Evolution

Let G(K,N, λ, ρ) denote the ensemble of Tanner graphs

corresponding to the GC scheme with K variable nodes, N
generator nodes, and the degree distribution pair (λ(x), ρ(x)).
We consider the decoding performance averaged over the

ensemble of graphs G(K,N, λ, ρ) in the limit as K,N → ∞.

To do so, we need some assumptions on the computation

time of the workers. We assume that the computation time

Tj of the worker j is a random variable whose cumulative

distribution function is Fj(t) and it is independent to the

computation times of other workers. Further, we assume that

the distribution function Fj(t) satisfies Fj(t) = F (t/|N (j)|)
for a base distribution function F (t). For example, if the

computation times are modeled by exponential distribution,

F (t) = 1 − e−µt, where µ is a parameter that determines

how long time is required for workers to complete their

computations. Above assumption reflects the fact that the more

partial gradients have to be computed by a worker, the more

computation time is required to complete the computation. A

similar assumption is made in [1].

Let xl and yl be the probabilities that an outgoing message

from a variable node and a generator node, respectively, are

erased during the lth iteration. The depth-2l neighborhood of

a randomly chosen edge in G(K,N, λ, ρ) is tree-like with

probability one as K,N → ∞. By considering the decoding

algorithm, we obtain the following density evolution (DE)

formula.

y1 = 1− ρ̃(0) (7)

xl = λ(yl), l ≥ 1 (8)

yl+1 = 1− ρ̃(1− xl), l ≥ 1 (9)

where ρ̃(x) =
∑

i ρ̃ix
i−1 and

ρ̃i = ρi (1− F (t0/i)) . (10)

D. Stochastic Gradient Descent

In the proposed scheme, by increasing the value of t0, the

master can recover the full gradient. However, it may take

very long time. If we use SGD instead of GD, the master

does not have to recover the full gradient. The (mini-batch)

SGD iteratively updates the parameter vector w as follows.

w
(t+1) = w

(t) − η(t)
∑

i∈I

∇wℓ(w(t),xi, yi), (11)

where I ⊆ [n] and SGD is equivalent to GD if I = [n]. The

approximate gradient term (second term of the right-hand side)

can be interpreted as an unbiased estimator of the full gradient

assuming a uniform distribution on the training data. Note that

the size of I trades the approximation error of the approximate

gradient to the computational complexity to calculate it.

In our proposed scheme, even if the master fails to recover

the full gradient, it could recover a subset of {gk}k∈[K]. Let

K ⊆ [K] be the set of the partial gradients that the master

obtains by the decoding algorithm, the master updates w as

follows.

w
(t+1) = w

(t) − η(t)
∑

k∈K

gk (12)

Note that if we use SGD for the learning algorithm, we

can take the strategy that we use no GC scheme and ignore

the computation results of stragglers. However, by using GC

scheme, we can expect that the approximation error of the

approximate gradient is reduced.

IV. EXPERIMENTS

In this section, we present some experimental results of the

proposed scheme. In particular, we empirically compare the

performance of our proposed distributed SGD using LDGM

codes with the distributed GD using GC scheme in [8] and

distributed SGD with the naive uncoded scheme where no

redundancy among the workers is added.

A. Experimental Setup

We consider to solve a least square problem, that is, squared

loss function (1) is assumed. The elements of each feature

vector xi are drawn from the standard normal distribution,

and label yi is constructed by yi = x
T
i w

∗ + ǫ, where the

elements of w∗ and ǫ are also drawn from the standard normal
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Fig. 2. The values of the objective functions (mean squared error) as the functions of the iteration number for µ = 0.5, 1.0 and 2.0.
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Fig. 3. The values of the objective functions (mean squared error) as the functions of the processing time for µ = 0.5, 1.0 and 2.0. Time of the master’s
decoding is not included.

distribution. The dimension d of the feature vectors and the

sample size n are set to 12000 and 1200, respectively.

We simulate the master/worker system with stragglers as

follows. As described in the part of DE, we assume that

the computation time of each worker is a random variable.

In GC schemes, the computation time of worker j follows

F (t/|N (j)|), where |N (j)| is the number of chunks that the

worker j process and F (t) is a base distribution function. In

this experiment, we assume that F (t) = 1 − e−µt. In our

proposed scheme, we set the time threshold t0 = 1 and a

worker whose computation time is larger than t0 is treated as

a straggler. Therefore, the probability that the worker j is a

straggler is e−1/|N (j)|. In GC schemes, the data is divided into

K chunks and each worker computes the partial gradients of

some chunks. On the other hand, in uncoded system, the data

is divided into N chunks and each worker computes the partial

gradient of a single chunk. Therefore, the size of each chunk

in uncoded system is different from that in GC schemes. We

assume that the computation time of each worker in uncoded

system follows F (Nt/K), where N/K is the ratio of the

batch size of uncoded system and that of GC schemes.

In our proposed scheme, we have to determine the degree

distribution pair (λ(x), ρ(x)). We searched the variable regular

generator (check) irregular distribution pair based on DE so

that (numerically) converged value of xl is minimized subject

to the constraint that the rate K/N of the code is 1/2. The

found degree distribution pair is

λ(x) = x2, ρ(x) =
3

4
+

1

4
x2, (13)

for µ = 0.5 and

λ(x) = x2, ρ(x) =
1

2
+

1

2
x, (14)

for µ = 1.0, 2.0. In an environment with many stragglers,

we found that LDGM codes with more degree 1 generator

nodes are preferred. We run the decoding algorithm until the

algorithm converges. Finally, we set the learning rate η(t) =
η(0)/t with η(0) = 0.1 for all schemes.

Fig. 2 shows how the value of the objective function (2) of

each method decreases with the number of iterations. When

µ is small, uncoded SGD scheme is better than LDGM coded

SGD scheme. This is because in a situation where workers’

processing time is long and there are many stragglers, the

decoding algorithm can not correct the erasures well. In such

a situation, it is more efficient to divide the data into many

batches and reduce the batch size instead of coding3. On

the other hand, LDGM coded SGD scheme has a similar

performance of (full) GD scheme when the probability of each

worker is straggler is rather small, and the performance of it

is much better than that of uncoded SGD scheme. When the

3When coding is not performed, the size of each batch is n/N , while it is
n/K when coding is performed and N > K .



probability of each worker is straggler is small, LDGM coded

scheme can recover almost all the partial gradients and in such

a situation, the gain obtained by coding exceeds that obtained

by reducing the batch size.

In a master/worker system with stragglers, we need a GC

scheme in order to implement GD. For comparison, we used

GC scheme proposed in [8] (RS coded GD scheme). The GC

scheme in [8] has a parameter w, that is the number of batches

that each worker processes. The expectation of the time Twait

of the master has to wait in each iteration depends on this

parameter. In our experiment setting, the expected wait time

E[Twait] is expressed as

E[Twait] =
µ

w

(

1 +
1

2
+ . . .+

1

N − ⌊wN/K⌋+ 1

)

. (15)

We searched w that minimizes E[Tmaster] and the optimal w
is 1 for µ = 0.5, 1.0, 2.0 and E[Twait] is 12.112, 6.056, 3.028,

respectively. Fig. 3 shows how the value of the objective

function of each method decreases with processing time.

In this experiment, the decoding time of the master is not

included because it depends on the implementation. Therefore,

the processing time in each iteration is 1.0 for uncoded SGD

scheme and LDGM coded SGD scheme .because we set

t0 = 1.0 We assume that the processing time in each iteration

is E[Twait] for RS coded GD scheme. In our experiment setup,

the SGD schemes are better than the GD scheme with GC and

the LDGM coded SGD scheme shows the best performance

for µ = 1.0, 2.0.

V. CONCLUSION

We have developed a gradient coding scheme based on

LDGM codes and iterative decoding algorithm. We also de-

veloped a density evolution analysis of the proposed scheme.

Although the proposed system may require more time than

existing gradient coding schemes to obtain the full gradient,

it can recover an approximate gradient with high accuracy

in a low computational complexity. Combining the proposed

scheme and the stochastic gradient descent (SGD) algorithm,

we can obtain a distributed learning algorithm which converges

faster than the full gradient descent with a gradient coding

scheme.

There are some future directions of the work presented

here. In our experiment, we fixed the threshold parameter that

the master waits for the workers’ responses. This parameter

trades the approximation error of the approximated gradient

with the master’s waiting time. We need a method to decide

what value this parameter should be set in order to accelerate

the convergence of the whole learning algorithm. We run the

decoding algorithm until it converges. The number of the

iteration of the decoding algorithm trades the approximation

error of the approximate gradient with the master’s decoding

time. We also need a method to determine the number of

iterations of the decoding algorithm to accelerate the learning

algorithm.

In our proposed scheme, we used the SGD algorithm for

the learning algorithm. There are some variants of the SGD

such as SVRG and SAGA [10], [11]. In these methods,

the convergence of the learning algorithm is accelerated at

the cost of computing an accurate gradient per an update

of the parameter. It is a future work to construct a high-

performance distributed learning scheme by combining these

learning algorithms and the proposed gradient coding scheme.
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