
ar
X

iv
:1

90
5.

08
19

7v
2 

 [
cs

.I
T

] 
 2

4 
Ju

n 
20

19

Coding for Deletion Channels with Multiple Traces

Mahed Abroshan

University of Cambridge

ma675@cam.ac.uk

Ramji Venkataramanan

University of Cambridge

rv285@cam.ac.uk

Lara Dolecek

ECE Department, UCLA

dolecek@ee.ucla.edu

Albert Guillén i Fàbregas

ICREA & Universitat Pompeu Fabra

University of Cambridge

guillen@ieee.org

Abstract—Motivated by the sequence reconstruction problem
from traces in DNA-based storage, we consider the problem of
designing codes for the deletion channel when multiple observa-
tions (or traces) are available to the decoder. We propose simple
binary and non-binary codes based on Varshamov-Tenengolts
(VT) codes. The proposed codes split the codeword in blocks
and employ a VT code in each block. The availability of multiple
traces helps the decoder to identify deletion-free copies of a block,
and to avoid mis-synchronization while decoding. The encoding
complexity of the proposed scheme is linear in the codeword
length; the decoding complexity is linear in the codeword length,
and quadratic in the number of deletions and the number of
traces. The proposed scheme offers an explicit low-complexity
technique for correcting deletions using multiple traces.

I. INTRODUCTION

We consider the problem of coding for a deletion channel

which, given an input sequence, produces t output sequences.

Each output sequence, known as a trace, is produced by

deleting k symbols from the length n input sequence. The

deletion pattern for each trace is assumed to be independent,

and the locations of the deletions within a trace are uniformly

random. (Therefore it is possible that two or more traces are

identical.)

The problem of recovering coded information from multiple

traces is relevant in DNA-based storage systems [1]. When

retrieving information by sequencing stored DNA, each trace

may contain errors that are a combination of deletions, inser-

tions, and substitutions. In this paper, using the stylized model

of a channel that introduces only deletions, we aim to under-

stand the coding advantage obtained by having multiple traces.

In particular, we show how one can use simple codes with

efficient encoding and decoding to achieve small probability

of error under suitable assumptions.

The problem of reconstructing a sequence using traces from

a deletion channel has been studied in several works, with

the goal being either exact recovery of the sequence [2],

[3], [4], or an estimate [5]. In these papers, the sequence

can be an arbitrary one from the underlying alphabet, i.e.,

it need not originate from a codebook. A few recent works

study the reconstruction of a coded sequence under different

trace models. The paper [6] analyzes the minimum number of

deletion channel traces required to recover a sequence drawn

from a single-deletion correcting code, and [7] considers a

This work was supported in part by the European Research Council under
Grant 725411, by the Spanish Ministry of Economy and Competitiveness
under Grant TEC2016-78434-C3-1-R, and by NSF grants CCF-1718389 and
CCF-1527130.

similar problem for the insertion channel. The problem of

reconstructing a coded sequence from the multiset of its

substrings is studied in [8]. From an information-theoretic

perspective, [9] characterizes the capacity of the multiple trace

i.i.d. deletion channel as the deletion probability p → 0.

Recently, coding for the multiple trace i.i.d. deletion channel

was independently studied in [10]. The construction proposed

in [10] is based on marker codes, and is shown to achieve

vanishing error probability with redundancy O(n/ logn) and

exp
(

O(log2/3 n)
)

traces.

Overview of the coding scheme: Our code construction is

based on the family of Varshamov-Tenengolts (VT) codes [11],

[12]. VT codes are single deletion correcting codes, and can be

constructed for any finite alphabet and any block length. (VT

codes will be reviewed in the next section). Each codeword in

our code is a concatenation of blocks, with each block drawn

from a predetermined VT codebook.

We illustrate the idea using the following binary example,

which shows a codeword x of length 15 with three blocks,

each of which is a sequence from a length 5 binary VT code.

The channel produces two traces, y1 and y2, by deleting the

underlined bits:

10001 11011 01010 −→ y1 = 1001110101010

10001 11011 01010 −→ y2 = 100011110101

The decoder operates in two phases. In phase 1, it identifies

blocks that are deletion-free in at least one of the traces. Each

block for which a deletion-free copy is identified in one of

the traces is recovered by inserting the required bits in the

other traces. In the example above, block 1 has no deletions

in y2, so y2 is used to correct the first block of y1; similarly,

block 3 has no deletions in y1. Assuming that there were no

errors, at the end of this phase the decoder has corrected all

blocks which are deletion-free in at least one trace. We call

the remaining blocks ‘congested’. In the example, block 2 is

congested as both traces have bits deleted in this block.

In phase 2, the decoder attempts to correct the congested

blocks, i.e., blocks for which no clean copy was found in phase

1. In the example, since y1 has one deletion in block 2, the

block can be corrected using the VT decoder. Since blocks 1
and 3 were corrected in phase 1, x is recovered.

However, decoding errors may occur in either phase. In

phase 1, we may wrongly identify a block as deletion-free in

a trace, which leads to errors in the starting positions of other

blocks. In phase 2, a congested block (or set of consecutive

http://arxiv.org/abs/1905.08197v2


congested blocks) may not be correctable with the VT code,

because of too many deletions in each trace. In phase 1,

wrongly identifying a trace as having a deletion-free copy of

a block will lead to an unusually large number of insertions

when correcting the other traces using this copy. This can be

used to discard accidental matches in phase 1. We show via

numerical simulations that the probability of phase 1 error

decreases with nb, the length of each block. For the phase 2

error, under the assumption that the locations of the deletions

within each trace are uniformly random, we obtain a bound

that decreases exponentially with the number of traces.

The rate of the code is equal to the rate of a VT code

of length nb, which is close to log q − lognb/nb, where

q ≥ 2 is the alphabet size. (The precise values are given in

Section II.) The decoding complexity is O(t2k2n). Therefore

the proposed scheme offers an explicit, efficient technique for

recovering from deletions using multiple traces. Due to its low-

complexity, it can be well suited to a variety of applications,

including DNA-based storage.

Notation: Sequences are denoted using bold letters, and

scalars with plain font. For x = x1x2 · · ·xn, the subsequence

xixi+1 · · ·xj is denoted by x(i : j).

II. CODE CONSTRUCTION

We first review the family of VT codes, and then present

the code construction.

Binary VT codes: The VT syndrome of a binary sequence

x = x1x2 · · ·xn is defined as

syn(x) =

n
∑

j=1

j xj (mod (n+ 1)). (1)

For positive integers n and 0 ≤ s ≤ n, we define the VT code

of length n and syndrome s, denoted by

VTs(n) =
{

x ∈ {0, 1}n : syn(x) = s
}

, (2)

as the set of sequences x of length n for which syn(x) = s.

The (n + 1) sets VTs(n) ⊂ {0, 1}n, for 0 ≤ s ≤ n, partition

the set of all binary sequences of length n. Each of these sets

VTs(n) is a zero-error single-deletion correcting code. The VT

encoding and decoding complexity is linear in the code length

n [13], [14].

Non-binary VT codes: VT codes were extended to non-

binary alphabets in [12]. Let the alphabet be X = {0, . . . , q−
1}, with q > 2. For each sequence x ∈ Xn, define a length

(n − 1) auxiliary binary sequence α(x) = α2, . . . , αn as

follows. For 2 ≤ j ≤ n,

αj =

{

1 if xj ≥ xj−1

0 if xj < xj−1

(3)

We also define the modular sum as

sum(x) =

n
∑

j=1

xj (mod q). (4)

A q-ary VT code with length n and parameters (a, c) is defined

as [12]

VTa,c(n) =
{

x ∈ Xn : syn(α(x)) = a, sum(x) = c
}

, (5)

for 0 ≤ a ≤ n−1 and c ∈ X . Similarly to the binary case, the

sets VTa,c(n) partition the space Xn of all q-ary sequences of

length n into qn sets. Each set is a single deletion correcting

code. The complexity of the encoding and decoding q-ary VT

codes is linear in the code length n [12], [15].

A. Code construction

Codewords of length n are constructed by concatenating

l blocks of VT codewords from the relevant alphabet. Each

block has length nb (therefore n = lnb).

Binary code: Each block i (1 ≤ i ≤ l) is a binary VT

codeword with a predetermined VT syndrome ai, known to

both the encoder and the decoder. To encode each block, one

can use the systematic VT encoder in [14] that maps nb −
⌈log(nb+1)⌉ bits to a length nb VT sequence with the desired

syndrome. The rate of the code will be

R = 1− ⌈log(nb + 1)⌉/nb. (6)

Non-binary code: The code construction is very similar to

the binary case. Each block is encoded separately, and belongs

to a known non-binary VT class, as defined in (5). There are

qnb non-binary VT classes, so there exists a class with at

least qnb

qnb

sequences. Using this class for encoding each block

induces the following lower bound for the rate of the code:

R ≥ log q − (lognb + log q)/nb. (7)

The VT syndrome/class for each of the l blocks can be

arbitrarily chosen. Choosing the largest of the VT classes of

length nb sequences maximises the rate of the code.

III. DECODING

The goal of the decoder is to reconstruct x using the traces

y1,y2, · · · ,yt, each obtained by deleting k symbols from x.

We describe the binary decoder, and then outline the main

differences for the non-binary case. We explain the main ideas

using examples, and then specify the decoding algorithm in

detail. We remark that the same decoding algorithm can be

applied when the number of deletions in one or more traces

is less than k.

A. Phase 1

Consider block i of the codeword, for 1 ≤ i ≤ l. If the

starting position of block i within each trace is known, then

the decoder can compute the VT syndrome of the length nb

sequence from the starting position, for each trace. If there is a

trace for which the computed syndrome matches with ai (the

correct syndrome for block i), then the trace can be used to

correct this block within other traces. The following example

illustrates this idea.

Example 1: Consider a codeword with l = 3 blocks, with

each block of length nb = 5. Thus n = 15. Let

x = 01001 11001 11111



be the transmitted codeword. The VT syndromes of the blocks

are a1 = 1, a2 = 2, and a3 = 3. Suppose that the decoder

receives two traces, each with k = 2 deletions. The underlined

bits are deleted from x to produce y1 and y2:

01001 11001 11111 −→ y1 = 0111100111111

01001 11001 11111 −→ y2 = 0100110011111

The decoder first computes the VT syndromes of y1(1 : 5)
and y2(1 : 5). We have

syn(y1(1 : 5)) = 2 and syn(y2(1 : 5)) = 1.

Since a1 = 1, the decoder assumes that y2(1 : 5) is the first

block of x, and uses it to correct the first block of y1 by

inserting the two missing bits. The decoder then considers the

second block, whose starting position is now known for each

trace. Finding that syn(y1(4 : 8)) = a2 = 2, it assumes this

sequence is the second block of x, and uses it to correct y2

by inserting two bits. Since there are no deletions in the third

block, the decoder finds syn(y1(9 : 13)) = syn(y2(9 : 13)) =
a3 = 3, and stops.

A decoding error may occur if the VT syndrome of a block

in a trace accidentally matches the correct value. In this case,

an incorrect sequence will be used to correct the block in

all other traces, potentially introducing multiple errors. The

following example shows that how other traces can help to

identify and discard such accidental matches.

Example 2: Consider a codeword with l = 2 blocks, with

each block of length nb = 10. The VT syndromes of the

blocks are a1 = a2 = 5. Let the transmitted codeword be

x = 1000111100 0011101100.

There are two traces, each with k = 2 deletions (underlined

bits are deleted):

1000111100 0011011100−→ y1 = 100111000011011100

1000111100 0011011100 −→ y2 = 000111100001011100

The decoder finds that syn(y1(1 : 10)) = 5 (this is an instance

of an accidental match), and syn(y2(1 : 10)) = 0. It assumes

that y1(1 : 10) is the correct block, and uses it to fix y2. It

does this by comparing y1(1 : 10) with y2, and inserting the

required bits to get ŷ2(1 : 10) = 1001110000. Since there

are two deletions in y2, exactly two inserted bits are required

to recover the codeword. However, since 7 bits need to be

inserted into y2 to get y1(1 : 10) and k = 2, the decoder

realizes that y1(1 : 10) is an accidental match.

The above example shows that when an accidentally matched

block is used as the model to correct other traces, the number

of inserted bits is likely to be large. Hence the decoder can

distinguish between an accidental match and a correct match

in most cases.

Congested blocks and resynchronization. There may be

blocks that have undergone at least one deletion in each of the

traces. These blocks are called congested, as a correct match

for them cannot be found in any of the traces. In Example 2,

the first block is congested as there are deleted bits in both of

the traces. As the decoder proceeds from left to right in phase

1, it needs to resynchronize whenever it identifies a congested

block. It does so by testing all possible starting positions for

the next block in each trace.

Assume block i is congested, and consider a trace for which

that the decoder has inferred that there are d < k deletions up

to block (i − 1). The decoder needs to test (k − d) possible

starting positions for block (i+1) in this trace. It computes the

VT syndromes of the length nb sequences starting from each

of these positions, and checks for a match with the correct

syndrome ai+1. If a match is found, it is used to correct

the other traces. It repeats this process for each trace, testing

all possible starting positions for block (i+ 1), and checking

whether a match is found for the correct VT syndrome. If the

decoder finds one or more syndrome matches among those

tested, it chooses the one that requires the minimum number

of insertions (across all traces) for correcting block (i+ 1).
When block i is identified as congested, it is possible that

block (i + 1) is also congested (i.e., has deletions in all the

traces). In this case, no matches may be found among all the

tested starting positions for block (i + 1). The decoder then

tries to synchronize by testing all possible starting positions

for block (i + 2).

B. Phase 2

At the end of phase 1, if there are no errors, the decoder

has corrected all blocks for which there is at least one trace

with a deletion-free copy of the block. Each remaining block is

congested, and is either: i) isolated, i.e., the bits corresponding

to the block in each trace are known, or ii) part of an isolated

set of consecutive congested blocks.

In the second phase, the decoder uses the VT syndromes

to correct as many congested blocks as possible. For each

congested set of r consecutive blocks (r ≥ 1, with r = 1
corresponding to a single congested block), the decoder can

infer the number of deleted bits within each trace. It uses this

information, and attempts to correct the congested blocks as

follows. For a congested set of r consecutive blocks (r ≥ 1),

the decoder looks for a trace with exactly r deletions. If such

a trace exists, then this set of blocks can be corrected using

that trace and the known VT syndromes of the r blocks. On

the other hand, a congested set of r consecutive blocks cannot

be corrected if it has at least (r + 1) deletions in each trace.

Example 3: Consider a codeword with l = 4 blocks, each

of length nb = 5. The VT syndromes are a1 = a2 = a3 =
a4 = 0, and

x = 11100 10001 10001 01010.

There are two traces, with 4 deletions in the first and 3 in the

second:

11100 10001 10001 01010 → y1 = 1110100110001101

11100 10001 10001 01010 → y2 = 11100100110001000.

The first block is recovered using y2, using which the block

is corrected in y1. The second block is congested, and neither



trace provides a match for its VT syndrome. The decoder

therefore tests the possible starting positions for the third

block. Consider the first trace, which has a total of 4 deletions.

Since there was one deletion in the first block, there are three

possible starting positions for the third block: bits 7, 8 and 9
of y1. Similarly, bits 8, 9 and 10 of y2 are the possible starting

positions for the third block.

The decoder therefore computes the VT syndrome of y1(9 :
13),y1(8 : 12),y1(7 : 12), and y2(10 : 14), y2(9 : 13),
y2(8 : 12). Among these, the only one that satisfies the correct

syndrome a3 = 0 is y1(9 : 13) = y2(10 : 14) = 10001. This

indicates that there is one deletion in the second block, in

each of the traces. Thus the second block can be recovered

using the VT decoder in phase 2. With the first three blocks

synchronized, the decoder attempts to correct the fourth. The

fourth block has two deletions in both traces. As the VT

decoder can only correct a single deletion, the decoder declares

an error due to an unresolvable congestion.

In the next section, we derive a bound (Propositon 2) on

the probability of phase 2 error, caused by an unresolvable

congestion like the one above.

C. Decoding algorithm (for binary alphabet)

We now describe the decoder in detail. Denote the number

of deletions in the jth trace by kj , recalling that kj ≤ k for

1 ≤ j ≤ t.
Phase 1

Block 1: Compute the VT syndrome of yj(1 : nb), for

1 ≤ j ≤ t. If the computed syndrome for trace j is equal

to a1, consider yj(1 : nb) as a candidate for the first block

of the codeword, and use it to correct the other traces. In the

process, if the total number of bits inserted into any trace

exceeds the number of deletions in it, discard yj from the

list of candidates. If the final list of candidates is non-empty,

pick one that leads to the fewest total insertions in the other

traces. If the final list of candidates is empty, declare block 1
congested and proceed to the second block.

Block i > 1: There are two possibilities:

1) If block (i− 1) is not congested: The starting position of

the ith block is known in each trace. As in block 1, for

each trace compute the VT syndrome for the length nb

sequence from the starting position, and compare with

ai. Each sequence whose VT syndrome matches ai is

a candidate. Use each candidate sequence to correct the

other traces; if the total number of bits inserted in any

trace (up to this point in decoding) exceeds the number

of deletions in it, discard the sequence from the list of

candidates. If the final list of candidates is non-empty,

pick one that leads to the fewest total insertions in the

other traces. If the final list list of candidates is empty,

declare block i congested, and proceed to the next block.

2) If block (i−1) is congested: The starting position of block

i is not known. Suppose that blocks (i− 1) to (i− c) are

congested (where c ≥ 1). Since block (i − c − 1) is not

congested, for each trace the decoder can infer the total

number of deletions up to block (i− c− 1). Denote this

number by dj for trace j. Then the starting position of the

block i in trace j is a number between (i−1)nb−c−dj+1
and (i − 1)nb − kj + 1, where kj is the total number of

deletions in trace j. Compute the VT syndrome for each

of these (kj − c−dj+1) possibilities, and compare with

ai. If there is a sequence whose syndrome matches, add it

to the list of candidates and correct the other traces using

this sequence. Since the starting position of block i is

not known, when correcting using a candidate sequence,

we need to consider all the possible starting positions of

block i in the other traces. Pick the starting position that

results in the minimum number of inserted bits. (If there

is more than one starting position that gives the minimum,

we pick the rightmost one.) As before, discard a candidate

if the number of bits inserted in trace j is larger than

kj − c− dj for some j.

If the final list of candidates is non-empty, pick one that

leads to the fewest total insertions in the other traces. This

process also gives the starting positions for block (i+1) in

each trace. If the final list of candidates is empty, declare

block i congested, and proceed to the next block.

Phase 2

Consider each congested set of r consecutive blocks sepa-

rately, for 1 ≤ r ≤ k. For each of these congested sets, the

decoder knows the number of deletions in each trace. For a

congested set with r blocks, if each trace has more than r
deletions in the congested set, the decoder declares an error.

Otherwise the decoder finds a trace with exactly r deletions

in the congested set, i.e., exactly one deletion per block. The

decoder corrects these blocks using the VT decoder, and uses

them to correct the other traces by inserting the appropriate

bits. During this process, if the number of inserted bits does not

match the number of deletions in the trace within the congested

set, the decoder declares an error.

D. Non-binary alphabet

The decoding is similar to the binary case. The only

difference is that the VT syndrome of a non-binary sequence

is a pair of numbers. Therefore, when we comparing VT

syndromes of two sequences in the first phase, both numbers in

the pair should be compared. In the second phase, the decoder

uses the non-binary VT decoder from [12] to recover a block

with a single deletion.

E. Decoding complexity

In phase 1, for a block for which the starting position is

unknown, the decoder computes at most k VT syndromes of

length nb sequences in each of the t traces. For each matched

syndrome, the decoder needs to check inserted bits in at most

k blocks in the other (t− 1) traces. Since there are l blocks,

and n = nbl, the complexity for the first phase is O(t2k2n).
In phase 2, the VT decoder is used in at most l blocks (each

of length nb), and then uses the recovered sequence to correct

the block in the other traces. Since the VT decoder has linear

complexity, the complexity for phase 2 is O(tn).



IV. ERROR PROBABILITY AND SIMULATION RESULTS

A. Phase 1 errors

In the first phase of decoding, an error can occur in two

ways. First, an accidental match may lead to a block being

wrongly identified as deletion-free in a trace; this is then

used to correct the block in other traces. Second, when a

congested block is identified, the decoder may pick a wrong

starting position for the next block. As shown in Example 2,

an accidental match in a trace can be often detected by the

decoder when it leads to a large number of inserted bits in the

other traces. This detection feature makes it hard to derive a

rigorous bound for the phase 1 error.

Without the detection feature, the probability of an acciden-

tal VT match in the binary case will be inversely proportional

to nb, the length of the block. Indeed, the family of (nb + 1)
VT codes partitions the space of length-nb binary sequences

into approximately equal-sized sets of size ∼ 2nb/(nb + 1).
Hence the probability that a binary sequence picked uniformly

at random will match a given VT syndrome is close to 1
(nb+1) .

B. Phase 2 errors

Errors in the second phase of the decoding are due to

unresolvable congestion. Recall that unresolvable congestion

occurs if, for some 1 ≤ r ≤ k, there is a set of r consecutive

congested blocks with at least (r+1) deletions in each trace.

The following proposition bounds the probability of phase 2

error, denoted by Pe2 .

Proposition 1: Consider a code with l blocks, and a channel

that introduces at most k deletions in each of the t traces. If

k < l and the locations of deletions within each trace are

uniformly random, the probability of phase 2 error satisfies

Pe2

≤ l
(

(1− p0 − p1)
t+
(

(1− p0)
2 − p1p

′

1

)t
+

(1− p0)
3t

1− (1− p0)t

)

where, for s = 0, 1,

ps =

(

(k−s)+(l−1)−1
k−s

)

(

k+l−1
k

) , and p′1 =

(

(k−2)+(l−2)−1
k−2

)

(

(k−1)+(l−1)−1
k−1

)
. (8)

We note that the phase 2 error probability (and the bound)

depends only on k and l, and on neither nb nor the alphabet

size. The restriction k < l is natural, as otherwise the expected

number of deletions per block would be greater than 1.

Proposition 2: Consider a code with l blocks, and a channel

that introduces at most k deletions in each of the t traces. If

k < l and the locations of deletions within each trace are

uniformly random, the probability of phase 2 error satisfies

Pe2

≤ l
(

(1− p0 − p1)
t +
(

(1− p0)
2 − p1p

′

1

)t
+

k−1
∑

r=3

(1 − p0)
rt
)

(9)

≤ l
(

(1− p0 − p1)
t+
(

(1− p0)
2 − p1p

′

1

)t
+

(1− p0)
3t

1− (1− p0)t

)

(10)

where, for s = 0, 1,

ps =

(

(k−s)+(l−1)−1
k−s

)

(

k+l−1
k

) , (11)

and

p′1 =

(

(k−2)+(l−2)−1
k−2

)

(

(k−1)+(l−1)−1
k−1

)
. (12)

We note that the phase 2 error probability (and the bound)

depends only on k and l. It does not depend on either nb or the

alphabet size. The restriction k < l is natural, since otherwise

the expected number of deletions per block would be greater

than 1.

Proof: For 1 ≤ i ≤ l and 1 ≤ r ≤ k, let Zi,r be an

indicator random variable with Zi,r = 1 if the ith block is in

an unresolvable congestion of exactly r consecutive blocks,

and Zi,r = 0 otherwise. Let

Z =
k−1
∑

r=1

l
∑

i=1

1

r
Zi,r. (13)

For each r, the inner sum in (13) counts the number of distinct

sets of r consecutive congested blocks. Therefore Z is the total

number of distinct congested sets, where a congested set is a

set of of r consecutive congested blocks, for some r ≥ 1.

Hence Pe2 = P(Z ≥ 1). Using Markov’s inequality,

P(Z ≥ 1) ≤ E[Z] =

l
∑

i=1

k−1
∑

r=1

1

r
E[Zi,r] (14)

The probability that a given block has exactly s deletions

(for 0 ≤ s ≤ k) is given by ps in (11). Indeed, since

the locations of the k deletions are uniformly random, the

probability of a block having s deletions is the proportion of

non-negative integer solutions of x1 + x2 + · · ·+ xl = k with

x1 = s.

A block can be in an unresolvable congestion only if it has

more than one deletion in each of the traces. Therefore,

E[Zi,1] ≤ (1− p0 − p1)
t. (15)

To find an upper bound for E[Zi,r] for r ≥ 2, we need the

following lemma.

Lemma 1: For a given trace and r blocks (1 ≤ r ≤ k),

denote by qr the probability of at least one deletion occurring

in each of the r blocks. Then

qr ≤ (1− p0)
r. (16)

Proof: We prove this by using induction on r. For r = 1,

we have q1 = (1 − p0). Now assume that (16) holds for qu,

for some u < r. For s ≥ u, we write qu(s) for the probability

of s deletions occurring in a given set of u consecutive

blocks, with at least one deletion in each of them. Clearly,

qu =
∑k

s=u qu(s). We then have

qu+1 =
k
∑

s=u

qu(s)

(

1−

(

(k−s)+(l−u)−2
k−s

)

(

(k−s)+(l−u−1)
k−s

)

)

(17)



20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2
·10−3

Length of block nb

P
ro

b
ab

il
it

y
o

f
er

ro
r

q = 2
q = 4
Pe2 simulation

Fig. 1: Probability of error for different block lengths when l = 7, k = 4,
and t = 5.

=

k
∑

s=u

qu(s)

(

1−
l − u− 1

(k − s) + (l − u− 1)

)

(18)

≤

k
∑

s=u

qu(s)

(

1−
l − 1

k + l − 1

)

(19)

=
k
∑

s=u

qu(s) (1− p0) (20)

≤ (1− p0)
u+1. (21)

In the chain above, it can be verified that (19) holds when

l > k and s ≥ r. Eq. (21) is obtained using the induction

hypothesis:
∑k

s=u qu(s) = qu ≤ (1− p0)
u.

Using the lemma, the probability that two consecutive blocks,

say i and (i+1), have at least three deletions in each trace (and

are hence unresolvable) is bounded by [(1−p0)
2−p1p

′

1]
t. Here

p′1 defined in (12) is the probability of block (i + 1) having

one deletion given that block i has one deletion. Therefore,

considering the event of unresolvable congestion either in the

pair of blocks {(i− 1), i} or in blocks {i, (i+ 1)}, we have

E[Zi,2] ≤ 2
(

(1− p0)
2 − p1p

′

1

)t
. (22)

For r > 2, consider a set of r consecutive blocks, say

i, . . . , (i+ r− 1). The probability of congestion in this set of

blocks is qtr, which by (16) is bounded by (1− p0)
rt. Hence,

E[Zi,r] ≤ r(1 − p0)
tr, (23)

where we use the fact that a given block i is part of (up to)

r different sets of r consecutive blocks. Using (15), (22), and

(23) in (14) yields the result of the proposition.

C. Numerical Simulations

Figure 1 shows the empirical error probability of the code

for different values of nb, for q = 2 (binary) and for q = 4.

Each codeword consists of l = 7 blocks, each of length nb.

2 4 6 8

10−7

10−5

10−3

10−1

101

Number of traces t

P
ro

b
ab

il
it

y
o

f
er

ro
r

Empirical error probability

Pe2 simulation

Upperbound of Prop. 2

Fig. 2: Probability of error for a binary code for different values of t when
l = 6, k = 4, and nb = 30. The code length n = 180, and the rate is 5/6.

2 4 6 8 10

10−9

10−7

10−5

10−3

10−1

Number of deletions k

P
ro

b
ab

il
it

y
o

f
er

ro
r

q = 2
Upperbound of Prop. 2

Pe2 simulation

Fig. 3: Probability of error of a binary rate 5/6 code for different values of
k, the number of deletions. Code parameters are nb = 30, l = 10, and the
number of traces t = 5.

There are t = 5 traces, each with k = 4 deletions at uniformly

random locations. We note that both the code length and the

rate (cf. (6), (7)) increase with nb.

Figure 1 also shows the empirical phase 2 error (dashed

line), which does not depend on either nb or the alphabet.

Proposition 2 gives an upper bound of 3.41 × 10−4 for the

phase 2 error, while the empirical value is 7.63 × 10−5.

The difference between the overall and the phase 2 error

probabilities can be (roughly) interpreted as the phase 1 error

probability. The phase 1 error caused by wrong matches of

VT syndrome decreases with nb, as explained in Sec. IV-A.

Furthermore, we observe that the phase 1 error is smaller (and

decreases faster with nb) for q = 4 than for q = 2. There

are two reasons for this. First, the number of potential VT

syndromes for q > 2 is qn, in contrast to the binary case where



there are (n + 1) VT syndromes. Thus the probability of an

accidental match is smaller for the non-binary code. Second,

as q increases we expect an accidental match to produce more

insertions in the other traces, making it is less likely to be

accepted as the correct block. This is because matching of

two symbols is less likely in a larger alphabet.

Figure 2 shows how the error probability decreases with

the number of traces t, for a rate 5
6 binary code with code

parameters held fixed. Each trace has 4 deletions. As shown

in Proposition 2, the phase 2 error decays exponentially with

t. The overall error probability decays more slowly. Hence

for larger values of t, phase 1 error becomes the dominant

contribution to the overall error probability.

Figure 3 shows the probability of error for different k for a

rate 5
6 binary code with t = 5 traces. No errors were observed

for k = 2.

V. DISCUSSION AND FUTURE WORK

The coding scheme demonstrates that single-deletion cor-

recting codes can be effective in correcting multiple deletions

when several traces are available. Having multiple traces helps

the decoder in two ways: to identify deletion-free copies of a

block, and to avoid mis-synchronization.

The error performance of the coding scheme can be im-

proved by using more complex decoding in either phase. In

phase 1, when there are multiple syndrome matches for a

block, the decoder could run the decoding procedure for a

fixed number of these matches in parallel, using the “fewest

insertions” rule to decide which candidates to retain. In phase

2, when unresolvable congestion occurs, the decoder could

guess a subset of the bits in the block, use the VT decoder

to recover the rest, and choose a guess that produces the

correct number of insertions in other traces. Investigating these

improved decoders is part of ongoing work. Another idea for

future work is to replace the VT code in each block with a

lower-rate code capable of correcting more than one deletion.

REFERENCES

[1] H. M. Kiah, G. J. Puleo, and O. Milenkovic, “Codes for DNA sequence
profiles,” IEEE Trans Inf. Theory, vol. 62, no. 6, pp. 3125–3146, 2016.

[2] V. I. Levenshtein, “Efficient reconstruction of sequences,” IEEE Trans

Inf. Theory, vol. 47, no. 1, pp. 2–22, 2001.

[3] T. Holenstein, M. Mitzenmacher, R. Panigrahy, and U. Wieder, “Trace
reconstruction with constant deletion probability and related results,” in
Proc. ACM-SIAM SODA, 2008.

[4] Y. Peres and A. Zhai, “Average-case reconstruction for the deletion
channel: subpolynomially many traces suffice,” in Proc. FOCS, 2017.

[5] S. R. Srinivasavaradhan, M. Du, S. Diggavi, and C. Fragouli, “On
maximum likelihood reconstruction over multiple deletion channels,”
in Proc. IEEE ISIT, 2018.

[6] R. Gabrys and E. Yaakobi, “Sequence reconstruction over the deletion
channel,” IEEE Trans. Inf. Theory, vol. 64, pp. 2924 – 2931, Apr. 2018.

[7] F. Sala, R. Gabrys, C. Schoeny, and L. Dolecek, “Exact reconstruction
from insertions in synchronization codes,” IEEE Trans Inf. Theory,
vol. 63, no. 4, pp. 2428–2445, 2017.

[8] R. Gabrys and O. Milenkovic, “Unique reconstruction of coded strings
from multiset substring spectra,” in Proc. IEEE ISIT, 2018.

[9] B. Haeupler and M. Mitzenmacher, “Repeated deletion channels,” in
Proc. IEEE ITW, 2014.

[10] M. Cheraghchi, R. Gabrys, O. Milenkovic, and J. Ribeiro, “Coded trace
reconstruction,” arXiv:1903.09992, 2019.

[11] R. R. Varshamov and G. M. Tenengolts, “Codes which correct single
asymmetric errors,” Automatica i Telemekhanica, vol. 26, no. 2, pp. 288–
292, 1965. (in Russian), English Translation in Automation and Remote

Control, (26, No. 2, 1965), 286-290.
[12] G. Tenengolts, “Nonbinary codes, correcting single deletion or inser-

tion,” IEEE Trans. Inf. Theory, vol. 30, no. 5, pp. 766–769, 1984.
[13] N. J. A. Sloane, “On single-deletion-correcting codes,” in Codes and

Designs, Ohio State University (Ray-Chaudhuri Festschrift), pp. 273–
291, 2000. Online: https://arxiv.org/abs/math/0207197.

[14] K. A. S. Abdel-Ghaffar and H. C. Ferreira, “Systematic encoding of
the Varshamov-Tenengolts codes and the Constantin-Rao codes,” IEEE

Trans. Inf. Theory, vol. 44, pp. 340–345, Jan 1998.
[15] M. Abroshan, R. Venkataramanan, and A. Guillén i Fàbregas, “Efficient

systematic encoding of non-binary VT codes,” in Proc. IEEE ISIT, 2018.

https://arxiv.org/abs/math/0207197

	I Introduction
	II Code Construction
	II-A Code construction

	III Decoding
	III-A Phase 1
	III-B Phase 2
	III-C Decoding algorithm (for binary alphabet)
	III-D Non-binary alphabet
	III-E Decoding complexity

	IV Error probability and Simulation results
	IV-A Phase 1 errors
	IV-B Phase 2 errors
	IV-C Numerical Simulations

	V Discussion and Future work
	References

