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Abstract—Goppa Codes are a well-known class of codes
with, among others, applications in code-based cryptography.
In this paper, we present a collaborative decoding algorithm for
interleaved Goppa codes (IGC). Collaborative decoding increases
the decoding radius beyond half of the designed minimum
distance. We consider wild Goppa codes and show that we
can collaboratively correct more errors for binary Goppa codes
than the Patterson decoder. We propose a modified version of
the McEliece cryptosystem using wild IGC based on a recently
proposed system by Elleuch et al., analyze attacks on the system
and present some parameters with the corresponding key sizes.

Index Terms—Interleaved Goppa codes, decoding, public-key
cryptosystem, code-based cryptography, McEliece system

I. INTRODUCTION

Goppa codes [1] are a subclass of algebraic error-correcting

codes called alternant codes [2, Chapter 12], which are sub-

field subcodes of generalized Reed–Solomon (RS) codes [3].
Therefore, every Goppa code of length n over Fq is a

subfield subcode of a generalized RS code in Fn
qm and can

be decoded with any RS decoder. Alternatively, Goppa codes

can be decoded by code specific algorithms, e.g., by solving

a key equation with the Euclidean algorithm [4]. Patterson [5]
introduced an algorithm with an extra “key equation degree

reduction” step, which increases the decoding radius of binary

Goppa codes. Barreto et al. [6] introduced a probabilistic

algorithm which generalizes Patterson’s algorithm over any

prime field Fp to increase the decoding radius of Goppa
codes from

⌊

r
2

⌋

to ⌊ 2
p
r⌋. Moreover, several list decoding

approaches [7]–[9] were proposed in order to decode Goppa

codes beyond half the designed minimum distance.

Interleaved RS codes can be decoded almost up to the

Singleton bound by collaborative decoding [10]. Since inter-

leaved Goppa codes are subcodes of interleaved RS codes,

they can be decoded by any collaborative RS decoder. As
an alternative, we present in this work the first collaborative

decoder specifically for interleaved Goppa codes.

In the second part of this work we consider the application
of Goppa codes in code-based cryptography. The threat of

quantum computers to the security of currently used public-

key cryptosystems sparked an increased interest in post-

quantum secure cryptosystems. One promising approach are

code-based cryptosystems, such as the McEliece cryptosys-
tem [11]. Besides being post-quantum secure, it also provides

faster encryption and decryption than conventional public-

key systems because algebraic error correcting codes offer

efficient encoding and decoding algorithms. The downside of

the McEliece cryptosystem is that for a given security level
the key size is significantly larger than for currently used

cryptosystems (e.g., for 128 bits security level, the key size

of the original McEliece system is several hundred KB and
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for RSA < 1 KB). This security level of the system depends

heavily on the chosen code and several classes of codes have

been proposed to decrease the key size. However, only Goppa

codes have remained secure for a long time.

In this work we introduce a new decoder for interleaved
Goppa codes, based on Patterson’s key equation [5]. Further,

we propose a repair and improvement of the interleaved

McEliece scheme of [12] to secure the system against Tillich’s

attack [13] and present parameters for different security levels.

II. PRELIMINARIES

A. Notations

Let Fq be a finite field of size q. Denote by a ∈ Fn
q a

vector of length n over Fq and by A ∈ Fa×b
q a matrix with a

rows and b columns over Fq . We denote the Hamming weight

of a vector a by wt(a) and the number of non-zero columns

of A by wt(A). A linear code C of length n, dimension k
and minimum distance d over Fq is denoted by [n, k, d]q or

[n, k]q.

B. Goppa Codes

A Goppa code [1] (see also [2]) is defined by a locator set

L and a Goppa polynomial g(x).

Definition 1 (Goppa Code). Let q be a prime power and

m,n, r be some integers such that rm ≤ n ≤ qm. Let L =
{α0, . . . , αn−1} be a set of n distinct elements of Fqm and

g(x) ∈ Fqm [x] be a polynomial of degree r such that g(αi) 6=
0, ∀αi ∈ L. The Goppa code Γ(L, g) is defined as

Γ(L, g) =

{

c

∣

∣

∣

n−1
∑

i=0

ci

x− αi

≡ 0 mod g(x), ∀c ∈ Fn
q

}

.

If g(x) has no multiple irreducible factors then Γ(L, g) is

called a square-free or separable Goppa code. In addition,
if g(x) is an irreducible polynomial then Γ(L, g) is called

an irreducible Goppa code. A Goppa code Γ(L, g) as in

Definition 1 is a linear code over Fq of length n = |L|,
dimension k ≥ n−mr and minimum distance d ≥ r+1. For

irreducible binary Goppa codes the distance is d ≥ 2r + 1.
It is well-known that Goppa codes are subfield subcodes of

[n, n− r]qm generalized RS codes.

C. Wild Goppa Codes

Wild Goppa codes [14] are a subclass of Goppa codes and

have been suggested for the Wild McEliece [15].

Definition 2 (Wild Goppa Codes). Let Γ(L, g) be as in

Definition 1. If b(x) is a monic square-free polynomial in

Fqm [x], the Goppa codes Γ(L, bq) and Γ(L, bq−1) are called

wild Goppa codes.

It has been shown in [14] that the wild Goppa codes
Γ(L, bq) and Γ(L, bq−1) are the same code of length |L| = n,

dimension k ≥ n − rm and distance d ≥ q
q−1r + 1,

where r = deg(b(x)q−1) .

http://arxiv.org/abs/1901.10202v2


Remark (Binary square-free Goppa codes). The well-known

binary square-free Goppa codes of minimum distance d ≥
2r + 1 are a subclass of wild Goppa codes.

D. Interleaved Goppa Codes

Definition 3 (Interleaved Goppa Codes). Let Γ(L, g) be a

Goppa code as in Definition 1. An ℓ-interleaved Goppa code
(IGC) IΓ(L, g, ℓ) is defined as

IΓ(L, g, ℓ) =











C=







c(1)

...

c
(ℓ)






,∀c(i)∈ Γ(L, g), i = 1, . . . , ℓ











.

The advantage of interleaved codes is that if the errors
occur in the same positions in all rows, e.g., because of burst

errors on the channel, collaborative decoding of the rows

can increase the decoding radius beyond half the (designed)

minimum distance. Let R = C + E be the received word,

where C ∈ IΓ(L, g, ℓ) is a codeword and E ∈ Fℓ×n
q is an

error matrix. By E , we denote the set of indices of the non-

zero columns of the error matrix E = [eij ]. The number of

(burst) errors is thus given by t = wt(E) := |E|.

III. DECODING OF INTERLEAVED WILD GOPPA CODES

In the following, we only consider interleaved codes that

arise from wild Goppa codes, i.e., g(x) = b(x)q for some

square-free polynomial b(x) in Fqm [x]. Recall that r := (q−

1) deg b(x) = q−1
q

deg g(x) (e.g., r = deg b(x) = deg g(x)
2 for

q = 2).

A. Interleaving Patterson’s Key Equation

We present a decoder for interleaved wild Goppa codes

based on Patterson’s decoder [5]. The decoder solves a system

of key equations which contains the following polynomials.

Definition 4. Let R = [rij ], E = [eij ], and E be defined

as above. For i = 1, . . . , ℓ, we define the error locator Λ(x),
the ith error evaluator Ωi(x) and the ith syndrome Si(x)
polynomials as follows,

Λ(x) :=
∏

j∈E

(x− αj) ,

Ωi(x) :=
∑

j∈E

eij
∏

µ∈E\{j}

(x− αµ) ,

Si(x) :=

n−1
∑

j=0

rij

x− αj

≡
∑

j∈E

eij

x− αj

mod g(x) .

The goal of the decoder is to find the unknown error

locator and evaluator polynomials from the known syndrome

polynomials such that they fulfill the following relation.

Theorem 1 (System of Key Equations).

Ωi(x) ≡ Λ(x)Si(x) mod g(x) ,

degΩi(x) < degΛ(x) = |E|

for all i = 1, . . . , ℓ.

Proof. This congruence relations and inequalities follow di-
rectly from the definition.

Theorem 1 assumes the specific structure of Ωi(x) and

Λ(x) given in Definition 4, which makes direct solving of
the key equations a non-linear problem. Instead, we solve the

following linearized, well-studied, version of the problem.

Problem 1. Given g(x), S1(x), . . . , Sℓ(x) ∈ Fqm [x], find

λ(x), ω1(x), . . . , ωℓ(x) ∈ Fqm [x], not all zero, such that

ωi(x) ≡ λ(x)Si(x) mod g(x) , (1)

degωi(x) < degλ(x) , (2)

degλ(x) minimal . (3)

Remark. Problem 1 is well-studied in literature, see the

overview and relation to several decoding problems in [16],

[17]. A solution of the problem can be found in

O
(

ℓ3r log2(r) log(log(r))
)

over Fqm , see [16] (note that deg g(x) = q
q−1r ∈ O(r)).

For ℓ = 1, we can prove that the solution of Problem 1

agrees with the actual error locator and error evaluator poly-
nomial up to a scalar factor, for up to q

q−1 · r
2 errors.

Theorem 2. Let ℓ = 1 and |E| ≤ q
q−1 · r

2 . Let λ(x), ω1(x) ∈
Fqm [x] be a solution of Problem 1 with input g(x), S1(x).
Then, the solution fulfills

λ(x) = c · Λ(x) and ω1(x) = c · Ω1(x)

for some non-zero constant c ∈ Fqm .

Proof. The proof works similar to [18, Proposition 6.1]. We
have g(αi) 6= 0 for all i = 0, . . . , n − 1, so (x − αi) ∤ g(x),
and gcd(Λ(x), g(x)) = 1. Hence, the inverse of Λ(x) modulo

g(x) exists and we can rewrite the key equation into

Λ−1(x)Ωi(x) ≡ Si(x) mod g(x) .

By (1), we obtain ωi(x) ≡ λ(x)Λ−1(x)Ωi(x) mod g(x), so

ωi(x)Λ(x) ≡ λ(x)Ωi(x) mod g(x) . (4)

By definition, the degrees of both sides of the congruence are

< 2|E| ≤ q
q−1 · r = deg g(x) ,

so we can omit the modulo operation. Hence,

ωi(x)Λ(x) = λ(x)Ωi(x) . (5)

Furthermore, for ℓ = 1, we have Ω1(αi) 6= 0 for all i ∈ E .

Hence, (x − αi) ∤ Ω1(x) and gcd(Ω1(x),Λ(x)) = 1. By

(5), we must have Λ(x) | λ(x). Since Λ(x) and Ω1(x)
satisfy conditions (1) and (2), and λ(x) is of minimal degree

satisfying the conditions, we must have deg λ(x) ≤ degΛ(x).
Hence,

λ(x) = c · Λ(x) (6)

for some non-zero scalar c ∈ Fqm . We obtain ω1(x) = c ·
Ω1(x) from (5).

Remark. For ℓ = 1, the system of key equations in Theorem 1

is equivalent to Patterson’s key equation [5, Equation (3)]

with g(x) = b(x)q−1 instead of g(x) = b(x)q . Since we use

wild Goppa codes here, where Γ(L, b(x)q−1) = Γ(L, b(x)q),
we can circumvent the “reduction step” in Patterson’s de-

coder [5, Algorithm 4] and directly decode up to q
q−1 ·

r
2 errors

uniquely. This enables us to “interleave” our key equation

which is not possible with the “reduced key equation” in [5,

Section V]. Furthermore, for q > 3, we can decode more

errors than the algorithm in [6] uniquely. Note that both

decoders are probabilistic and similar to [6] we have to

rely on simulation results to determine the decoding failure

probability (see Section III-B).

By counting the number of unknowns (coefficients of λ(x)
and ωi(x)) and equations of the linear system given by the

coefficients of the left- and right-hand side of the congruence
relation, one can see that Problem 1 can only have a unique

minimal solution with

λ(x) = c · Λ(x) and ωi(x) = c · Ωi(x) (7)
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Figure 1. Probability of decoding failure of an [127, 85,≥ 13]2 (unique
decoding radius = 6) wild IGC for ℓ = 2 and ℓ = 5 compared to the
bound from [10] on probability of decoding failure of the corresponding IRS
supercode in F

27
. For each point > 2000 iterations were performed.

for some non-zero scalar c ∈ Fqm for all i if

|E| ≤
ℓ

ℓ+ 1
·

q

q − 1
· r =: tmax . (8)

Our simulation results indicate that below this maximal de-

coding radius, most of the error matrices E of weight at

most wt(E) = tmax can be decoded by our algorithm (i.e.,

any solution of Problem 1 fulfills (7)). More precisely, the

results indicate that the number of error patterns for which
decoding fails or miscorrects decreases exponentially in the

value tmax − t, where t is the actual number of errors.

Remark. As an alternative to the decoder presented above,

we can directly decode in an interleaved variant of the GRS

supercode of the used Goppa code (with minimum distance

deg g(x)). We can use all known decoding algorithms for

these interleaved codes, e.g., [10], [19], [20] (or the more

advanced algorithms in [21]–[25], which we will not consider

in this paper). The algorithms in [10], [19], [20] yield the

same maximal decoding radius as the interleaved Patterson

decoder described above.

B. Simulation Results

Since the interleaved decoding radius exceeds the unique

decoding radius, decoding fails with a certain probability. For
interleaved RS codes an upper bound on the probability of

decoding failure was derived in [10]. However, even though

interleaved Goppa codes are subfield subcodes of interleaved

generalized RS codes, this bound does not hold for the former,

as it assumes random error patterns from Fqm , while the error
patterns in the case of interleaved Goppa codes are only from

the subfield Fq. A bound for interleaved subfield subcodes

is an open problem left for future work and we rely on

simulation results to support our conjecture that decoding will

succeed with high probability.

Figure 1 shows the simulation results for an [127, 85,≥
13]2 wild IGC for ℓ = 2 and ℓ = 5. As it is well known that

the rank of the error matrix is related to the failure probability

(see, e.g., [26]), the probability of decoding failure for full-

rank error matrices is also shown. The results confirm that

the bound of [10] does not hold for subfield subcodes, as it
is clearly exceeded by the probability of decoding failure of

the IGC, regardless of the rank of the error matrix. However,

the seemingly exponential decay in probability of decoding

failure supports our conjecture.

C. ℓ-Interleaved Subfield Subcodes in Fq vs. Codes in Fqℓ

Goppa codes are subfield subcodes of RS codes in Fqm

and can be constructed over any field Fqγ with γ | m. We

first consider the case q > 2. An ℓ-interleaved Goppa code
CIΓ over Fq with rIΓ = deg(gIΓ(x)) is of rate RIΓ ≈ n−rIΓm

n
and each codeword is of length ℓn over Fq. For ℓ|m, a Goppa

code CΓ with Goppa polynomial gΓ(x) over Fqℓ is of rate

RΓ ≈
n−rΓ

m
ℓ

n
and has codeword size n logq q

ℓ = ℓn over Fq .

To obtain the same rate for both codes, i.e., RΓ = RIΓ, the

degree rΓ of gΓ(x) has to be chosen as

n− rΓ
m
ℓ

n
=

n− rIΓm

n
⇒ rΓ = ℓrIΓ .

For appropriately chosen Goppa polynomials the distances of

the codes are dIΓ = rIΓ + 1 and dΓ = rΓ + 1 = ℓrIΓ +
1 respectively. Comparing the decoding radii for interleaved
decoding of CIΓ and bounded minimum distance decoding of

CΓ gives tIΓ = ℓ
ℓ+1(dIΓ − 1) > dΓ−1

2 = tΓ, which implies

ℓ < 1. It follows that, in general, the decoding radius of an ℓ-
interleaved Goppa code is not larger than the unique decoding

radius of the corresponding code over a larger field with the
same codeword size and code rate. The only exception are

ℓ = 2 interleaved binary Goppa codes with square-free Goppa

polynomial. These Goppa codes are of distance dIΓ = 2rIΓ+1
and hence the radius is increased for ℓ < 3.

It follows that if the sole motivation of interleaving is

increasing the decoding radius regardless of the size of the

generator and parity check matrix, it is generally advantageous
to use a Goppa code over Fqℓ instead of ℓ-interleaving a

Goppa code over Fq, with the exception of q = ℓ = 2.

However, as we will see in the next section, interleaved Goppa

codes do have an application in code-based cryptography.

IV. APPLICATION: IMPROVEMENT AND REPARATION OF A

CRYPTOSYSTEM BASED ON INTERLEAVED GOPPA CODES

Recently, [12] proposed a variant of the McEliece cryp-

tosystem based on interleaved Goppa codes. The idea is
that the public key is an obfuscated generator matrix of a

Goppa code and the ciphertext is a corrupted codeword of

a corresponding interleaved code. Since the interleaved code

can correct more (burst) errors than the original code, the

level of security against generic decoding (e.g., information-
set decoding), which usually determines the security level, is

increased. On the other hand, structural attacks remain as hard

as on the original Goppa-code-based system. Hence, smaller

key sizes than in the original McEliece cryptosystem can be

achieved. We modify the new system by using wild Goppa

codes, which further increase the decoding radius. We also
consider several attacks and propose a repair method and

restrictions on parameters to avoid the attacks.

A. System Description

Alice generates the key pair: public key (Gpub, tpub, ℓ)
and private key (S,P ,D), where D is an efficient decoder

for the ℓ-interleaved wild Goppa code with generator matrix

G = S
−1

GpubP
−1 ∈ Fk×n

q correcting up to tpub = tmax =
ℓ

ℓ+1 · q
q−1 · r errors.

Bob encrypts the secret message M ∈ Fℓ×k
q into a

ciphertext Y ∈ Fℓ×n
q by Y = MGpub+E, where E ∈ Fℓ×n

q

is a full-rank random matrix with tpub non-zero columns.

Alice retrieves the secret messages by M̂ = D(Y P
−1)S−1.

B. Decoding Attacks

1) Finding the Low-Weight Codewords Attack: Consider

the following three codes

C := 〈Gpub〉 , C′ :=

〈[

Gpub

Y

]〉

, and CE := 〈E〉 .



Obviously, C′ = C+CE since we can perform row operations
to get

[

Gpub

Y

]

∼

[

Gpub

E

]

.

Hence, we have d(C′) ≤ d(CE) =: dE. Finding several words

of weight dE in C′ might reveal error positions, thereby

allowing information set decoding attacks (ISD) with less
error positions. Assuming the worst case, i.e., all found words

of weight dE belong to CE and the union of their support is

the set of error positions, this gives an attack whose work

factor is determined by algorithms for finding codewords of

weight dE in a linear code.
Note that we can only guarantee d(C′) ≤ dE. In principle,

there might be codewords in C′ of smaller weight. Such

codewords would always be of the form c = a + b, where

a ∈ C \ {0}, b ∈ CE \ {0}, and wt(a) < dE + tpub. Hence,

the probability that such codewords exist depends on the

weight distributions of the codes C and CE (e.g., how many
codewords a of weight wt(a) < dE+tpub exist). Furthermore,

even if such words c exist and are found by an attack, it

needs to be studied whether c would reveal some of the error

positions. Note that this is a general problem of any McEliece

system correcting beyond the unique decoding radius, e.g.,
through list decoding [27], [28].

2) Finding the Support of the Subcode Attack: Tillich
pointed out in [13] that since the code CE[n, ℓ] is a subcode

of C′[n, k + ℓ] and |supp(CE)| = tpub, where supp(CE) =
{i ; ∃c ∈ CE, ci 6= 0}, one can reveal the error positions

by finding supp(CE). This problem has been studied by

Otmani and Tillich for the binary case in [29], which gives
a very efficient attack if the parameter p chosen to fulfill

2p ≥ dGV (
tpub−ℓ

n−ℓ
(k + ℓ + l), ℓ) is small for some integer l

(e.g., [29] gives 1 ≤ p ≤ 4 as a typical range for p). For

the parameters presented in Table I this is not the case and

the complexity of this attack is far from causing a security

bottleneck. However, this attack needs to be considered when
choosing the system parameters.

C. Repair

Our repair is based on the idea of choosing the rows of the
error matrix E as the basis of a code with large minimum

distance dE. The rows of E have to be chosen to be linearly

independent to prevent brute-forcing linear combinations of

the rows of Y , resulting in error-free linear combinations of

the codewords (i.e., rows of Y −E), which might reveal part
of the message.

Since E has only tpub non-zero columns, we choose the

submatrix E
′ of E, consisting of these columns, to be a

generator matrix of a code with parameters

C′
E[tpub, ℓ, dE] := 〈E′〉.

Thus, the overall error code CE has parameters [n, ℓ, dE]q .

Remark. Note that since the code C′
E is required to have

specific properties, it might have to be considered public,

e.g., if there are only few known constructions for the desired

dE. Then revealing the error positions in Y is equivalent

to determining the permutational equivalence of CE and a

subcode of C′, which has been shown to be an NP-complete

problem [30]. Nevertheless it needs to be studied if this

could lead to a more efficient attack than finding low weight

codewords. To avoid this kind of attack it is also possible to

choose CE at random from some large family of codes.

D. Measure of Security Level (SL)

To determine the SL of the original McEliece cryptosystem

and our system (see Table I), we use the currently fastest

algorithm over arbitrary Fq presented in [31]. Another recent
algorithm [32] might yield smaller security levels but that

needs to be further verified. Both algorithms are generaliza-

tions of several important improvements of information-set

decoding attacks since 2011: [33] for [31] and [34]–[38] for

[32]. The SL of our repaired system is calculated with dE
rather than tpub, since any non-trivial linear combination of the

received words (rows of the received matrix Y ) are codewords

corrupted by errors of weight at least dE.

E. Parameter Choice

In order to improve upon the original or Wild McEliece

system, the work factor ISD [32] must be larger than the one

of generic decoding of the original system. Neglecting the
difference in dimension (k compared to k+ ℓ), this condition

translates to

dE >

⌊

1

2
·

q

q − 1
r

⌋

. (9)

In the following, we analyze for which parameters q, ℓ and r
such a linear code C′

E exists. We start with the negative result

that there is no improvement for q = 2.

Theorem 3. For q = 2, the work factor cannot be increased

by interleaving.

Proof. With (8) and (9) we get

tpub <
2ℓ

ℓ+ 1
dE .

as a necessary condition for an improvement compared to

the original McEliece cryptosystem in terms of the code

parameters of C′
E[tpub, ℓ, dE]. By the Griesmer bound [39] the

relation

tpub ≥

ℓ−1
∑

i=0

⌈

dE

2i

⌉

≥

ℓ−1
∑

i=0

dE

2i
= dE(2− 2−(ℓ−1))

holds and it follows that there can only be an improvement if

tpub <
2ℓ

ℓ+ 1
dE ≤

2ℓ

(ℓ+ 1)(2 − 2−(ℓ−1))
tpub

⇔ 1 <
ℓ

(ℓ+ 1)(1 − 2−ℓ)

2ℓ < ℓ+ 1 ,

which is only the case for ℓ = 1.

Larger fields, q > 2, provide more flexibility in the code

parameters. For q ≥ tpub, we can even achieve dE =
tpub − ℓ + 1 (which is the maximal possible dE due to the

Singleton bound) using an MDS code, but also for smaller

field sizes there are codes with sufficiently large minimum

distance dE. For large tpub, we could use asymptotically good

sequences of codes, e.g., AG codes [40] over small fields. For

small values of tpub, we can use tables of good codes, e.g.,
CodeTables [41]. For instance:

• For parameters q = 3, ℓ = 7 and tpub = 110 there is
a [110, 7, dE = 70]3 code, while the unique decoding

radius for these parameters is
⌊

1
2 · q

q−1r
⌋

= 63.

• For parameters q = 4, ℓ = 9 and tpub = 266 there is

a [266, 9, dE = 195]4 code, while the unique decoding

radius for these parameters is
⌊

1
2 · q

q−1r
⌋

= 148.

It is notable that the used code is only required to have good
code parameters, but we do not need an efficient decoding

algorithm.

Remark. Apart from the decoding attacks mentioned in IV-B,

the chosen Goppa code has to resist structural attacks, i.e.,



attacks that recover the secret key from the public gener-

ator matrix, such as the attack on certain quadratic wild

Goppa codes [42] or a potential attack resulting from the

distinguisher on high-rate Goppa codes [43]. Similar to the

original McEliece system, the public generator matrix of the

interleaved system is a generator matrix of a Goppa code,

hence the same considerations apply.

F. Key Size of repaired interleaved McEliece

Table I compares the (n, k, t) Wild McEliece and our pro-

posed repaired ℓ-interleaved (n, k, tpub) McEliece for typical
SL (i.e., 128, 256 bits) in terms of the key size.

For each parameter set we compute the size of the public

key in systematic form as k(n − k) bits. Note that we as-

sume appropriate padding and randomizing (so-called CCA2-

conversion) that protects against semantic attacks, i.e., attacks

where the plaintext is obtained from the systematic part.

SL
q m Method r n k

t
Rate

Key size

[bits] (ℓ, tpub, dE) [Bytes]

128

2 12 U. D. 70 2800 1960 70 0.70 205 800

3 8
U. D.

100
2420 1620 75 0.67 256 763

Int. 2130 1330 (7, 131, 84) 0.62 210 800

4 6
U. D.

90
2150 1610 60 0.75 217 350

Int. 1580 1040 (7, 105, 76) 0.66 140 400

5 5
U. D.

100
1800 1380 62 0.74 200 266

Int. 1290 790 (7, 109, 84) 0.61 114 646

256

2 13 U. D. 120 6740 5180 120 0.77 1 010 100

3 8
U. D.

180
5100 3660 135 0.72 1 044 173

Int. 4300 2860 (7, 236, 156) 0.67 815 939

4 7
U. D.

240
4880 3200 160 0.66 1 344 000

Int. 3760 2080 (7, 280, 208) 0.55 873 600

5 6
U. D.

200
4690 3490 125 0.74 1 215 530

Int. 3200 2000 (7, 218, 171) 0.63 696 578

U.D. = Unique Decoding [11], [15]. Int. = Interleaved Decoding (this paper).

Table I
KEY SIZE OF REPAIRED INTERLEAVED MCELIECE AND WILD MCELIECE

FOR 128 AND 256-BITS SECURITY LEVEL (DETERMINED BY ISD
ALGORITHM OVER Fq [31]).
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in Õ(20.054n),” in ASIACRYPT. Springer, 2011, pp. 107–124.
[39] J. H. Griesmer, “A Bound for Error-Correcting Codes,” IBM Journal

of Research and Development, vol. 4, no. 5, pp. 532–542, 1960.
[40] K. W. Shum, I. Aleshnikov, P. V. Kumar, H. Stichtenoth, and V. Deola-

likar, “A Low-Complexity Algorithm for the Construction of Algebraic-
Geometric Codes Better Than the Gilbert-Varshamov Bound,” IEEE
Trans. Inf. Theory, vol. 47, no. 6, pp. 2225–2241, 2001.

[41] M. Grassl, “Bounds on the Minimum Distance of Linear Codes and
Quantum Codes,” Online available at http://www.codetables.de, 2007,
accessed on 2018-12-09.

[42] A. Couvreur, A. Otmani, and J. Tillich, “Polynomial time attack on wild
mceliece over quadratic extensions,” IEEE Trans. Inf. Theory, vol. 63,
no. 1, pp. 404–427, 2017.

[43] J. C. Faugère, V. G. U. na, A. Otmani, L. Perret, and J. P. Tillich, “A
distinguisher for high rate mceliece cryptosystems,” IEEE Trans. Inf.
Theory,, vol. 59, no. 1, p. 6830–6844, Oct. 2013.


