
Mutual information for the stochastic block model
by the adaptive interpolation method

Jean Barbier∗, Chun Lam Chan†, and Nicolas Macris†

Abstract

We rigorously derive a single-letter variational expression for the mutual information of the asymmetric
two-groups stochastic block model in the dense graph regime. Existing proofs in the literature are indirect,
as they involve mapping the model to a rank-one matrix estimation problem whose mutual information is
then determined by a combination of methods (e.g., interpolation, cavity, algorithmic, spatial coupling). In
this contribution we provide a self-contained and direct proof using only the recently introduced adaptive
interpolation method.

1 Introduction
The stochastic block model (SBM) has a long history and has attracted the attention of many disciplines. It was �rst
introduced as a model of community detection in the networks and statistics literature [1], as a problem of �nding
graph bisections in theoretical computer science [2], and has also been proposed as a model for inhomogeneous
random graphs [3, 4]. Here we adopt the community detection interpretation and motivation [5]. A partition
of nodes into labeled groups is hidden to an observer who is only given a random graph generated on the basis
of the partition. The task of the observer is to recover the hidden partition from the observed graph. A simple
setting that lends itself to mathematical analysis is the following. The labels of nodes are drawn i.i.d. from a
prior distribution and, for the graph, the edges between pairs of nodes are placed independently according to a
probability which depends only on the group labels. If the probability is slightly higher (resp. lower) when the
pair of nodes have the same label the model is called assortative (resp. disassortative). Moreover we suppose
that the parameters of the prior and edge probability distributions are all known so that we are working in the
framework of Bayesian (optimal) inference. Note that the recovery task is non-trivial only when parameters are
such that no information about the group label is revealed from the degrees of nodes. Much progress has been
done in recent years within this simple mathematical setting and we refer to [6] for a recent comprehensive
review and references.

In the limit of large number of nodes the SBM displays interesting phase transitions for (partial) recovery
of the hidden partition and much e�ort has been deployed to characterize the phase diagram, in terms of in-
formation theoretic as well as algorithmic phase transition thresholds, and compute the algorithmic-to-statistical
gaps. In this vein a fundamental quantity is the mutual information between the hidden labels of the nodes and
the observed graph. Indeed from the asymptotic value of the mutual information per node one can compute
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information theoretic thresholds of recovery. In this paper we focus on the mutual information of the two-group
SBM with possibly asymmetric group sizes, in dense regimes where the expected degree of the nodes diverges
with the total number of nodes (and is independent of the group label). We rigorously determine a single-letter
variational expression for the asymptotic mutual information by means of the recently developed adaptive inter-
polation method [7, 8].

Single-letter variational expressions for the mutual information of the SBM are not new. They were �rst
analytically derived in heuristic ways by methods of statistical physics and in this context are often called replica
or cavity formulas [9]. Rigorous proofs then appeared in [10,11]. These approaches are indirect in the sense that
the SBM is �rst mapped on a rank-one matrix factorization problem, and then the matrix factorization problem
is solved. In [10] the particular case of two equal size communities is considered and the analysis relies on the
fact that in this case the information theoretic phase transition is of the second order type (i.e., continuous)
which allows to use message-passing arguments. The asymmetric case is more challenging because �rst order
(discontinuous) phase transitions appears for large enough asymmetry. In [11] this case is tackled through a
Guerra-Toninelli interpolation combined with a rigorous version of the cavity method or Aizenman-Sims-Starr
scheme [12]. Strictly speaking the analysis [11] does not cover the widest possible regime of dense graphs (see
section two for details). We note that the mutual information of rank-one matrix factorization had also been
determined earlier in [13] for the symmetric case and more recently for the general case in [14,15] using a spatial
coupling method.

The proof presented here covers the asymmetric two-group SBM and has the virtue of being completely
uni�ed. It uses a single method, namely the adaptive interpolation, is conceptually simpler, and is direct as it does
not make any detour through another model. The method is a powerful evolution of the classic Guerra-Toninelli
interpolation [16] and allows to derive tight upper and lower bounds for the mutual information, whereas the
classic interpolation only yields a one-sided inequality. It has been successfully applied to a range of Bayesian
inference problems, e.g., [17,18]. Here, besides various new technical aspects, the main novelty is that we do not
use Gaussian integration by parts, as is generally the case in interpolation methods. Instead, we develop a general
approximate integration by parts formula and apply it to the Bernoulli random elements of the adjacency matrix
of the graph. We note that related approximate integration by parts formulas have already been used by [19, 20]
in the context of the Hop�eld and Sherrington-Kirkpatrick models.

It would be desirable to extend the present method to the sparse regime of the SBM where the average degree
of the nodes stays �nite as the number of nodes diverges. This is much more challenging however, and the
mutual information has so far been determined only for the disassortative case [21] while the assortative case
remains open. The thresholds however have been successfully determined for both cases in [22–25]. The adaptive
interpolation method has been developed for the related censored block model in the sparse regime [26] and
hopefully it can be also extended to the sparse SBM, which we leave for future work.

2 Setting and results: asymmetric two-groups SBM
We �rst formulate the SBM for two communities that may be of di�erent sizes. Suppose we have n nodes belong-
ing to two communities where the partition is denoted by a vector X0 ∈ {−1, 1}n. Labels X0

i are i.i.d. Bernoulli
random variables with P(X0

i = 1) = r ∈ (0, 1/2]. The size of each community is nr and n(1 − r) up to �uctu-
ations ofO(

√
n). The labels X0 are hidden and instead one is given a random undirected graph G constructed as

follows (equivalently one is given an adjacency marix). An edge between node i and j is present with probability
P(Gij = 1|X0

i , X
0
j ) and absent with the complementary probability. To speci�cy P(Gij = 1|X0

i , X
0
j ), �rst we
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de�ne dn such that

E[deg(i)|X0
i = 1] ≡ (n− 1)dn

n
≈ dn , (1)

E[deg(i)|X0
i = −1] ≡ (n− 1)dn

n
≈ dn . (2)

We require these two constraints for the inference problem to be non-trivial, in the sense that no information
about the labels stems from the nodes’ degrees. The two constraints imply

E[deg(i)] = r E[deg(i)|X0
i = 1] + (1− r)E[deg(i)|X0

i = −1] =
(n− 1)dn

n
≈ dn

so that we can interpret dn as the average degree of a node. Then we de�ne P(Gij = 1|X0
i , X

0
j ) = MX0

i ,X
0
j

where MX0
i ,X

0
j

are the four possible matrix elements of

M =
dn
n

[
an bn
bn cn

]
.

Because of (1) and (2), we have the equations

E[deg(i)|X0
i = 1] =

(n− 1)dn
n

(ran + (1− r)bn) =
(n− 1)dn

n
,

E[deg(i)|X0
i = −1] =

(n− 1)dn
n

(rbn + (1− r)cn) =
(n− 1)dn

n
.

Solving this system imposes an = 1 − (1 − 1/r)(1 − bn) and cn = 1 − (1 − bn)/(1 − 1/r). Therefore there
are three independent parameters, namely dn, bn and r. A more convenient re-parametrization is often used [10]
instead of bn, dn:

p̄n ≡
dn
n
, and ∆n ≡

dn(1− bn)

n
.

Here p̄n ∈ (0, 1) is the average probability for the presence of an edge. We will look at the dense asymmetric SBM
(the symmetric model corresponding to r = 1/2) regimes where dn = np̄n → +∞. In our analysis the growth of
dn spans the whole spectrum from arbitrarily slow, at the verge of a sparse graph, to linear dn = vn, v ∈ (0, 1),
for fully dense graphs.

In this paper we rigorously determine the asymptotic mutual information for this problem limn→∞
1
nI(X0;G)

in the dense graph regime wherein p̄n and ∆n satisfy:

(h1) (Dense SBM) np̄n(1− p̄n)3 n→∞−−−→∞.
(h2) (Appropriate scaling of signal-to-noise ratio) λn ≡ n∆2

n/
(
p̄n(1− p̄n)

)
= dn(1−bn)2/(1−dn/n)

n→∞−−−→ λ

�nite.

The �rst condition ensures that the graph is dense in the sense that dn → +∞, still maintaining p̄n ∈ (0, 1).
The second ensures the mutual information has a well de�ned non-trivial limit when n → +∞. Note that the
second condition requires ∆n � p̄n(1 − p̄n)2 as ∆n/

(
p̄n(1 − p̄n)2

)
=
√
λn/(np̄n(1− p̄n)3) → 0 as n → ∞,

hence ∆n � p̄n and ∆n � (1 − p̄n)2. The reader may wish to keep in mind two simple typical examples. The
�rst example is a dense graph with dn = vn, v ∈ [0, 1] so p̄n = v and ∆n ≈

√
λv(1− v)/n. The second example

is dn = vn1−θ with θ ∈ (0, 1), so pn = vn−θ and ∆n ≈
√
λvn−1−θ . These are easily translated back to the
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matrix M .
We note that in the sparse graph version of the model one would have a �nite limit for dn but the second

condition would be the same. The analysis of the sparse case is however more di�cult and is not addressed in
this paper.

Instead of working with the Ising spin ±1 variables it is convenient to change the alphabet. We de�ne Xi ≡
φr(X

0
i ) with φr(1) =

√
(1− r)/r and φr(−1) = −

√
r/(1− r). The hidden labels of the nodes now belong

to the alphabet X ≡ {X1 =
√

(1− r)/r,X2 = −
√
r/(1− r)} and X ∈ X n. An edge is then present with

conditional probability

P(Gij = 1|XiXj) = p̄n + ∆nXiXj . (3)

This can be viewed as an asymmetric binary-input binary-output channel X → G and the inference problem is
to recover the input X (or X0) from the channel output G. Henceforth we adopt the notation

Pr ≡ rδX1 + (1− r)δX2

for the probability distribution of the hidden labels X ∈ X . Note that E[X2] = 1.
We now formulate our results which provide a single-letter variational formula for the asymptotic mutual

information. Let Z ∼ N (0, 1) and X ∼ Pr independently, and set for q > 0:

Ψ(q, λ, r) ≡ λ

4
+
q2

4λ
− E ln

∑
x∈X

Pr(x)e
√
q Zx+qXx− q

2
x2 .

The so-called replica formula conjectures the identity

lim
n→∞

1

n
I(X0;G) = min

q∈[0,λ]
Ψ(q, λ, r) . (4)

We prove that (4) is correct, namely:

Theorem 2.1 (Upper bound). For the SBM under concern in the regime (h1), (h2),

lim supn→∞
1
nI(X0;G) ≤ minq∈[0,λ] Ψ(q, λ, r) .

Theorem 2.2 (Lower bound). For the SBM under concern in the regime (h1), (h2),

lim infn→∞
1
nI(X0;G) ≥ minq∈[0,λ] Ψ(q, λ, r) .

Remark 1: Of course we have I(X0;G) = I(X;G) and in the following we will work with I(X;G) where
X ∈ X = {X1 =

√
(1− r)/r,X2 = −

√
r/(1− r)}.

Remark 2: Elementary analysis shows that the minimum over q ≥ 0 of Ψ(q, λ, r) is attained for q ∈ [0, λ].
Remark 3: From (4) one can derive the information theoretic phase transition thresholds. Let r∗ ≡ (1 −

1/
√

3)/2. For "small" asymmetry between group sizes r ∈ [r∗, 1/2] there is a continuous phase transition at
λc = 1 while for "large" asymmetry r ∈ ]0, r∗[ the phase transition becomes discontinuous. An information
theoretic-to-algorithmic gap occurs in the second situation as discussed in detail in [11].

Let us explain the relation of these theorems with previous works. In [10] they were obtained for the sym-
metric case r = 1/2 by a mapping of the model on a rank-one matrix estimation problem via an application
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of Lindeberg’s theorem. The regime treated is essentially the same than ours except that in place of (h1) [10]
has np̄n(1 − p̄n) → +∞. Note that the di�erence only matters if pn → 1 which is the complete graph limit.
Still using the same mapping to matrix factorization, [11] treats the asymmetric case, however in a limit where
n→ +∞ �rst and dn → +∞ after (in fact this anlaysis can accomodate any growth slower than dn ≈ n1/2) but
it is unclear whether this is possible for denser regimes. Our analysis covers this gap and the whole spectum of
growth for dn up to linear growth is allowed. Besides, we propose a self-contained and direct method using the
adaptive interpolation method [7]. A technical limitation of interpolation methods has often been the need to use
Gaussian integration by parts. We by-pass this limitation using an (approximate) integration by parts formula for
the edge binary variables Gij ∈ {0, 1}.

Before we formulate the adaptive interpolation let us set up more explicitly the quantities that we compute.
The distribution of G given the hidden partition X is the inhomogeneous Erdoes-Rényi graph measure:

P(G|X) =
∏
i<j

(p̄n + ∆nXiXj)
Gij (1− p̄n −∆nXiXj)

1−Gij .

Using this measure and Bayes rule, we �nd the posterior distribution of the SBM

P(X = x|G) = P(x|G) =
P(G|x)P(x)

P(G)
∝ P(G|x)P(x)

= exp
{∑
i<j

(
Gij ln(p̄n + ∆nxixj) + (1−Gij) ln(1− p̄n −∆nxixj)

)} n∏
i=1

Pr(xi)

= exp
{∑
i<j

(
Gij ln(1 +

∆n

p̄n
xixj) + (1−Gij) ln(1− ∆n

1− p̄n
xixj)

)
+Dn(p̄n,G)

} n∏
i=1

Pr(xi)

where Dn(p̄n,G) ≡
∑

i<j Gij ln p̄n + (1−Gij) ln(1− p̄n). Therefore, the posterior distribution becomes

P(x|G) =
1

Z(G)
e−HSBM(x;G)

n∏
i=1

Pr(xi) ,

HSBM(x;G) ≡ −
∑
i<j

{
Gij ln(1 + xixj

∆n

p̄n
) + (1−Gij) ln(1− xixj

∆n

1− p̄n
)
}
.

We use the statistical mechanics terminology and therefore call this posterior distribution the Gibbs distribution.
The normalizing factor

Z(G) ≡
∑
x∈Xn

e−HSBM(x;G)
n∏
i=1

Pr(xi)

is the partition function, andHSBM is the Hamiltonian. A straightforward computation, using the scaling regime
(h1) and (h2), gives the following formula (see the proof in Appendix A):

Proposition 2.3 (Linking the mutal information and log-partition function). For the SBM under concern we have

1

n
I(X;G) = − 1

n
EXEG|X lnZ(G) +

λn
4

+ on(1) (5)

where limn→∞ on(1) = 0.

Thus the problem boils down to compute minus the expected log-partition function, or expected free en-
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ergy, in the limit n → +∞. This will be achieved via an interpolation towards the log-partition function of n
independent scalar Gaussian channels where the observations about the hidden labels are of the form

Yi =
√
q Xi + Zi , 1 ≤ i ≤ n , (6)

with Zi ∼ N (0, 1) i.i.d. Gaussian random variables and q > 0 the signal-to-noise ratio (SNR). An important
feature of our technique is the freedom to adapt a suitable interpolation path to the problem at hand. This is
explained in the next section.

3 Adaptive path interpolation

We design an interpolating model parametrized by t ∈ [0, 1] and ε ≥ 0 s.t. at t = ε = 0 we recover the original
SBM, while at t = 1 we have a decoupled channel similar to (6). For t ∈ (0, 1) the model is a mixture of the SBM
with parameters (p̄n,

√
1− t∆n) and the extra decoupled Gaussian observations (6) with SNR replaced by

q → R(t, ε) ≡ ε+

∫ t

0
ds q(s, ε)

with q(s, ε) ≥ 0. The transition kernels for the channels X → G and X → Y at time t ∈ [0, 1] are

Pt(G|X) =
∏
i<j

(p̄n +
√

1− t∆nXiXj)
Gij (1− p̄−

√
1− t∆nXiXj)

1−Gij

= exp
∑
i<j

(
Gij ln(p̄+

√
1− t∆nXiXj) + (1−Gij) ln(1− p̄n −

√
1− t∆nXiXj)

)
, (7)

Pt(Y |X) =
1

(2π)n/2
exp

(
− 1

2

n∑
i=1

(Yi −
√
R(t, ε)Xi)

2
)
. (8)

We constrain ε ∈ [sn, 2sn] where sn → 0+ as n → +∞ at an appropriate rate to be �xed later on. The
interpolating Hamiltonian is then de�ned to be

Ht,ε(x;G,Y ) ≡ HSBM;t(x;G) +Hdec;t,ε(x;Y )

where

HSBM;t(x;G) ≡ −
∑
i<j

(
Gij ln(1 + xixj

√
1− t∆n

p̄n
) + (1−Gij) ln(1− xixj

√
1− t ∆n

1− p̄n
)
)
, (9)

Hdec;t,ε(x;Y (X,Z)) ≡ −
n∑
i=1

(√
R(t, ε)Yixi −R(t, ε)

x2
i

2

)
= −

n∑
i=1

(
R(t, ε)Xixi +

√
R(t, ε)Zixi −R(t, ε)

x2
i

2

)
. (10)
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The posterior distribution expressed with the HamiltonianHt,ε(x;G,Y ) then reads

Pt(x|G,Y ) =

∏n
i=1 Pr(xi) exp(−Ht,ε(x;G,Y ))∑

x∈Xn
∏n
i=1 Pr(xi) exp(−Ht,ε(x;G,Y ))

.

Therefore the Gibbs-bracket (i.e., the expectation operator w.r.t. the posterior distribution) for the interpolating
model is

〈A〉t,ε ≡
∑
x∈Xn

A(x)Pt(x|G,Y ) =
1

Zt,ε(G,Y )

∑
x∈Xn

A(x)e−Ht,ε(x;G,Y )
n∏
i=1

Pr(xi)

with the partition function Zt,ε(G,Y ) ≡
∑

x∈Xn e
−Ht,ε(x;G,Y )

∏n
i=1 Pr(xi). The reader should keep in mind

that Gibbs-brackets are therefore functions of the quenched random variables (Y (X,Z),G(X)). The free energy
for a given graph G = G(X) (that depends on the ground truth partition) and decoupled observation Y (X,Z)

is

Ft,ε(G,Y ) = Ft,ε ≡ −
1

n
lnZt,ε(G,Y ) , (11)

and its expectation

ft,ε ≡ EXEG|XEY |XFt,ε = EXEG|XEZFt,ε . (12)

By construction,

ft=0,ε = − 1

n
EXEG|XEZ ln

( ∑
x∈Xn

exp
{∑
i<j

(
Gij ln(1 +

∆n

p̄n
xixj) + (1−Gij) ln(1− ∆n

1− p̄n
xixj)

)
+

n∑
i=1

(
√
εZixi + εXixi −

ε

2
x2
i )
} n∏
i=1

Pr(xi)
)
,

ft=1,ε = − 1

n
EZ ln

( ∑
x∈Xn

exp
{ n∑
i=1

(
√
R(1, ε)Zixi +R(1, ε)Xixi −

R(1, ε)

2
x2
i )
} n∏
i=1

Pr(xi)
)

= Ψ(R(1, ε), λn, r)−
λn
4
− R(1, ε)2

4λn
.

In particular, when t = ε = 0 we have

f0,0 =
1

n
I(X;G)− λn

4
+ on(1) .

Therefore

1

n
I(X;G) = f0,0 +

λn
4

+ on(1)

= Ψ(R(1, ε), λn, r)−
R(1, ε)2

4λn
− f1,ε + f0,0 + on(1) (13)

= Ψ(R(1, ε), λn, r)−
R(1, ε)2

4λn
−
∫ 1

0
dt
dft,ε
dt

+ (f0,0 − f0,ε) + on(1) (14)

7



where on(1) collects all contributions that tend to zero uniformly in ε when n → ∞. Eventually, we reach the
following fundamental sum rule (see section 4 for the derivation):

1

n
I(X;G) = Ψ(R(1, ε), λn, r) +R1 −

1

4λn

∫ 1

0
dtR2(t)−R3 (15)

where

R1 ≡
1

4λn

(∫ 1

0
q(t, ε)2dt−

(∫ 1

0
q(t, ε)dt

)2)
≥ 0 ,

R2(t) ≡ E〈(λnQ− q(t, ε))2〉t,ε ≥ 0 ,

R3 ≡
ε

4λn

(
ε+ 2

∫ 1

0
q(t, ε)dt

)
− 1

2

∫ ε

0
dε′ E〈Q〉0,ε′ + on(1) ,

and the overlap is

Q(X,x) = Q ≡ 1

n

n∑
i=1

Xixi .

Two generic tools that we will widely use in our proof are the following:

• The Nishimori identity: Let (X,Y ) be a couple of random variables with joint distribution P (X,Y )

and conditional distribution P (·|Y ). Let k ≥ 1 and let x(1), . . . , x(k) be i.i.d. copies from the conditional
distribution. Let us denote 〈−〉 the expectation w.r.t. the product distribution P (·|Y )⊗∞ over copies and E
the expectation w.r.t. the joint distribution. Then, for all continuous bounded functions g we have

E〈g(Y, x(1), . . . , x(k))〉 = E〈g(Y,X, x(2), . . . , x(k))〉 .

The expectation E is over (X,Y ).

Proof. This is a simple consequence of Bayes formula. It is equivalent to sample the couple (X,Y ) according
to its joint distribution or to sample �rst Y according to its marginal distribution and then to sample x
conditionally on Y from the conditional distribution. Thus the two (k + 1)-tuples (Y, x(1), . . . , x(k)) and
(Y,X, x(2), . . . , x(k)) have the same law.

In the present case (X,Y ) → (X,G,Y ) with joint law Pt(X|G,Y )
∏n
i=1 Pr(Xi). Let us take k i.i.d.

copies x(1), . . . ,x(k) drawn from the posterior distribution Pt(·|G,Y ). Then for any continuous bounded
function g

E〈g(G,Y ,x(1), . . . ,x(k−1),X)〉t,ε = E〈g(G,Y ,x(1), . . . ,x(k−1),xk)〉t,ε . (16)

where E is over (G,Y ). More precisely E = E∏n
i=1 Pr(Xi)EPt(G|X)EPt(Y |X). Note that, by a slight abuse of

notation, we continue to use the Gibbs-bracket notation for expressions depending on multiple i.i.d. copies
from the posterior, so that 〈−〉t,ε corresponds to the expectation w.r.t. the product measure Pt(·|G,Y )⊗∞.

• Gaussian integration by parts: Integration by parts implies that for any bounde di�erentiable function
g of Z ∼ N (0, 1) we have

E[Zg(Z)] = E [g′(Z)] . (17)

8



We are now ready to provide the proofs of the bounds on the mutual information.

3.1 The upper bound: proof of Theorem 2.1

Set ε = 0 and q(t, ε) = q a non-negative constant. Then we have R1 = 0, R3 = on(1). Since R2 ≥ 0, (15)
implies

1

n
I(X;G) ≤ Ψ(q, λn, r) + on(1) .

Since Ψ is continuous w.r.t its second argument lim supn→+∞
1
nI(X;G) ≤ Ψ(q, λ, r). Optimizing over q ∈ [0, λ]

yields the bound (optimization over q ∈ [0,+∞) does not yield a sharper bound, see remark 2).

3.2 The lower bound: proof of Theorem 2.2

The basic idea is to “remove” R2 from (15) by adapting q(t, ε). Then taking the limit n → ∞ and ε → 0+ will
provide the desired bound sinceR1 ≥ 0 andR3 → 0 will disappear. To implement this idea we �rst decompose
R2 into

R2 = (λnE〈Q〉t,ε − q(t, ε))2 + λ2
nE〈(Q− E〈Q〉t,ε)2〉t,ε (18)

and address each part with the following two lemmas. The proof of Lemma 3.2 can be found in section 5.

Lemma 3.1. For every ε ∈ [0, 1] and t ∈ [0, 1] there exists a (unique) bounded solutionR∗n(t, ε) = ε+
∫ t

0 ds q
∗
n(s, ε)

to the �rst order di�erential equation

dR

dt
(t, ε) = λnE〈Q〉t,ε with R(0, ε) = ε . (19)

Furthermore
q∗n(t, ε) = λnE〈Q〉t,ε ∈ [0, λn] , and

dR∗n
dε

(t, ε) ≥ 1 .

Proof. Let Gn(t, R(t, ε)) ≡ λnE〈Q〉t,ε. Equation (19) is thus a �rst-order di�erential equation. Also note that,
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letting dGn/dR be the derivative w.r.t. the second argument,

dGn
dR

(t, R(t, ε)) =
λn
n

n∑
i=1

E
[
Xi

∑
x∈Xn

xiPr(x)
d

dR

e−Ht,ε(x;G,Y )

Zt,ε(G,Y )

]
(20)

=
λn
n

n∑
i=1

E
[
Xi

∑
x∈Xn

xiPr(x)

×
(
− e−Ht,ε(x;G,Y )

Zt,ε(G,Y )

dHt,ε(x;G,Y )

dR
− e−Ht,ε(x;G,Y )

Zt,ε(G,Y )

d
dRZt,ε(G,Y )

Zt,ε(G,Y )

)]
=
λn
n

n∑
i,j=1

E
[
Xi

〈
xi(xjXj +

xjZj

2
√
R(t, ε)

−
x2
j

2
)
〉
t,ε
−Xi〈xi〉t,ε

〈
xjXj +

xjZj

2
√
R(t, ε)

−
x2
j

2

〉
t,ε

]
=
λn
2n

n∑
i,j=1

E
[
2XiXj〈xixj〉t,ε −Xi〈xixj〉t,ε〈xj〉t,ε

− 2XiXj〈xi〉t,ε〈xj〉t,ε + 2Xi〈xi〉t,ε〈xj〉2t,ε −Xi〈xixj〉t,ε〈xj〉t,ε
]

(21)

To get the last identity, we used Gaussian integration by parts, which reads when applied to Gibbs brackets,

E[Zj〈f〉t,ε] =
√
R(t, ε)E[〈fxj〉t,ε − 〈f〉t,ε〈xj〉t,ε] .

Indeed, one must be careful that in the de�nition of the Gibbs bracket both the Hamiltonian and partition function
are functions of the quenched variable Z , thus the appearance of two terms when we di�erentiate w.r.t Z . Now,
using the Nishimori identity to replace the hidden partition X by a new independent sample from the posterior
in (21) (which yields, e.g., E[XiXj〈xixj〉t,ε] = E[〈xixj〉2t,ε] or E[Xi〈xixj〉t,ε〈xj〉t,ε] = E[〈xi〉t,ε〈xixj〉t,ε〈xj〉t,ε])
we reach

dGn
dR

(t, R(t, ε)) =
λn
n

n∑
i,j=1

E[(〈xixj〉t,ε − 〈xi〉t,ε〈xj〉t,ε)2] . (22)

The function Gn is bounded and takes values in [0, λn]. Indeed E〈Q〉t,ε = E[X1〈x1〉t,ε] = E[〈x1〉2t,ε] by the
Nishimori identity, thus E〈Q〉t,ε ≤ E〈x2

1〉t,ε = E[X2
1 ] again by the Nishimori identity, and �nally E[X2

1 ] = 1. In
addition of being bounded, Gn is di�erentiable w.r.t. its second argument, with bounded derivative as seen from
(22). The Cauchy-Lipschitz theorem then implies that (19) admits a unique global solution over t ∈ [0, 1]. Finally
Liouville’s formula (see Appendix B) gives

dR∗n
dε

(t, ε) = exp

∫ t

0
dt′
dGn
dR

(t′, R∗n(t′, ε)) . (23)

The non-negativity of dGn/dR then implies dR∗n/dε ≥ 1.

We now state a crucial concentration result for the overlap. Its validity is a consequence of the fact that
the problem is analyzed in the so-called Bayesian optimal setting. This means that all hyper-parameters in the
problem, namely (Pr, r, p̄n,∆n), are assumed to be known, so that the posterior of the model can be written
exactly. It implies the validity of the Nishimori identity which in turn allows to prove the following result (see
section 5):
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Lemma 3.2 (Overlap concentration). Let R be the solution R∗n in Lemma 3.1. Then for any bounded positive
sequence sn there exists a sequence Cn(r, λn) > 0 converging to a constant and such that

1

sn

∫ 2sn

sn

dεE〈(Q− E〈Q〉t,ε)2〉t,ε ≤
Cn(r, λn)

(s4
nn)1/3

.

Now we average (15) over a small interval ε ∈ [sn, 2sn] (note that I(X;G) is independent of ε) and set R
to the solution R∗n of (19) in Lemma 3.1; therefore q∗n(t, ε) = λnE〈Q〉t,ε. This choice cancels the �rst term of
R2 in the decomposition (18). The second term in (18) is then upper bounded using Lemma 3.2. Finally R1 ≥ 0.
Combining all these observations we obtain

1

n
I(X;G) ≥ 1

sn

∫ 2sn

sn

dε[Ψ(R∗n(1, ε), λn, r)−R3]− Cn(r, λn)λn

4(s4
nn)1/3

(24)

where we used Fubini’s theorem to switch the t and ε integrals when using Lemma 3.2. Using q∗n ∈ [0, λn] and
ε ∈ [sn, 2sn], we see thatR3 is bounded uniformly in ε:

|R3| ≤
2sn
4λn

(2sn + 2λn) + on(1) =
s2
n

λn
+ sn + on(1) .

Therefore the average ofR3 over ε has the same upper bound. Now, since

d

dλ
Ψ(R∗n(1, ε), λ, r) =

1

4
− R∗n(1, ε)2

4λ

and R∗n(1, ε) ∈ [sn, 2sn + λn] we have −1
4 ≤

d
dλΨ(R∗n(1, ε), λ) ≤ 1

4 (we use n large enough for the l.h.s
inequality). Thus by remark 2 and the mean value theorem

1

sn

∫ 2sn

sn

dεΨ(R∗n(1, ε), λn, r) =
1

sn

∫ 2sn

sn

dεΨ(R∗n(1, ε), λ, r) +
1

sn

∫ 2sn

sn

dε (Ψ(R∗n(1, ε), λn, r)−Ψ(R∗n(1, ε), λ, r))

≥ min
q∈[0,λ]

Ψ(q, λ, r)− 1

4
|λn − λ|

These remarks imply a relaxation of (24):

1

n
I(X,G) ≥ min

q∈[0,λ]
Ψ(q, λn, r)−

1

4
|λn − λ| −

Cn(r, λn)λn

4(s4
nn)1/3

− s2
n

λn
− sn − on(1) . (25)

Finally, setting sn = n−θ with θ ∈ (0, 1/4) ensures the extra terms on the r.h.s. of (24) vanish as n→ +∞. Then
taking the lim infn→+∞ and using λn → λ we �nally reach the desired bound.

4 The fundamental sum rule: proof of (15)
In this section we use the notation Ft,ε for (11) without explicitly indicating the dependence in its arguments.
When Gij is set to zero for a speci�c pair (i, j) all other Gk,l, (k, l) 6= (i, j) being �xed we write Ft,ε(Gij = 0).
Expectation with respect to the set of all Gk,l, (k, l) 6= (i, j) is denoted by E∼Gij .
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The derivative of the averaged free energy can be decomposed into three terms:

dft,ε
dt

= D1 +D2 +D3 (26)

where

D1 ≡ EXEY |X
∑
G

Ft,ε
d

dt
Pt(G|X) ,

D2 ≡ EXEG|X

∫
dY Ft,ε

d

dt
Pt(Y |X) ,

D3 ≡
1

n
E
〈 d
dt
Hdec;t,ε

〉
t,ε

+
1

n
E
〈 d
dt
HSBM;t

〉
t,ε
.

4.1 Term D1.

Lemma 4.1. We have D1 = λn
4 E〈Q2〉t,ε +O( 1

n) +O
(

λ
3/2
n√

np̄n(1−p̄n)3

)
.

Proof. Note that by (7) we have

d

dt
Pt(G|X) = Pt(G|X)

∑
i<j

1

2

∆n√
1− t

XiXj

(
− Gij

p̄n +
√

1− t∆nXiXj
+

1−Gij
1− p̄n −

√
1− t∆nXiXj

)
.

This gives

D1 =
∆n

2
√

1− t
∑
i<j

EXEY |XEG|X

[
XiXj

(
(1−Gij)Ft,ε

1− p̄n −
√

1− t∆nXiXj
− GijFt,ε

p̄n +
√

1− t∆nXiXj

)]
=

∆n

2
√

1− t
(D

(a)
1 +D

(b)
1 ) (27)

with the de�nitions

D
(a)
1 ≡

∑
i<j

E∼Gij

[
XiXj

EGij |XFt,ε − EGij |X [GijFt,ε]

1− EGij |Xi,XjGij

]
,

D
(b)
1 ≡ −

∑
i<j

E∼Gij

[
XiXj

EGij |X [GijFt,ε]

EGij |Xi,XjGij

]
,

where E∼Gij ≡ EXEY |XEG\Gij |X , and recalling

EGij |Xi,XjGij = p̄n +
√

1− t∆nXiXj .

Both D(a)
1 and D(b)

1 involve the term EGij |X [GijFt,ε]. In Section 6 we derive an approximate integration by
parts formula that, when applied in the present case, yields

Lemma 4.2. Fix i, j ∈ {1, · · · , n}2 and recall that Gij ∈ {0, 1} with conditional mean EGij |Xi,Xj [Gij ] = p̄n +
√

1− t∆nXiXj . Let F
(1)
t,ε (Gij) be the �rst partial derivative of Ft,ε with respect to Gij . We have the approximate

12



integration by parts formula

EGij |Xi,Xj [GijFt,ε(Gij)] =EGij |Xi,Xj [F
(1)
t,ε (Gij)]EGij |Xi,Xj [Gij ] + Ft,ε(Gij = 0)EGij |Xi,Xj [Gij ]

+O
( √1− tλn
n2(1− p̄n)

)
. (28)

where
F

(1)
t,ε (Gij) = − 1

n

∆n

p̄n(1− p̄n)

√
1− t〈xixj〉t,ε +O

( 1

n

( ∆n

p̄n(1− p̄n)

)2
(1− t)

)
and Ft,ε(Gij = 0) is the evaluation of Ft,ε at Gij = 0 all other variables Gkl, (k, l) 6= (i, j) being �xed.

The approximate integration by part formula (28) implies that the term D
(b)
1 of (27) can be written as (recall

p̄n(1− p̄n)� ∆n)

∆n

2
√

1− t
D

(b)
1

= − ∆n

2
√

1− t
∑
i<j

E∼Gij
[
XiXj

(
Ft,ε(Gij = 0)−

√
1− t∆n

np̄n(1− p̄n)
EGij |Xi,Xj 〈xixj〉t,ε

)]
+O

( λn∆n

p̄n(1− p̄n)

)
=

∆2
n

2np̄n(1− p̄n)

∑
i<j

E[XiXj〈xixj〉t,ε]−
∆n

2
√

1− t
∑
i<j

E∼Gij [XiXjFt,ε(Gij = 0)] +O
( λn∆n

p̄n(1− p̄n)

)
. (29)

Applying again the approximate integration by parts formula (28) the term D
(a)
1 of (27) can be written as (recall

(1− p̄n)2 � ∆n)

∆n

2
√

1− t
D

(a)
1

= − ∆n

2
√

1− t
∑
i<j

E∼Gij
[
XiXj

EGij |Xi,XjGij
1− EGij |Xi,XjGij

(
Ft,ε(Gij = 0)−

√
1− t∆n

np̄n(1− p̄n)
EGij |Xi,Xj 〈xixj〉t,ε

)]
+

∆n

2
√

1− t
∑
i<j

E∼Gij
[
XiXj

EGij |XFt,ε
1− EGij |Xi,XjGij

]
+O

( λn∆n

(1− p̄n)2

)
= E1 + E2 +

∆n

2
√

1− t
∑
i<j

E∼Gij [XiXjFt,ε(Gij = 0)] +O
( λn∆n

(1− p̄n)2

)
(30)

where we de�ne

E1 ≡
∆n

2
√

1− t
∑
i<j

E∼Gij
[
XiXj

EGij |XiXjFt,ε − Ft,ε(Gij = 0)

1− EGij |Xi,XjGij

]
,

E2 ≡
∆2
n

2np̄n(1− p̄n)

∑
i<j

E
[ EGij |Xi,XjGij

1− EGij |Xi,XjGij
XiXj〈xixj〉t,ε

]
.

We show in Appendix C that in (30) the terms E1 and E2 approximately cancel so that

∆n

2
√

1− t
D

(a)
1 =

∆n

2
√

1− t
∑
i<j

E∼Gij [XiXjFt,ε(Gij = 0)] +O
( λn∆n

(1− p̄n)2

)
. (31)
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Finally, substituting (29) and (31) into (27) gives

EXEY |X
∑
G

Ft,ε
d

dt
Pt(G|X) =

∆2
n

2np̄n(1− p̄n)

∑
i<j

E[XiXj〈xixj〉t,ε] +O
( λn∆n

p̄n(1− p̄n)

)
+O

( λn∆n

(1− p̄n)2

)
=
λn
4
E〈Q2〉t,ε +O

( 1

n

)
+O

( λn∆n

p̄n(1− p̄n)

)
+O

( λn∆n

(1− p̄n)2

)
=
λn
4
E〈Q2〉t,ε +O

( 1

n

)
+O

( λ
3/2
n√

np̄n(1− p̄n)3

)
,

where, in the last two equalities, we used λn = n∆2
n/(p̄n(1 − p̄n)) and Q = 1

n

∑n
i=1Xixi. With (h1) and (h2),

all the error terms represented by the big-O notations tend to zero.

4.2 Term D2.

Lemma 4.3. We have D2 = −1
2q(t, ε)E〈Q〉t,ε.

Proof. Recall (8). Using Gaussian integration by parts (17) we obtain

D2 ≡ EXEG|X

∫
dY Ft,ε

d

dt
Pt(Y |X) =

n∑
i=1

EXEG|XEY |X

[
(Yi −

√
R(t, ε)Xi)

q(t, ε)Xi

2
√
R(t, ε)

Ft,ε

]
=

q(t, ε)

2
√
R(t, ε)

n∑
i=1

EXEG|XEZ

[
ZiXiFt,ε

]
= − q(t, ε)

2n
√
R(t, ε)

n∑
i=1

EXEG|XEZ

[
Xi〈
√
R(t, ε)xi〉t,ε

]
= −1

2
q(t, ε)E〈Q〉t,ε ,

where we used that dFt,εdZ = − 1
n〈
√
R(t, ε)xi〉t,ε, and then the de�nition of the overlap.

4.3 Term D3.

Lemma 4.4. We have D3 = 0.

Proof. Using the Nishimori identity (16) we obtain

E
〈 d
dt
Hdec;t,ε

〉
t,ε

= −q(t, ε)
n∑
i=1

EXEG|XEY |X

〈 Yixi

2
√
R(t, ε)

− x2
i

2

〉
t,ε

= −q(t, ε)
n∑
i=1

EXEG|XEY |X

[ YiXi

2
√
R(t, ε)

− X2
i

2

]
= −q(t, ε)

n∑
i=1

EXiEZi
ZiXi

2
√
R(t, ε)

= 0

by independence of the centered noise Z and the hidden partition X .
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Again the Nishimori identity (16) is used to obtain

E
〈 d
dt
HSBM,t

〉
t,ε

=
1

2
√

1− t
∑
i<j

E
〈

∆nxixj

( Gij

p̄n +
√

1− t∆nxixj
− 1−Gij

1− p̄n −
√

1− t∆nxixj

)〉
t,ε

=
1

2
√

1− t
∑
i<j

E
[
∆nXiXj

( Gij

p̄n +
√

1− t∆nXiXj
− 1−Gij

1− p̄n −
√

1− t∆nXiXj

)]
=

1

2
√

1− t
∑
i<j

EXi,Xj
[
∆nXiXj

( EGij |Xi,XjGij
p̄n +

√
1− t∆nXiXj

−
1− EGij |Xi,XjGij

1− p̄n −
√

1− t∆nXiXj

)]
= 0 ,

where the last line follows from EGij |Xi,XjGij = p̄n +
√

1− t∆nXiXj .

4.4 Final derivations of the sum rule.

The last missing term in order to simplify the sum rule (14) is:

Lemma 4.5. We have f0,0 − f0,ε = 1
2

∫ ε
0 dε

′ E〈Q〉0,ε′ .

Proof. Using Gaussian integration by parts (17) and from (16) the speci�c Nishimori identityE[〈xi〉20,ε′ ] = E[Xi〈xi〉0,ε′ ]
we have (recall also that R(0, ε′) = ε′)

f0,0 − f0,ε = −
∫ ε

0
dε′
df0,ε′

dε′
= −

∫ ε

0
dε′
〈 d

dε′
Hdec;t,ε′

〉
0,ε′

=

∫ ε

0
dε′

1

n

n∑
i=1

E
〈
Xixi −

x2
i

2
+

1

2
√
ε′
Zixi

〉
0,ε′

=

∫ ε

0
dε′

1

n

n∑
i=1

(
E〈Xixi〉0,ε′ −

1

2
E[〈xi〉20,ε′ ]

)
=

1

2

∫ ε

0
dε′ E〈Q〉0,ε′ ,

Recall R(1, ε) = ε+
∫ 1

0 q(t, ε)dt. Substituting (26), and Lemmas 4.1, 4.3 and 4.4 as well as 4.5 into (14) yields

1

n
I(X;G) = Ψ(R(1, ε), λn, r)−

(ε+
∫ 1

0 q(t, ε)dt)
2

4λn
+

1

2

∫ ε

0
dε′ E〈Q〉0,ε′

−
∫ 1

0
dt
(λn

4
E〈Q2〉t,ε −

1

2
q(t, ε)E〈Q〉t,ε

)
+ on(1)

= Ψ(R(1, ε), λn, r) +
1

4λn

(∫ 1

0
q(t, ε)2dt−

(∫ 1

0
q(t, ε)dt

)2)
− 1

4λn

∫ 1

0
dtE〈(λnQ− q(t, ε))2〉t,ε

− ε

4λn

(
ε+ 2

∫ 1

0
q(t, ε)dt

)
+

1

2

∫ ε

0
dε′ E〈Q〉0,ε′ + on(1)

which is the sum rule (15).
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5 Concentration of overlap: proof of Lemma 3.2
Concentration of overlap has been shown for various Bayesian inference problems, see, e.g., [7,8,18]. These proofs
can be adapted to the present case. The idea is to bound the �uctuations of the overlap by those of another, easier
to control, object L de�ned below. This object is more natural to work with as it is directly related to derivatives
of the free energy, which, itself concentrates. Let us present the main steps of the proof, and then provide the
proof details afterwards.

Let

L ≡ 1

n

n∑
i=1

(x2
i

2
− xiXi −

xiZi

2
√
R(t, ε)

)
. (32)

As said previously, we can relate the �uctuations of the overlap to those of L:

Lemma 5.1 (A �uctuation identity). We have E〈(Q− E〈Q〉t,ε)2〉t,ε ≤ 4E〈(L − E〈L〉t,ε)2〉t,ε.

It therefore remains to show the concentration of L. We divide the task into two parts:

E〈(L − E〈L〉t,ε)2〉t,ε = E〈(L − 〈L〉t,ε)2〉t,ε + E[(〈L〉t,ε − E〈L〉t,ε)2] . (33)

These two terms are controlled by the following lemmas:

Lemma 5.2 (Thermal �uctuations). Let R(t, ε) = ε+
∫ t

0 ds q(s, ε) ≥ ε be such that dR/dε ≥ 1. We then have∫ 2sn

sn

dεE〈(L − 〈L〉t,ε)2〉t,ε ≤
1

n
.

Lemma 5.3 (Quenched �uctuations). Let R(t, ε) = ε +
∫ t

0 ds q(s, ε), with ε ∈ [sn, 2sn] and q taking values in
[0, λn], be such that dR/dε ≥ 1. There exists a sequence Cn(r, λn) > 0 converging to a constant such that∫ 2sn

sn

dεE[(〈L〉t,ε − E〈L〉t,ε)2] ≤ Cn(r, λn)

(snn)1/3
. (34)

The proof of Lemma 5.2 and Lemma 5.3 employ some useful identities for the derivatives of the free energy
(recall Ft,ε ≡ − 1

n lnZt,ε(G,Y )):

dFt,ε
dR

= 〈L〉t,ε , (35)

1

n

d2Ft,ε
dR2

= −(〈L2〉t,ε − 〈L〉2t,ε) +
1

4n2R3/2

n∑
i=1

〈xi〉t,εZi , (36)

where we simply denote, when no confusion can arise, R = R(t, ε). Taking expectation on both sides of (35) and
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(36) we have

dft,ε
dR

= E〈L〉t,ε = − 1

2n

n∑
i=1

E[〈xi〉2t,ε] , (37)

1

n

d2ft,ε
dR2

= −E[〈L2〉t,ε − 〈L〉2t,ε] +
1

4n2R

n∑
i=1

E[〈x2
i 〉t,ε − 〈xi〉2t,ε] (38)

= − 1

2n2

n∑
i,j=1

E[(〈xixj〉t,ε − 〈xi〉t,ε〈xj〉t,ε)2] . (39)

The proof of Lemma 3.2 is ended by applying Lemmas 5.1, 5.2 and 5.3 in conjunction with (33):

1

sn

∫ 2sn

sn

dεE〈(Q− E〈Q〉t,ε)2〉t,ε ≤
4

snn
+

4Cn(r, λn)

(s4
nn)1/3

.

We now provide the proofs of Lemmas 5.1 to 5.4. For the sake of readibility, we simply denote 〈−〉 ≡ 〈−〉t,ε
for the rest of this section.

5.1 Proof of Lemma 5.1

We start by proving

−2E
〈
Q(L − E〈L〉)

〉
= E

〈
(Q− E〈Q〉)2

〉
+ E

〈
(Q− 〈Q〉)2

〉
. (40)

Using the de�nitions Q ≡ 1
n

∑n
i=1 xiXi and (32) gives

2E
〈
Q(L − E〈L〉)

〉
=

1

n2

n∑
i,j=1

{
E
[
Xi〈xix2

j 〉 − 2XiXj〈xixj〉 −
Zj√
R
Xi〈xixj〉

]
− E[Xi〈xi〉]E

[
〈x2
j 〉 − 2Xj〈xj〉 −

Zj√
R
〈xj〉

]}
. (41)

Gaussian integration by parts then yields

E
[ Zj√

R
Xi〈xixj〉

]
= E[Xi〈xix2

j 〉 −Xi〈xixj〉〈xj〉] , and E
[ Zj√

R
〈xj〉

]
= E[〈x2

j 〉 − 〈xj〉2] .

These two formulas simplify (41) to

2E
〈
Q(L − E〈L〉)

〉
=

1

n2

n∑
i,j=1

{
E[Xi〈xj〉〈xixj〉 − 2XiXj〈xixj〉]− E[Xi〈xi〉]E[〈xj〉2 − 2Xj〈xj〉]

}
. (42)

The Nishimori identity implies

E[〈xj〉2] = E[Xj〈xj〉] , and E[Xi〈xj〉〈xixj〉] = E[〈xi〉〈xj〉〈xixj〉] = E[〈xi〉〈xj〉XiXj ] .

17



These formulas further simplify (42) to

2E
〈
Q(L − E〈L〉)

〉
=

1

n2

n∑
i,j=1

{
E[〈xi〉〈xj〉XiXj − 2XiXj〈xixj〉] + E[Xi〈xi〉]E[Xj〈xj〉]

}
= E[〈Q〉2]− 2E〈Q2〉+ E[〈Q〉]2

= −
(
E〈Q2〉 − E[〈Q〉]2

)
−
(
E〈Q2〉 − E[〈Q〉2]

)
which is (40).

Identity (40) implies

2
∣∣E〈Q(L − E〈L〉)

〉∣∣ = 2
∣∣E〈(Q− E〈Q〉)(L − E〈L〉)

〉∣∣ ≥ E
〈
(Q− E〈Q〉)2

〉
and application of the Cauchy-Schwarz inequality then gives

2
{
E
〈
(Q− E〈Q〉)2

〉
E
〈
(L − E〈L〉)2

〉}1/2 ≥ E
〈
(Q− E〈Q〉)2

〉
.

This ends the proof of Lemma 5.1.

5.2 Proof of Lemma 5.2

First note that d
2ft,ε
dR2 ≤ 0. Then, using (38), dR/dε ≥ 1,R(t, ε) ≥ ε, and the Nishimori identity E〈x2

i 〉 = E[X2
i ] =

1,

E〈(L − 〈L〉)2〉 = − 1

n

d2ft,ε
dR2

+
1

4n2R

n∑
i=1

E[〈x2
i 〉 − 〈xi〉2] ≤ − 1

n

dR

dε

d2ft,ε
dR2

+
1

4nε
= − 1

n

d

dε

(dft,ε
dR

)
+

1

4nε
,

From (37) dft,ε/dR ∈ [−1/2, 0], therefore [dft,ε/dR]ε=2sn
ε=sn ≥ −1/2. Integrating over ε then gives∫ 2sn

sn

dεE〈(L − 〈L〉)2〉 ≤
∫ 2sn

sn

dε
{
− 1

n

d

dε

(dft,ε
dR

)
+

1

4nε

}
= − 1

n

[dft,ε
dR

]ε=2sn

ε=sn
+

ln 2

4n
≤ 2 + (ln 2)

4n
≤ 1

n
.

5.3 Proof of Lemma 5.3

Lemma 5.3 is based on the concentration of the free energy, a very general fact in "well behaved" statistical
mechanics models. The proof of the following lemma uses more or less standard methods and can found in
Appendix D.

Lemma 5.4 (Free energy �uctuations). There exists a sequence Cn(r, λn) > 0 converging to a constant when
n→ +∞, such that

Var(Ft,ε) = E[(Ft,ε − ft,ε)2] ≤ Cn(r, λn)

n
. (43)
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Recall R = R(t, ε). Let

F̃t,ε(R) ≡ Ft,ε +

√
R

1− r
r

1

n

n∑
i=1

|Zi|, f̃t,ε(R) ≡ ft,ε +

√
R

1− r
r

1

n

n∑
i=1

E|Zi| . (44)

From (39) we see that f̃t,ε(R) is concave in R. Furthermore, from (36) and |xi| ≤
√

1−r
r for 0 ≤ r ≤ 1/2, we see

that F̃t,ε(R) is also concave in R. So that we can employ the following lemma (see the end of this section for a
proof):

Lemma 5.5 (A bound on the di�erence of derivatives due to concavity). Let G(x) and g(x) be concave functions.
Let δ > 0 and de�ne C+

δ (x) ≡ g′(x)− g′(x+ δ) ≥ 0 and C−δ (x) ≡ g′(x− δ)− g′(x) ≥ 0. Then

|G′(x)− g′(x)| ≤ δ−1
∑

u∈{x−δ,x,x+δ}

|G(u)− g(u)|+ C+
δ (x) + C−δ (x) .

From (44) we have

F̃t,ε − f̃t,ε = Ft,ε − ft,ε +

√
R

1− r
r

An , An ≡
1

n

n∑
i=1

(|Zi| − E|Zi|) ,

and from (35) and (37) we have

dF̃t,ε
dR
− df̃t,ε

dR
= 〈L〉 − E〈L〉+

1

2

√
1− r
Rr

An .

Using Lemma 5.5 we then get

∣∣〈L〉 − E〈L〉
∣∣ ≤ δ−1

∑
u∈{R−δ,R,R+δ}

(
|Ft,ε(R = u)− ft,ε(R = u)|+

√
u

1− r
r
|An|

)
+ C+

δ (R) + C−δ (R) +
1

2

√
1− r
Rr

An

whereC+
δ (R) ≡ f̃ ′t,ε(R)−f̃ ′t,ε(R+δ) ≥ 0 andC−δ (R) ≡ f̃ ′t,ε(R−δ)−f̃ ′t,ε(R) ≥ 0. Then squaring this inequality,

using (
∑p

i=1 vi)
2 ≤ p

∑p
i=1 v

2
i , taking the expectation, and recalling that R = R(t, ε) ≥ ε we reach

1

9
E
[
(〈L〉 − E〈L〉)2

]
≤ δ−2

∑
u∈{R−δ,R,R+δ}

{
E[(Ft,ε(u)− ft,ε(u))2] + u

1− r
r

E[A2
n]
}

+ C+
δ (R)2 + C−δ (R)2

+
1− r
4εr

E[A2
n] . (45)

Note that E[A2
n] = a/n with a = 1 − 2/π. Recall q∗(t, ε) ∈ [0, λn] from Lemma 3.1. We can upper bound u by

λn + 2sn + δ. These remarks with Lemma 5.4 simplify (45) to

1

9
E
[
(〈L〉 − E〈L〉)2

]
≤ 3

nδ2

(
Cn(r, λn) + a(λn + 2sn + δ)

1− r
r

)
+ C+

δ (R)2 + C−δ (R)2 +
1

4ε

1− r
r

a

n
. (46)
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Recall (37) and that E[〈xi〉2] ≤ E〈x2
i 〉 = E[X2

i ] = 1. We have

|f̃ ′t,ε(R)| ≤ 1

2

(
1 +

√
1− r
rR

)
and therefore 0 ≤ C±δ (R) ≤ 1 +

√
1−r

r(R−δ) . Using dR/dε ≥ 1 and R ≥ sn we then have

∫ 2sn

sn

dε
{
C+
δ (R)2 + C−δ (R)2

}
≤ 2
(

1 +

√
1− r

r(sn − δ)

)∫ 2sn

sn

dε
{
C+
δ (R) + C−δ (R)

}
= 2
(

1 +

√
1− r

r(sn − δ)

)∫ 2sn

sn

dε
(df̃t,ε(R− δ)

dR
− df̃t,ε(R+ δ)

dR

)
≤ 2
(

1 +

√
1− r

r(sn − δ)

)∫ 2sn

sn

dε
dR

dε

(df̃t,ε(R− δ)
dR

− df̃t,ε(R+ δ)

dR

)
= 2
(

1 +

√
1− r

r(sn − δ)

)∫ 2sn

sn

dε
(df̃t,ε(R(t, ε)− δ)

dε
− df̃t,ε(R(t, ε) + δ)

dε

)
= 2
(

1 +

√
1− r

r(sn − δ)

){(
f̃t,2sn(R(t, 2sn)− δ)− f̃t,2sn(R(t, 2sn) + δ)

)
+
(
f̃t,sn(R(t, sn) + δ)− f̃t,sn(R(t, sn)− δ)

)}
≤ 4δ

(
1 +

√
1− r

r(sn − δ)

)2

using the mean value theorem for the last step. Therefore upon integrating (46) over ε ∈ (sn, 2sn) we have

1

9

∫ 2sn

sn

dεE
[
(〈L〉 − E〈L〉)2

]
≤ 3sn
nδ2

(
Cn(r, λn) + a(λn + 2sn + δ)

1− r
r

)
+ 4δ

(
1 +

√
1− r

r(sn − δ)

)2
+
a(1− r) ln 2

4rn
. (47)

The bound is optimized choosing δ = (s2
n/n)1/3. This ends the proof.

Proof of Lemma 5.5. Concavity implies that for any δ > 0 we have

G′(x)− g′(x) ≥ G(x+ δ)−G(x)

δ
− g′(x)

≥ G(x+ δ)−G(x)

δ
− g′(x) + g′(x+ δ)− g(x+ δ)− g(x)

δ

=
G(x+ δ)− g(x+ δ)

δ
− G(x)− g(x)

δ
− C+

δ (x) ,

G′(x)− g′(x) ≤ G(x)−G(x− δ)
δ

− g′(x) + g′(x− δ)− g(x)− g(x− δ)
δ

=
G(x)− g(x)

δ
− G(x− δ)− g(x− δ)

δ
+ C−δ (x) .
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Combining these two inequalities ends the proof.

6 Approximate integration by parts: proof of lemma 4.2
The following general formula follows from Taylor expansion with Lagrange remainder. When the r.h.s is small
in speci�c applications, the formula can be seen as an approximate integration by parts formula generalizing
Gaussian integration by parts.

Lemma 6.1. Let g(U) be a C4 function of a random variableU such that for k = 1, 2, 3, 4we have supU
∣∣g(k)(U)

∣∣ ≤
Ck for some constants Ck ≥ 0 and g(k)(U) ≡ dkg(U)/dUk. Suppose that the �rst four moments of U are �nite.
Then ∣∣∣E[Ug(U)]− E[g′(U)]E[U2]− g(0)EU

∣∣∣
≤ C2

(∣∣E[U3]
∣∣

2
+ E[U2]EU

)
+ C3

(
E[U4]

24
+

E[U2]2

2

)
+
C4

6

∣∣E[U3]
∣∣E[U2] . (48)

Proof. By Taylor’s theorem any C4 function h(U) can be written as

h(U) = h(0) + h(1)(0)U +
1

2
h(2)(0)U2 +

1

2

∫ U

0
h(3)(s)(U − s)2ds .

Taking the expectation on both sides:

Eh(U) = h(0) + h(1)(0)EU +
1

2
h(2)(0)E[U2] +

1

2
E
∫ U

0
h(3)(s)(U − s)2ds . (49)

When (49) is applied to h(U) = g(1)(U) we have

Eg(1)(U) = g(1)(0) + g(2)(0)EU +
1

2
g(3)(0)E[U2] +

1

2
E
∫ U

0
g(4)(s)(U − s)2ds . (50)

On the other hand when (49) is applied to h(U) = Ug(U), using (Ug(U))(k) = Ug(k)(U) + kg(k−1)(U) we have

E[Ug(U)]− g(0)EU = g(1)(0)E[U2] +
1

2
E
∫ U

0
(sg(3)(s) + 3g(2)(s))(U − s)2ds . (51)
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Subtracting (50) and (51) we have the bound∣∣∣E[Ug(U)]− Eg(1)(U)E[U2]− g(0)EU
∣∣∣

=
∣∣∣1
2
E
∫ U

0
(sg(3)(s) + 3g(2)(s))(U − s)2ds− g(2)(0)E[U2]EU − 1

2
g(3)(0)E[U2]2

− 1

2
E[U2]E

∫ U

0
g(4)(s)(U − s)2ds

∣∣∣
≤ C3

2

∣∣∣E ∫ U

0
s(U − s)2ds

∣∣∣+
3C2

2

∣∣∣E ∫ U

0
(U − s)2ds

∣∣∣+ C2E[U2]EU

+
C3

2
E[U2]2 +

C4

2
E[U2]

∣∣∣E ∫ U

0
(U − s)2ds

∣∣∣
=
C3

24
E[U4] +

C2

2

∣∣E[U3]
∣∣+ C2EUE[U2] +

C3

2
E[U2]2 +

C4

6

∣∣E[U3]
∣∣E[U2] , (52)

which is the right hand side of (48) after factorization.

We now apply lemma 6.1 to our speci�c problem in order to derive the approximate integration by parts
formula (28).

Proof of lemma 4.2. In order to apply lemma 6.1 to the SBM, consider U = Gij and g(U) = Ft,ε(Gij) the free
energy (11) seen as a function ofGij (all other variables being �xed). For the expectation we take E = EGij |Xi,Xj .
At time t and for any integer k

EGij |Xi,Xj [G
k
ij ] = EGij |Xi,XjGij = p̄n +

√
1− t∆nXiXj = O(p̄n),

because Gij ∈ {0, 1}. For the derivatives we note that using the Taylor expansion of the logarithm, one obtains
for any vn ∈ R and vn → 0, ln(1 + vn)− vn = O(|vn|2), which also implies ln(1 + vn) = O(|vn|). (The reader
should keep this fact in mind, as it is used again in the appendices whenever we need to expand the logarithm.)
Now this fact implies

−F (1)
t,ε (Gij) =

1

n

〈
ln(1 +

∆n

p̄n

√
1− txixj)− ln(1− ∆n

1− p̄n
√

1− txixj)
〉
t,ε

=
1

n

(
∆n

p̄n
+

∆n

1− p̄n

)√
1− t〈xixj〉t,ε +O

( 1

n

( ∆n

1− p̄n

)2
(1− t)

)
+O

( 1

n

( ∆n

(1− p̄n)

)2
(1− t)

)
=

1

n

∆n

p̄n(1− p̄n)

√
1− t〈xixj〉t,ε +O

( 1

n

( ∆n

p̄n(1− p̄n)

)2
(1− t)

)
,

−F (2)
t,ε (Gij) =

1

n

〈(
ln(1 +

∆n

p̄n

√
1− txixj)− ln(1− ∆n

1− p̄n
√

1− txixj)
)2〉

t,ε

− 1

n

〈
ln(1 +

∆n

p̄n

√
1− txixj)− ln(1− ∆n

1− p̄n
√

1− txixj)
〉2

t,ε

= O
( 1

n

( ∆n

p̄n(1− p̄n)

)2
(1− t)

)
.

To obtain these identities the reader has again to be careful in performing the derivatives: both the exponential
of the Hamiltonian and the partition function appearing in the de�nition of the Gibbs-bracket depend on (Gij)
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(see the derivation of (21) for similar computations). In general,

|F (k)
t,ε (Gij)| = O

( 1

n

( ∆n

p̄n(1− p̄n)

)k
(1− t)k/2

)
.

Using Lemma 6.1 we have

An ≡
∣∣∣EGij |Xi,Xj [GijFt,ε] + EGij |Xi,Xj [Gij ]

×
{ 1

n

∆n

p̄n(1− p̄n)

√
1− tEGij |Xi,Xj [〈xixj〉t,ε] +O

(1− t
n

( ∆n

p̄n(1− p̄n)

)2)
− Ft,ε(Gij = 0)

}∣∣∣
= O

(√1− t
n

(
(

∆n

p̄n(1− p̄n)
)2(p̄n + p̄2

n) + (
∆n

p̄n(1− p̄n)
)3(p̄n + p̄2

n) + (
∆n

p̄n(1− p̄n)
)4p̄2

n

))
= O

(√1− t
n

∆2
n

p̄n(1− p̄n)2

)
.

Then by the triangle inequality we extract∣∣∣EGij |Xi,Xj [GijFt,ε] + EGij |Xi,Xj [Gij ]
{ 1

n

∆n

p̄n

√
1− tEGij |Xi,Xj [〈xixj〉t,ε]− Ft,ε(Gij = 0)

}∣∣∣
≤ An + (p̄n +

√
1− t∆nXiXj)O

(1− t
n

( ∆n

p̄n(1− p̄n)

)2)
= O

(√1− t
n

∆2
n

p̄n(1− p̄n)2

)
= O

( √1− tλn
n2(1− p̄n)

)
.

and recognize formula (28).

A Mutual information and free energy: proof of Proposition 2.3
Using (3), we have the expression

I(X;G) ≡ EXEG|X ln

{
P(G|X)

P(G)

}
= EXEG|X ln

{
P(G|X)∑

x∈Xn Pr(x)P(G|x)

}
= EXEG|X ln

{ ∏
i<j(p̄n + ∆nXiXj)

Gij (1− p̄n −∆nXiXj)
1−Gij∑

x∈Xn Pr(x)
∏
i<j(p̄n + ∆nxixj)Gij (1− p̄n −∆nxixj)1−Gij

}
.
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We divide both the numerator and denominator by the same factor, and then rewrite the denominator in expo-
nential form:

I(X;G) = EXEG|X ln

{ ∏
i<j(1 + ∆n

p̄n
XiXj)

Gij (1− ∆n
1−p̄nXiXj)

1−Gij∑
x∈Xn Pr(x)

∏
i<j(1 + ∆n

p̄n
xixj)Gij (1− ∆n

1−p̄nxixj)
1−Gij

}

= EXEG|X ln

{ ∏
i<j(1 + ∆n

p̄n
XiXj)

Gij (1− ∆n
1−p̄nXiXj)

1−Gij∑
x∈Xn Pr(x) exp

∑
i<j

(
Gij ln(1 + ∆n

p̄n
xixj) + (1−Gij) ln(1− ∆n

1−p̄nxixj)
)}

= EXEG|X ln

{∏
i<j

(1 +
∆n

p̄n
XiXj)

Gij (1− ∆n

1− p̄n
XiXj)

1−Gij
}
− EXEG|X lnZ(G). (53)

Recall EGij |Xi,XjGij = p̄n + ∆nXiXj . The �rst term in (53) equals

∑
i<j

EXEG|X

{
Gij ln(1 +

∆n

p̄n
XiXj) + (1−Gij) ln(1− ∆n

1− p̄n
XiXj)

}

=
∑
i<j

EX

{
(p̄n + ∆nXiXj) ln(1 +

∆n

p̄n
XiXj) + (1− p̄n −∆nXiXj) ln(1− ∆n

1− p̄n
XiXj)

}
. (54)

Let X ∼ Pr . We can further write explicitly the expectation in (54) that leads us to conclude

1

n
I(X;G) =

n− 1

2

{
r2(p̄n + ∆n

1− r
r

) ln(1 +
∆n

p̄n

1− r
r

) + r2(1− p̄n −∆n
1− r
r

) ln(1− ∆n

1− p̄n
1− r
r

)

+ (1− r)2(p̄n + ∆n
r

1− r
) ln(1 +

∆n

p̄n

r

1− r
) + (1− r)2(1− p̄n −∆n

r

1− r
) ln(1− ∆n

1− p̄n
r

1− r
)

+ 2r(1− r)(p̄n −∆n) ln(1− ∆n

p̄n
) + 2r(1− r)(1− p̄n + ∆n) ln(1 +

∆n

1− p̄n
)

}
− 1

n
EXEG|X lnZ(G). (55)

Using the Taylor expansion of the logarithm, (55) becomes

1

n
I(X;G) =

λn(n− 1)

4n
− 1

n
EXEG|X lnZ(G) +

n− 1

2

∞∑
k=3

∆k
n

k(k − 1)

( 1

p̄k−1
n

+
(−1)k

(1− p̄n)k−1

)
E[Xk]2,

where E[Xk]2 = r2(1−r
r )k + (1 − r)2( r

1−r )k + (−1)k2r(1 − r). This becomes the expression in (5) by noting
that the last term is O

(
n∆3

n/
(
p̄n(1− p̄n)

)2)
= O(λ

3/2
n /

√
np̄n(1− p̄n)).

B Liouville formula

Consider the di�erential equation (19) with Gn(t, R(t, ε)) = λnE〈Q〉t,ε. Di�erentiating w.r.t ε and using the
chain rule gives

d

dt

dR

dε
(t, ε) =

dR

dε
(t, ε)

dGn
dR

(t, R(t, ε)) .
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Therefore we have

d

dt
ln

{
dR

dε
(t, ε)

}
=
dGn
dR

(t, R(t, ε)) . (56)

Integrating (56) over t ∈ [0, t′] we have

ln

{
dR

dε
(t′, ε)

}
− ln

{
dR

dε
(0, ε)

}
=

∫ t′

0
dt
dGn
dR

(t, R(t, ε)) . (57)

Using R(0, ε) = ε, (57) implies

dR

dε
(t′, ε) = exp

{∫ t′

0
dt
dGn
dR

(t, R(t, ε))

}
. (58)

This is known as Liouville’s formula for one-dimensional ordinary di�erential equations.

C Small error terms in the sum rule: proof of (31)
Recalling the de�nitions (9) and (10), let

Ht,ε(x;G \Gij ,Y ) ≡ HSBM;t(x;G \Gij) +Hdec;t,ε(x;Y ) , (59)

HSBM;t(x;G \Gij) ≡ −
∑

k<l:(k,l)/∈{(i,j),(j,i)}

{
Gkl ln(1 +

∆n

p̄n

√
1− txkxl)

+ (1−Gkl) ln(1− ∆n

1− p̄n
√

1− txkxl)
}
.

Also let Ft,ε;∼Gij ≡ n−1 ln
∑

x∈Xn e
−Ht,ε(x;G\Gij ,Y )Pr(x), and 〈−〉t,ε;∼Gij be the Gibbs-bracket associated to

the measure proportional to Ht,ε(x;G \ Gij ,Y ). The di�erence of free energy when changing one Gij can be
written in terms of this Gibbs-bracket:

EGij |Xi,XjFt,ε − Ft,ε(Gij = 0) = Pt(Gij = 1|Xi, Xj)(Ft,ε(Gij = 1)− Ft,ε(Gij = 0)) (60)

= Pt(Gij = 1|Xi, Xj){(Ft,ε(Gij = 1)− Ft,ε;∼Gij )− (Ft,ε(Gij = 0)− Ft,ε;∼Gij )}

= −(p̄n +
√

1− t∆nXiXj)
1

n

{
ln

∑
x∈Xn e

−Ht,ε(x;G\Gij ,Y )+(Ht,ε(x;G\Gij ,Y )−Ht,ε(x;G,Gij=1,Y ))Pr(x)∑
x∈Xn e

−Ht,ε(x;G\Gij ,Y )Pr(x)

− ln

∑
x∈Xn e

−Ht,ε(x;G\Gij ,Y )+(Ht,ε(x;G\Gij ,Y )−Ht,ε(x;G,Gij=0,Y ))Pr(x)∑
x∈Xn e

−Ht,ε(x;G\Gij ,Y )Pr(x)

}
= −(p̄n +

√
1− t∆nXiXj)

1

n

{
ln
〈
eHSBM;t(x;G\Gij)−HSBM;t(x;G,Gij=1)

〉
t,ε;∼Gij

− ln
〈
eHSBM;t(x;G\Gij)−HSBM;t(x;G,Gij=0)

〉
t,ε;∼Gij

}
= −(p̄n +

√
1− t∆nXiXj)

1

n

{
ln〈1 +

∆n

p̄n

√
1− txixj〉t,ε;∼Gij − ln〈1− ∆n

1− p̄n
√

1− txixj〉t,ε;∼Gij
}
.

(61)
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Using the Taylor expansion of the logarithms in (61), we have

EGij |Xi,XjFt,ε − Ft,ε(Gij = 0) = −(p̄n +
√

1− t∆nXiXj)
1

n

{
∆n

√
1− t

p̄n(1− p̄n)
〈xixj〉t,ε;∼Gij

+

∞∑
k=2

∆k
n

k

(
(−1)k

p̄kn
− 1

(1− p̄n)k

)
(1− t)k/2〈xixj〉kt,ε;∼Gij

}
= −(p̄n +

√
1− t∆nXiXj)

∆n

√
1− t

np̄n(1− p̄n)
〈xixj〉t,ε;∼Gij +O

( ∆2
n(1− t)

np̄n(1− p̄n)2

)
.

Therefore, replacing in the expression of E1, we �nd

E1 = E
(a)
1 + E

(b)
1

where

E
(a)
1 =

∆2
n

2np̄n(1− p̄n)

∑
i<j

E∼Gij
[ p̄n +

√
1− t∆nXiXj

1− p̄n −
√

1− t∆nXiXj
XiXj〈xixj〉t,ε;∼Gij

]
,

E
(b)
1 = O

( ∆nn
2

√
1− t(1− p̄n)

· ∆2
n(1− t)

np̄n(1− p̄n)2

)
= O

( n∆3
n

p̄n(1− p̄n)3

)
= O

( λn∆n

(1− p̄n)2

)
. (62)

We then observe that

E
(a)
1 + E2 =

∆2
n

2np̄n(1− p̄n)

∑
i<j

E∼Gij
[ p̄n +

√
1− t∆nXiXj

1− p̄n −
√

1− t∆nXiXj
XiXj

(
EGij |Xi,Xj [〈xixj〉t,ε]− 〈xixj〉t,ε;∼Gij

)]
.

(63)

The di�erence between the Gibbs-brackets in (63) can be expanded as

EGij |Xi,Xj [〈xixj〉t,ε]− 〈xixj〉t,ε;∼Gij = Pt(Gij = 1|Xi, Xj)(〈xixj〉t,ε;Gij=1 − 〈xixj〉t,ε;∼Gij )

+ Pt(Gij = 0|Xi, Xj)(〈xixj〉t,ε;Gij=0 − 〈xixj〉t,ε;∼Gij ), (64)

and we can evaluate 〈xixj〉t,ε;Gij=1 − 〈xixj〉t,ε;∼Gij by an interpolation:

〈xixj〉t,ε;Gij=1 − 〈xixj〉t,ε;∼Gij

=

∫ 1

0
ds

d

ds

{∑
x∈Xn xixj exp

{
−Ht,ε(x;G \Gij ,Y ) + s ln(1 + xixj

√
1− t∆n

p̄n
)
}
Pr(x)∑

x∈Xn exp
{
−Ht,ε(x;G \Gij ,Y ) + s ln(1 + xixj

√
1− t∆n

p̄n
)

Pr(x)
}}

=

∫ 1

0
ds

{
〈xixj ln(1 + xixj

√
1− t∆n

p̄n
)〉t,ε;s − 〈xixj〉t,ε;s〈ln(1 + xixj

√
1− t∆n

p̄n
)〉t,ε;s

}
, (65)

where 〈−〉t,ε;s is the Gibbs-bracket associated to the measure proportional to

exp
{
−Ht,ε(x;G \Gij ,Y ) + s ln(1 + xixj

√
1− t∆n

p̄n
)
}
Pr(x)

with Ht,ε(x;G \Gij ,Y ) de�ned in (59). By the Taylor expansion of the logarithms in (65) and using Pt(Gij =

1|Xi, Xj) = O(p̄n), we see that the �rst term of (64) is O(∆n). The same kind of calculation is used to see that
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the second term of (64) is also O(∆n). This implies for (63)

E
(a)
1 + E2 = O

( n∆3
n

(1− p̄n)2

)
= O

( λn∆np̄n
(1− p̄n)2

)
, (66)

which tends to zero. Now we conclude by noting that E1 + E2 = E
(a)
1 + E

(b)
1 + E2 and using (62) and (66) to

obtain (31).

D Concentration of free energy: proof of Lemma 5.4
The generation of quenched variables can be divided into two stages: �rstly X , then G given X , and inde-
pendently the Gaussian noise Z . We expand the variance of free energy according to the two stages (recall
ft,ε = EXEG|XEZFt,ε):

E[(Ft,ε − ft,ε)2] = E[(Ft,ε − EG|XEZFt,ε)
2] + E[(EG|XEZFt,ε − ft,ε)2] . (67)

In each stage the variables are all independently generated. This enables us to use Efron-Stein inequality to show
the concentration of free energy.

Let Z(i) be a vector such that Z(i) di�ers from Z only at the i-th which becomes Z ′i drawn independently
from the same distribution as the one of Zi ∼ N (0, 1). We de�ne G(ij) and X(i) in the similar manner with
respect to G and X . Efron-Stein’s inequality tells us that

E[(Ft,ε − EG|XEZFt,ε)
2] ≤ 1

2

n∑
i=1

EXEG|XEZEZ′i [(Ft,ε(Z)− Ft,ε(Z(i)))2]

+
1

2

∑
i<j

EXEG|XEG′ij |XEZ [(Ft,ε(G)− Ft,ε(G(ij)))2] , (68)

as well as

E[(EG|XEZFt,ε − ft,ε)2] ≤ 1

2

n∑
i=1

EXEX′i [(EG|XEZFt,ε(X)− EG|X(i)EZFt,ε(X
(i)))2] . (69)

By (67) it su�ces to show that both (68) and (69) are upper bounded by Cn(r, λn)/n for some large enough
sequence Cn(r, λn) that converges to a constant.
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D.1 Bound on (68)

The bound obtained from Efron-Stein’s inequality is a sum of local variances of the free energy. The bound on
the di�erence due to a local change can be estimated by interpolation. For the �rst one we have

|Ft,ε(Z)− Ft,ε(Z(i))| = 1

n

∣∣∣ ∫ 1

0
ds

d

ds
ln
∑
x∈Xn

exp
{
− sHt,ε(x;G,X,Z)− (1− s)Ht,ε(x;G,X,Z(i))

}
Pr(x)

∣∣∣
=

1

n

∣∣∣ ∫ 1

0
ds〈Hdec;t,ε(x;X,Z(i))−Hdec;t,ε(x;X,Z)〉s

∣∣∣
=

1

n

∣∣∣ ∫ 1

0
ds
√
R(t, ε)〈xi〉s(Z ′i − Zi)

∣∣∣
≤ 1

n

√
(2sn + λn)

1− r
r
|Z ′i − Zi|

where the Gibbs-bracket 〈−〉s is associated to the measure proportional to exp{−sHt,ε(x;G,X,Z) − (1 −
s)Ht,ε(x;G,X,Z(i))}. This implies an upper bound on the �rst sum in (68):

1

2

n∑
i=1

EG|XEZEZ′i [(Ft,ε(Z)− Ft,ε(Z(i)))2] ≤ 1

2n2
(2sn + λn)

1− r
r

n∑
i=1

E[(Z ′i − Zi)2] ≤ Cn(r, λn)

n
.

Another interpolation gives

|Ft,ε(G)− Ft,ε(G(ij))|

=
1

n

∣∣∣ ∫ 1

0
ds

d

ds
ln
∑
x∈Xn

exp
{
− sHt,ε(x;G,X,Z)− (1− s)Ht,ε(x;G(ij),X,Z)

}
Pr(x)

∣∣∣
=

1

n

∣∣∣(G′ij −Gij)〈 ln(1 +
∆n

p̄n

√
1− txixj)− ln(1− ∆n

1− p̄n
√

1− txixj
〉
s

∣∣∣
≤ C(r)∆n

2np̄n(1− p̄n)
|G′ij −Gij |

for some constantC(r), and where 〈−〉s is associated to the measure proportional to exp{−sHt,ε(x;G,X,Z)−
(1− s)Ht,ε(x;G(ij),X,Z)}. This bounds the second sum in (68) as

C(r)∆2
n

2n2p̄2
n(1− p̄n)2

∑
i<j

EGij |Xi,XjEG′ij |Xi,Xj [(G
′
ij −Gij)2] =

C(r)∆2
n

n2p̄2
n(1− p̄n)2

∑
i<j

VarGij |Xi,Xj (Gij) ≤
Cn(r, λn)

n
,

using that (Gij) are 0, 1 Bernoulli variables, and the variance

VarGij |Xi,Xj (Gij) = (p̄n + ∆n

√
1− tXiXj)(1− p̄n + ∆n

√
1− tXiXj)

as well as
(
∆n/

(
pn(1− p̄n)

))2
= λn/(np̄n(1− p̄n)) in the last inequality.
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D.2 Bound on (69)

We relax (69) with inequality ((a− c) + (c− b))2 ≤ 2(a− c)2 + 2(c− b)2 so that

E[(EG|XEZFt,ε − ft,ε)2] ≤
n∑
i=1

EXEX′i [(EG|XEZFt,ε(X)− EG|XEZFt,ε(X
(i)))2]

+
n∑
i=1

EXEX′i [(EG|XEZFt,ε(X
(i))− EG|X(i)EZFt,ε(X

(i)))2] . (70)

The di�erence in the �rst sum is given by

|Ft,ε(X)− Ft,ε(X(i))|

=
1

n

∣∣∣ ∫ 1

0
ds

d

ds
ln
∑
x∈Xn

exp
{
− sHt,ε(G,X,Z,x)− (1− s)Ht,ε(G,X(i),Z,x)

}
Pr(x)

=
1

n

∣∣∣ ∫ 1

0
dsR(t, ε)〈xi〉s(X ′i −Xi)

∣∣∣
where 〈−〉s is associated to the measure proportional to exp{−sHt,ε(G,X,Z,x)−(1−s)Ht,ε(G,X(i),Z,x)}.
Therefore the sum of square is bounded by Cn(r, λn)/n using R(t, ε) ∈ [0, λn].

For the second sum we use another interpolation:

EG|XEZFt,ε(X
(i))− EG|X(i)EZFt,ε(X

(i)) =

∫ 1

0
ds
∑
G

d

ds
Pt,s(G|X, X ′i)EZFt,ε(X

(i)) , (71)

where

Pt,s(G|X, X ′i) ≡
n∏

j:j 6=i
(p̄n+

√
1−t∆n((1−s)Xi + sX ′i)Xj)

Gij (1−p̄n −
√

1−t∆n((1−s)Xi+sX
′
i)Xj)

1−Gij

×
∏
k<l:
k,l 6=i

(p̄n+
√

1−t∆nXkXl)
Gkl(1−p̄n−

√
1−t∆nXkXl)

1−Gkl .

As Gij ∈ {0, 1}, we have various ways to write Pt,s(G|X, X ′i). A convenient way is using

Pij ≡ (p̄n+
√

1−t∆n((1−s)Xi + sX ′i)Xj)
Gij (1−p̄n −

√
1−t∆n((1−s)Xi+sX

′
i)Xj)

1−Gij

= Gij{p̄n+
√

1−t∆n((1−s)Xi + sX ′i)Xj}+ (1−Gij){1−p̄n −
√

1−t∆n((1−s)Xi+sX
′
i)Xj} .

A compact formula for dPij/ds can then be derived:

dPij
ds

= (2Gij − 1)
√

1− t∆n(X ′i −Xi)Xj = (−1)1+Gij
√

1− t∆n(X ′i −Xi)Xj . (72)

Let G∼(i,j) ≡ G \Gij and Pt,s(G∼(i,j)|X, X ′i) ≡
∑

Gij∈{0,1} Pt,s(G|X, X ′i) be the marginal of this sub-graph.
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Using (72) we obtain

d

ds
Pt,s(G|X, X ′i) =

n∑
j:j 6=i

dPij
ds

Pt,s(G∼(i,j)|X, X ′i)

=
n∑

j:j 6=i

√
1− t∆n(X ′i −Xi)Xj(−1)1+GijPt,s(G∼(i,j)|X, X ′i) . (73)

Substituting (73) into (71) gives∫ 1

0
ds
∑
G

n∑
j:j 6=i

√
1− t∆n(X ′i −Xi)Xj(−1)1+GijPt,s(G∼(i,j)|X, X ′i)EZFt,ε(X

(i))

=

∫ 1

0
ds

n∑
j:j 6=i

√
1− t∆n(X ′i −Xi)Xj

∑
Gij∈{0,1}

(−1)1+GijEG∼(i,j)|X,X′i
EZFt,ε(X

(i))

=

∫ 1

0
ds

n∑
j:j 6=i

√
1− t∆n(X ′i −Xi)XjEG∼(i,j)|X,X′i

EZ [Ft,ε(X
(i), Gij = 1)− Ft,ε(X(i), Gij = 0)] , (74)

where EG∼(i,j)|X,X′i
corresponds to the expectation with respect to the distribution Pt,s(G∼(i,j)|X, X ′i). To

evaluate the di�erence of free energy in (74), �rst we de�ne Y (i) =
√
R(t, ε)X(i) + Z , and 〈−〉t,ε;X(i),∼Gij is

associated to exp{−Ht,ε(x;G \Gij ,Y (i))} de�ned in (59). The same calculation as in (60) – (61) gives

Ft,ε(X
(i), Gij = 1)− Ft,ε(X(i), Gij = 0)

= − 1

n

{
ln〈1 +

∆n

p̄n

√
1− txixj〉t,ε;X(i),∼Gij − ln〈1− ∆n

1− p̄n
√

1− txixj
}
. (75)

Expanding the logarithms we can see (75) isO
(
∆n/(np̄n(1− p̄n))

)
. Using this fact and that all other terms inside

the sum of (74) are upper bounded by constants, we see that (74) is O
(
∆2
n/(p̄n(1 − p̄n)

)
= O(λn/n). We can

then upper bound the second term of (70):

n∑
i=1

EXEX′i
[
(EG|XEZFt,ε(X

(i))− EG|X(i)EZFt,ε(X
(i)))2

]
≤ Cn(r, λn)

n
.
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