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Abstract—The process of DNA-based data storage (DNA stor-
age for short) can be mathematically modelled as a commu-
nication channel, termed DNA storage channel, whose inputs
and outputs are sets of unordered sequences. To design error
correcting codes for DNA storage channel, a new metric, termed
the sequence-subset distance, is introduced, which generalizes the
Hamming distance to a distance function defined between any
two sets of unordered vectors and helps to establish a uniform
framework to design error correcting codes for DNA storage
channel. We further introduce a family of error correcting codes,
referred to as sequence-subset codes, for DNA storage and show
that the error-correcting ability of such codes is completely
determined by their minimum distance. We derive some upper
bounds on the size of the sequence-subset codes including a tight
bound for a special case, a Singleton-like bound and a Plotkin-
like bound. We also propose some constructions, including an
optimal construction for that special case, which imply lower
bounds on the size of such codes.

Index Terms—DNA data storage, error-correcting codes, Sin-
gleton bound, Plotkin bound.

I. INTRODUCTION

The idea of storing data in synthetic DNA strands (se-

quences) has been around since 1988 [1] and DNA-based data

storage has been progressing rapidly in recent years with the

development of DNA synthesis and sequencing technology.

Compared to traditional magnetic and optical media, DNA

storage has some competing advantages such as extreme high

density, long durability [10], and low energy consumption [2].

A DNA strand is mathematically represented by a qua-

ternary sequence, each symbol represents one of the four

types of base nucleotides: adenine (A), cytosine (C), guanine

(G) and thymine (T). Basically, in a DNA-based storage

system, the original binary data is first encoded to a set of

quaternary sequences. Then the corresponding DNA strands

are synthesized and stored in DNA pools. To retrieve (read)

the original data, the stored DNA strands are sequenced to

generate a set of quaternary sequences, which are then decoded

to the original binary data. The process of DNA synthesizing,

storing and sequencing can be mathematically modelled as

a communication channel, called the DNA storage channel,

which can be depicted by Fig. 1.

The sequencing process can be modelled as a randomly

sampling and reading of molecules with replacement from

the DNA pool [16]. Some DNA strands may have many
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copies that are sequenced while some strands may never be

sequenced. Moreover, since the synthesis/sequencing process

is prone to errors, a specific DNA strand in the pool may

have many noisy copies that are contained in the sequencing

output. These sequenced strands are clustered according to

their Levenshtein distance or by some other methods (e.g., see

[3], [4]), and then the clustered sequences are reconstructed

by performing an estimate for each cluster [5]. All different

estimated sequences form the output of the DNA storage

channel. Another characteristic of DNA storage channel is that

unlike the conventional magnetic or optical recording systems,

the DNA sequences are stored in “pools”, where structured

addressing is not allowed. Therefore, the inputs and outputs

of the DNA storage channel can be viewed as sets of unordered

DNA sequences.

The output of the DNA storage channel may be distorted

by the following five types of errors:

• Sequence deletion: One or more of the input sequences

are lost. A DNA strand is lost if it is never sequenced.

Another case of sequence deletion is when there are

t (> 1) strands that are changed to the same strand by

substitution errors, then any t − 1 of them are viewed

as lost sequences. As a result, the number of output

sequences is smaller than the number of input sequences.

• Sequence insertion: One or more sequences that do not

belong to the set of input sequences are added into the

output sequences. If the output of the channel contains

t (> 1) different noisy copies of an input sequence, then

any t− 1 of them can be viewed as inserted sequences.

As a result, the number of output sequences is larger than

the number of input sequences.

• Symbol deletion: One or more symbols in a sequence

are removed. As a result, the length of the erroneous

sequence is decreased.

• Symbol insertion: One or more symbols are added into

a sequence. As a result, the length of the erroneous

sequence is increased.

• Symbol substitution: One or more symbols in a sequence

are replaced by other symbols. In this case, the length of

the erroneous sequence remains unchanged.

Note that sequence deletion and sequence insertion can take

place simultaneously. If the number of sequence deletions

equals the number of sequence insertions, then the total

number of input sequences remain unchanged.

To combat different types of errors in DNA synthesizing and

sequencing, various coding techniques are used by DNA stor-

age. Most demonstration research works employ constrained

http://arxiv.org/abs/1809.05821v5
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Fig 1. System model of the DNA storage: The DNA storage channel is the mathematical model of the process of DNA synthesizing, storing and sequencing.
A reliable system should guarantee that with sufficiently high probability the decoded file F equals to the original file F .

coding combined with classical error correcting codes (e.g.

Reed-Solomon codes) [2]-[13]. In addition, to combat the lack

of ordering of the transmitted sequences, a unique address

(index) is added to each sequence.

Codes that can correct s (or fewer) losses of sequences and

e (or fewer) substitutions in each of t (or fewer) sequences

were studied in [14] by considering the so-called error ball.

Codes dealing with insertion/deletion errors were also studied

in [14]. Codes that can correct a total of K substitution errors

were studied in [15].

A. Our Contribution

In this paper, we consider error control for DNA storage

channel by introducing a new metric, termed the sequence-

subset distance, over the power set of the set of all vectors of

fixed length over a finite alphabet, which is the space of the

inputs/outputs of the DNA storage channel. This metric is a

generalization of the classical Hamming distance and can help

to establish a uniform framework to design codes for DNA

storage channel that can correct errors of sequence deletion,

sequence insertion and symbol substitution.

We study error correcting codes with respect to the

sequence-subset distance, which we refer to as sequence-

subset codes, for DNA-based data storage. We show that

similar to codes with respect to the classical Hamming dis-

tance, a sequence-subset code C can correct any number of

nD sequence deletions, nI sequence insertions, and totally nS

symbol substitutions, provided that nS + L · max{nI, nD} ≤
dS(C)−1

2 , where L is the length of the sequences and dS(C) is

the minimum distance of C.

We derive some upper bounds on the size of the sequence-

subset codes including a tight bound for the special case that

d = LM , a Singleton-like bound and a Plotkin-like bound,

where M is the codeword size (i.e., the number of sequences

in each codeword of the sequence-subset codes).

We give a construction of optimal codes (with respect to

size) for the special case that d = LM and M
1
L is an integer,

where d is the minimum distance of the code. We also give

some general constructions of sequence-subset codes, which

imply lower bounds of the size of such codes.

B. Related Work

The similar channel model for DNA storage was also

studied in [14], [15] and [16].

In [14] and [15], data is stored in an unordered set of M
strings of length L (the input of the DNA storage channel),

where M and L are some fixed positive integers. The work

of [14] considered the error-correcting problem by restricting

that s sequences are lost during the synthesizing/sequencing

process and the output of the channel is a subset of M−s input

sequences, among which M − s − t sequences are correctly

reconstructed and t sequences are reconstructed with errors

such that each sequence has at most ǫ errors, where possible er-

rors are symbol insertion/deletion and/or substitution. In [15],

the channel was studied under the assumption that the values

of a total of K different positions in the M input sequences

are changed (i.e., there are totally K symbol substitutions).

Since the erroneous sequence may be equal to another existing

sequence, which in fact induces sequence deletion, the output

of the channel is a set of T strings of length L for some T
such that M −K ≤ T ≤ M .

In [16], DNA storage is modelled as a channel whose inputs

are multisets of M sequences of length L while the output of

the channel is a multiset of N sequences of length L, which is

obtained by drawing N samples independently and uniformly

at random, with replacement, from the M input sequences,

where M,L,N are the fixed parameters of the channel. It

also assumes that each sampled molecule is read error-free.

Comparison of our model with the models of [14], [15] and

[16] is given in Table 1.

Another model for DNA storage channel, which focuses on

modelling the process of synthesis and sequencing of single

DNA strand, was consider in [17]. Different from our model,

the input of this channel is a single DNA sequence (rather than

a set of sequences), and through the process of synthesis and

sequencing, a set of DNA fragments along with their frequency

count is obtained, which can be represented by a profile

vector. Three types of errors, namely, substitution errors due

to synthesis, coverage errors, and ℓ-gram substitution errors

due to sequencing, are considered in [17].

There are still some other communication channels similar

to DNA storage channel. The permutation channel considered

in [18] has input and output as vectors over a finite alphabet

and the transmitted vector is corrupted by a permutation on

its coordination. The permutation channel with impairments

was considered in [19], where the input and output are multi-

sets, rather than vectors, of symbols from a finite alphabet.

Unlike the DNA storage channel, the structure information of

the sequences (i.e., the Hamming distance between sequences

when the sequence length L > 1) is not considered in such

models.

C. Organization

The rest of the paper is organized as follows. In Section

II, we introduce the sequence-subset distance and provide the
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Model Inputs Outputs Error types

Model of [14] A set of M DNA sequences of length
L, for some fixed M and L

A set of M − s DNA sequences with
at most t erroneous sequences

Sequence deletion, symbol insertion,
deletion and substitution

Model of [15] A set of M DNA sequences of length
L, for some fixed M and L

A set of T DNA sequences with
totally K substitutions, where M −
K ≤ T ≤ M

Symbol substitution, sequence dele-
tion induced by symbol substitution

Model of [16] A multi-set of M DNA sequences of
length L for some fixed M and L

A multi-set of N DNA sequences
drawn randomly with replacement
from the M input sequences

Sequence deletion

Our Model A set of M DNA sequences of length
L, where L is fixed but M is not
necessarily fixed

A set of M̃ DNA sequences, which
may include erroneous sequences and
additional inserted sequences

Sequence deletion, sequence inser-
tion and symbol substitution

Table 1. Comparison of different models for DNA storage channel.

basic properties of codes with sequence-subset distance. We

analyze the upper bound on the size of sequence-subset codes

in Section III and give some constructions of such codes in

Section IV. The paper is concluded in Section V.

D. Notations

The following notations will be used in this paper:

1) For any positive integer n, [n] := {1, 2, · · · , n}.

2) For any set A, |A| denotes the size (i.e., cardinality) of A

and P(A) denotes the power set of A (i.e., the collection

of all subsets of A).
3) For any two sets X and Y, X\Y is the set of all elements

of X that do not belong to Y.

4) For any n-tuple x ∈ A
n and any i ∈ [n], x(i) denotes

the ith coordinate of x, and hence x is denoted as x =
(x(1), x(2), · · · , x(n)).

II. PRELIMINARY

We first introduce the concept of sequence-subset distance.

Then we discuss the error pattern and error-correcting in DNA

storage channel using codes with sequence-subset distance.

A. Sequence-Subset Distance

Let A be a fixed finite alphabet. For DNA data storage,

typically A = {A, T, C, G}, representing the four types of

base nucleotides. In this work, for generality, we assume that

A is any fixed finite alphabet of size q ≥ 2.

Let L be a positive integer. For any x1, x2 ∈ A
L, the

Hamming distance between x1 and x2, denoted by dH(x1, x2),
is defined as the number of coordinates where x1 and x2 differ,

that is,

dH(x1, x2) := |{i ∈ [L]; x1(i) 6= x2(i)}|.

For any two subsets X1 and X2 of AL such that |X1| ≤ |X2|
and any injection χ : X1 → X2, denote

dχ(X1,X2) :=
∑

x∈X1

dH(x, χ(x))+L(|X2|−|X1|). (1)

Then a natural way to generalize the Hamming distance to the

space of all subsets of AL is as follows.

Definition 1: For any X1,X2 ⊆ A
L, without loss of gen-

erality, assuming |X1| ≤ |X2|, the sequence-subset distance

between X1 and X2 is defined as

dS(X1,X2) = dS(X2,X1) := min
χ∈X

dχ(X1,X2), (2)

where X is the set of all injections χ : X1 → X2.1

Example 1: Suppose A = {0, 1} and L = 4. Consider

X1 = {x1, x2, x3} and X2 = {y1, y2, y3, y4}, where x1 =
1010, x2 = 0010, x3 = 1101, y1 = 1101, y2 = 0011,

y3 = 1011 and y4 = 1100. Let χ0 : X1 → X2 be such

that χ0(x1) = y3, χ0(x2) = y2 and χ0(x3) = y1. Then by (1),

we can obtain dχ0
(X1,X2) = 6. We can further verify that

dχ(X1,X2) ≥ 6 for all injections χ : X1 → X2. Hence by (2),

we have dS(X1,X2) = dχ0
(X1,X2) = 6.

Remark 1: Given any subsets X1,X2 of A
L such that

|X1| ≤ |X2|, let V1 = X1 ∪ V0 and V2 = X2, where

V0 is a set disjoint with X1. We can construct a complete

bipartite weighted graph G with bipartition (V1, V2) such that

for each x1 ∈ V1 and x2 ∈ V2, the weight of the edge

(x1, x2) is dH(x1, x2), where we define dH(x1, x2) = L for

any x1 ∈ V0 and x2 ∈ V2. Then by Definition 1, the sequence-

subset distance between X1 and X2 can be computed from a

minimum weight perfect matching of G, which can be done

in time O(|X2|3) using the Kuhn-Munkres algorithm [22].

We now prove some important properties of the function

dS(·, ·) and then prove that it is really a distance function.

First, intuitively, the elements in X1 ∩ X2 should have no

effect on the sequence-subset distance between X1 and X2.

This is shown to be true by the following lemma and corollary.

Lemma 1: For any X1,X2 ⊆ A
L such that |X1| ≤ |X2|,

there exists an injection χ0 ∈ X such that dS(X1,X2) =
dχ0

(X1,X2) and χ0(x) = x for all x ∈ X1 ∩ X2.

Proof: The proof is given in Appendix A.

Corollary 1: For any two subsets X1 and X2 of AL,

dS(X1,X2) = dS(X1\X2,X2\X1).

Proof: This corollary is just a direct consequence of

Definition 1 and Lemma 1.

Lemma 2: Suppose X1,X2 ⊆ A
L such that |X1| ≤ |X2|.

Suppose X′
2 ⊆ X2 such that |X1| ≤ |X′

2|. Then

dS(X1,X′
2) ≤ dS(X1,X2).

1A more accurate notation for the set X is XX1,X2
because it is related to

the subsets X1 and X2. However, we can omit the subscripts safely because
they can be easily specified by the context.
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Proof: The proof is given in Appendix B.

Now we prove that dS(·, ·) is really a distance function

(metric) over P(AL).
Theorem 1: The function dS(·, ·) is a distance function over

the power set P(AL).
Proof: The proof is given in Appendix C.

B. Error Pattern of DNA Storage Channel

In this paper we consider DNA storage channel with se-

quence deletion/insertion and symbol substitution. The input

of the channel is a set of unordered sequences

X = {x1, x2, · · · , xM} ⊆ A
L

and the output is another set of unordered sequences

Y = {y1, y2, · · · , yM̃} ⊆ A
L,

where L is the length of the sequences. Usually, Y 6= X

because of the channel noise. Sequences in the subset X ∩ Y

are correctly transmitted; Sequences in X\Y are either lost

(sequence deletion) or changed to sequences in Y\X (symbol

substitution); Sequences in Y\X are either excessive (sequence

insertion) or obtained from some sequences in X\Y (symbol

substitution). Let nI, nD and nS denote the total number of

sequence insertions, sequence deletions and symbol substitu-

tions, respectively, in Y. Then we call the 3-tuple (nI, nD, nS)
the error pattern of Y. Furthermore, we have the following

lemma.

Lemma 3: Suppose the channel input is X and output is Y.

If the error pattern of Y is (nI, nD, nS), then

dS(X,Y) ≤ nS + L ·max{nI, nD}.

Proof: Note that we can always partition the two subsets

X\Y and Y\X as

X\Y = XD ∪ XS and Y\X = YI ∪ YS,

where XD is the set of lost input sequences, XS is the set of

input sequences that are changed to YS by symbol substitution,

and YI is the set of sequences that are inserted to Y. Clearly,

we have

nI = |YI| and nD = |XD|.

Moreover, |XS| = |YS| and there exists a bijection χ : XS →
YS such that for each x ∈ XS, χ(x) is the erroneous sequence

of x by symbol substitution. Hence, we have

nS =
∑

x∈XS

dH(x, χ(x)).

For further discussion, we need to consider the following two

cases.

Case 1: nI ≤ nD. In this case, we have |YI| = nI ≤ nD =
|XD| and |Y\X| ≤ |X\Y|. Let χ′ : YI → XD be any fixed

injection. Then we can obtain an injection χ̄ : Y\X → X\Y

such that

χ̄(y) =

{

χ−1(y) if y ∈ YS;

χ′(y) if y ∈ YI.

Since |X\Y| − |Y\X| = |XD| − |YI| = nD − nI, then by (1),

dχ̄(Y\X,X\Y) =
∑

y∈Y\X

dH(y, χ̄(y)) + L · (|X\Y| − |Y\X|)

=
∑

y∈YS

dH(y, χ(y)) +
∑

y∈YI

dH(y, χ
′(y))

+ L · (nD − nI)

≤ nS + L · nI + L · (nD − nI)

= nS + L · nD

= nS + L ·max{nI, nD}

where the inequality comes from the simple fact that

dH(z, z′) ≤ L for any z, z′ ∈ A
L. Hence, by Corollary 1 and

Definition 1, we have

dS(X,Y) = dS(X\Y,Y\X)

≤ dχ̄(Y\X,X\Y)

≤ nS + L ·max{nI, nD}.

Case 2: nI > nD. In this case, there exists an injection

χ′ : XD → YI and we can let χ̄ : X\Y → Y\X be such that

χ̄(x) =

{

χ(x) if x ∈ XS;

χ′(x) if x ∈ XD.

Since |Y\X| − |X\Y| = |YI| − |XD| = nI − nD, then by (1),

dχ̄(X\Y,Y\X) =
∑

x∈X\Y

dH(x, χ̄(x)) + L · (|Y\X| − |X\Y|)

=
∑

x∈XS

dH(x, χ(x)) +
∑

x∈XD

dH(x, χ
′(x))

+ L · (nI − nD)

≤ nS + L · nD + L · (nI − nD)

= nS + L · nI

= nS + L ·max{nI, nD}.

Hence, similar to Case 1, we have

dS(X,Y) = dS(Y\X,X\Y)

≤ dχ̄(X\Y,Y\X)

≤ nS + L ·max{nI, nD}.

In both cases, we have dS(X,Y) ≤ nS + L ·max{nI, nD},

which completes the proof.

Equality in the bound of dS(X,Y) in Lemma 3 can be

achieved. As an example, consider A = {0, 1} and L = 4,

and let the input X = {0011, 1010} and output Y =
{0111, 1010, 1100}, where 0111 is an erroneous copy of 0011
with one substitution and 1100 is an inserted sequence. Then

the error pattern of Y is (nI, nD, nS) = (1, 0, 1) and so

nS + L · max{nI, nD}. On the other hand, by (2), we can

easily obtain dS(X,Y) = 5. Hence, we have dS(X,Y) =
nS + L ·max{nI, nD}.

For the decoder, when receiving a subset Y ⊆ A
L, its

task is to find a possible input subset X̂ ⊆ A
L that is most

similar to Y. By the above discussion and Corollary 1, clearly,

the sequence-subset distance is a good choice of metric for

similarity between Y and X̂. In the next subsection, we will

discuss error-correcting in DNA storage channel using codes

with respect to sequence-subset distance.
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C. Codes with Sequence-Subset Distance

A sequence-subset code over AL is a subset C of the power

set P(AL) of the set A
L. We call each element of A

L a

sequence and call L the sequence length of C. The size |C| of

C is called the code size of C. In contrast, for each codeword

X ∈ C, the size of X (i.e., the number of sequences contained

in X) is called the codeword size of C.

Note that a sequence-subset code C may contain codewords

of different sizes. The maximum of codeword sizes of C, i.e.,

M = max{|X|;X ∈ C}, is called the maximal codeword size

of C. A sequence-subset code C is said to have constant code-

word size (a constant-codeword-size code) if all codewords of

C have the same codeword size. Real DNA storage systems

usually use codes with constant codeword size. In fact, using

constant-codeword-size codes, the decoder knows how many

sequences are stored and hence can easily determine how many

sequences are lost during the synthesizing/sequencing process.

However, in this work, for the generality of the theory, we

allow that different codewords may have different sizes.

The rate of C is defined as

R(C) =
logq |C|

logq

(

∑M

m=0

(

qL

m

)

)

and the redundancy of C is defined as

r(C) = logq

(

M
∑

m=0

(

qL

m

)

)

− logq |C|,

where q = |A| and
∑M

m=0

(

qL

m

)

is the number of all subsets

of AL of size not greater than M .2 If C ⊆ A
L is a code with

constant codeword size M , then the rate and redundancy of C
are defined as

R(C) =
logq |C|

logq
(

qL

M

)

and

r(C) = logq

(

qL

M

)

− logq |C|,

respectively, where
(

qL

M

)

is the number of all subsets of AL of

size M .

The minimum distance of a sequence-subset code C, denoted

by dS(C), is the minimum of the sequence-subset distance

between any two distinct codewords of C, that is,

dS(C) = min{dS(X,X′);X,X′ ∈ C and X 6= X′}.

In general, L,M, |C| and dS(C) are four main parameters

of C, and we will call C an (L,M, |C|, dS(C))q code, where q
is the size of the alphabet A.

Suppose C ⊆ P(AL) is a sequence-subset code. We denote

C = {X;X ∈ C}, where X = A
L\X. By Corollary 1, for any

X1,X2 ∈ C, we have dS(X1,X2) = dS(X1\X2,X2\X1) =

2In [16], the storage rate of a code C is defined as
log |C|
ML

, where M is the

constant codeword size. The definition of the rate R(C) in this work is slightly
different from the traditional definition of code rate. This is because for general
sequence-subset codes, the size of different codewords may be different.

Hence we use logq

(

∑M
m=0

(

qL

m

)

)

rather than ML in the definition of R(C),

where M is the maximal codeword size of C.

dS(X1,X2). Hence, C and C have the same sequence length

L, code size |C| = |C| and minimum distance dS(C) = dS(C).
For sequence-subset code with constant codeword size M , it

is assumed that M ≤ |A|L

2 . Otherwise, we can consider C,

which has constant codeword size M = |A|L −M ≤ |A|L

2 .

Aminimum-distance decoder for C is a function D :
P(AL) → C such that for any Y ∈ P(AL),

D(Y) = arg min
X′∈C

dS(X
′,Y).

Theorem 2: Suppose C has minimum distance dS(C) and

nS + L ·max{nI, nD} ≤
dS(C)− 1

2
. (3)

Then any error of pattern (nI, nD, nS) can be corrected by the

minimum-distance decoder for C.

Proof: Let X be the set of input sequences and Y be

the set of output sequences of the DNA storage channel. By

Lemma 3, if Y has error pattern (nI, nD, nS), then

dS(X,Y) ≤ nS + L ·max{nI, nD}.

Combining this with (3), we have

dS(X,Y) ≤
dS(C)− 1

2
.

Hence, X = argminX′∈C dS(X
′,Y) = D(Y), that is, X can be

correctly recovered by the minimum-distance decoder.

Example 2: Consider A = {0, 1} and L = 5. Let

C = {X1,X2,X3}, where X1 = {00101, 10001}, X2 =
{01011, 10110} and X3 = {01000, 11100}. According to

(2), we can obtain dS(X1,X2) = dS(X1,X3) = 6 and

dS(X2,X3) = 4, hence we have dS(C) = 4. By Theorem

2, if X ∈ C is stored (i.e., X is the input of the DNA

storage channel), Y ⊆ A
5 is the read result (i.e., the out-

put of the channel) and the error pattern (nI, nD, nS) of Y

satisfies nS + L · max{nI, nD} ≤ dS(C)−1
2 = 1, then the

minimum-distance decoder will recover X correctly from Y.

For example, suppose X1 is stored and the read result is

Y = {01101, 10001}, where 00101 is changed to 01101 by

one substitution. We have dS(X1,Y) = 1 and dS(X2,Y) =
dS(X3,Y) = 5, and then by the minimum-distance decoder,

D(Y) = argminX′∈C dS(X
′,Y) = X1.

Similar to the classical error-correcting codes, the inequality

(3) is a sufficient condition for an output with error pattern

(nI, nD, nS) to be corrected by the minimum-distance decoder

but not a necessary condition. To illustrate this, reconsider

Example 2. Now, suppose X1 is stored and the read result is

Y = {01101}, where 10001 is lost and 00101 is changed to

01101 by one substitution. In this case, we have (nI, nD, nS) =

(0, 1, 1), and so nS + L · max{nI, nD} = 6 > 3
2 = dS(C)−1

2 .

However, X1 can be correctly recovered from Y by the

minimum-distance decoder because dS(X1,Y) = 6 < 7 =
dS(X2,Y) = dS(X3,Y).

Remark 2: Suppose the channel input is X and output

is Y such that the error pattern of Y is (nI, nD, nS). It is

sufficient to assume that nI = 0 or nD = 0. In fact, suppose

nI ≥ nD. Denoted by x1, · · · , xnD
the nD deleted sequences

and y1, · · · , ynI
the nI inserted sequences. For each i ∈ [nD],
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we view yi as obtained from xi by symbol substitutions. Then

the error pattern is (n′
I, n

′
D, n

′
S) = (nI −nD, 0, nS+nS), where

nS is the total substitutions in y1, · · · , ynD
. Noticing that the

number of substitutions in each sequence is not greater than

its length L, then the total substitutions nS ≤ nDL, and

hence n′
S + Lmax{n′

I, n
′
D} = nS + nS + (nI − nD)L ≤

nS + nDL+ (nI − nD)L = nS + nIL = nS + Lmax{nI, nD}.

By Theorem 2, if Y with error pattern (nI, nD, nS) can be

corrected, then Y with error pattern (n′
I, n

′
D, n

′
S) can also be

corrected. Similarly, if nI < nD, then by viewing each yi,

i ∈ [nI], as obtained from xi by symbol substitutions, we can

obtain an error pattern (n′
I, n

′
D, n

′
S) = (0, nD − nI, nS + nS)

such that if Y with error pattern (nI, nD, nS) can be corrected,

then Y with error pattern (n′
I, n

′
D, n

′
S) can also be corrected.

Thus, we can always assume that nI = 0 or nD = 0.

In [14] and [15], it was assumed that the number of output

sequences is not greater than the number of input sequences.

In this work, considering the sequence insertion errors, we

allow that the number of output sequences of the DNA storage

channel can be larger than the number of input sequences. This

assumption is also of interest for the generality of the theory.

Usually, correction of sequence insertion/deletion requires

codes with larger minimum distance. To see this, consider

two special cases of error pattern. The first special case is

nI = nD = 0. In this case, by Theorem 2, a sequence-subset

code C with minimum distance dS(C) can correct a total of

at most
dS(C)−1

2 substitution errors. The second special case

is nI = nS = 0. A sequence-subset code C with minimum

distance dS(C) can correct a total of at most
dS(C)−1

2L sequence-

deletions, which is 1
L

of the number of correctable substitution

errors.

III. BOUNDS ON THE SIZE OF SEQUENCE SUBSET CODES

In this Section, we consider codes with constant codeword

size. Let Sq(L,M, d) denote the maximum number of code-

words in a sequence-subset code over a q-ary alphabet with

sequence length L, constant codeword size M and minimum

sequence-subset distance at least d. A q-ary sequence-subset

code is said to be optimal (with respect to code size) if it has

the largest possible code size of any q-ary sequence-subset

code of the given parameters L,M and d. In this section, we

always assume that A is an alphabet of size q. We will derive

some upper bounds on Sq(L,M, d).
Clearly, for any sequence-subset code C ⊆ P(AL) with

constant codeword size M , its minimum distance dS(C) ≤
LM , and hence M ≥ dS(C)

L
. For this reason, in the following,

we always assume that d ≤ LM , or equivalently, M ≥
⌈

d
L

⌉

.

A. Upper Bound for the Special Case d = LM

First, consider the special case that d = LM . We have the

following upper bound on Sq(L,M, d).
Theorem 3: Suppose d = LM . Then

Sq(L,M, d) ≤
⌊

qM− 1
L

⌋

. (4)

Proof: Let C = {X1,X2, · · · ,XN} ⊆ P(AL) be an

arbitrary sequence-subset code with constant codeword size

M and minimum distance d, where for each i ∈ [N ], Xi =
{xi,1, xi,2, · · · , xi,M} ⊆ A

L. We will prove that N ≤ qM− 1
L .

For each fixed ℓ ∈ [L] and i ∈ [N ], let

Wi,ℓ =
⋃

j∈[M ]

{xi,j(ℓ)}.

Then we have the following Claim.

Claim 1: For each fixed ℓ ∈ [L] and i ∈ [N ],
W1,ℓ,W2,ℓ, · · · ,WN,ℓ are mutually disjoint subsets of A.

To prove Claim 1, we first notice that for any distinct i1, i2 ∈
[N ] and any (not necessarily distinct) j1, j2 ∈ [M ],

dH(xi1,j1 , xi2,j2) = L, (5)

which can be proved as follows. Since both xi1,j1 and xi2,j2
have length L, we have dH(xi1,j1 , xi2,j2) ≤ L. We can

only have dH(xi1,j1 , xi2,j2) = L because otherwise, we have

dH(xi1,j1 , xi2,j2) < L and we can construct a bijection

χ : Xi1 → Xi2 such that χ(xi1,j1) = xi2,j2 . Since for

all xi1,j ∈ Xi1 and xi1,j′ ∈ Xi2 , dH(xi1,j , xi1,j′) ≤ L
(the length of xi1,j and xi2,j′ ), then by (1) we can obtain

dχ(Xi1 ,Xi2) < LM , and further by Definition 1 we have

dS(Xi1 ,Xi2) < LM , which contradicts to the assumption that

the minimum distance of C is d = LM . Hence, (5) must hold.

Again since both xi1,j1 and xi2,j2 have length L, then (5)

implies that for any fixed ℓ ∈ [L], xi1,j1(ℓ) 6= xi2,j2(ℓ). Since

j1, j2 are any elements of [M ], then we have Wi1,ℓ∩Wi2,ℓ = ∅.

Further, since i1, i2 are any distinct elements of [N ], we

have W1,ℓ,W2,ℓ, · · · ,WN,ℓ are mutually disjoint subsets of

A, which proves Claim 1.

Now, by Claim 1, we have

N
∑

i=1

|Wi,ℓ| ≤ |A| = q. (6)

By the construction of Wi,ℓ, for each i ∈ [N ] and j ∈ [M ],
we have xi,j ∈ Wi,1 ×Wi,2 × · · · ×Wi,L, which implies that

Xi = {xi,1, xi,2, · · · , xi,M} ⊆ Wi,1 ×Wi,2 × · · · ×Wi,L, and

hence we have

|Wi,1 ×Wi,2 × · · · ×Wi,L| =
L
∏

ℓ=1

|Wi,ℓ| ≥ |Xi| = M. (7)

Now, consider (6). By the inequality of arithmetic and

geometric means, for each ℓ ∈ [L], we have

q

N
≥

1

N

N
∑

i=1

|Wi,ℓ| ≥

(

N
∏

i=1

|Wi,ℓ|

)

1
N

.

Combining this with (7), we have

( q

N

)L

≥
L
∏

ℓ=1

(

N
∏

i=1

|Wi,ℓ|

)

1
N

=
N
∏

i=1

(

L
∏

ℓ=1

|Wi,ℓ|

)

1
N

≥ (M
1
N )N

= M.
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From this we have q
N

≥ M
1
L , which implies N ≤ qM− 1

L .

Hence,

Sq(L,M, d) ≤ qM− 1
L .

Since Sq(L,M, d) is an integer, so

Sq(L,M, d) ≤
⌊

qM− 1
L

⌋

,

which completes the proof.

Consider the redundancy of the codes. For any code C ⊆
A

L with constant codeword size M and minimum distance

d = LM , by Theorem 3, we have

r(C) = logq

(

qL

M

)

− logq |C|

≥ logq

(

qL

M

)

− logq(qM
− 1

L )

= logq
qL!M

1
L

M !(qL −M)!q
.

The bound (4) is tight for the special case that M
1
L is an

integer. Codes that achieve equality of (4) are constructed in

Section IV.A.

B. Plotkin-like Bound

We present the Plotkin-like Bound of sequence-subset codes

as the following theorem.

Theorem 4 (Plotkin-like Bound): Let C be an (L,M,N, d)q
code such that rLM < d, where r = 1− 1

q
. Then

N ≤
d

d− rLM
.

Proof: Our proof of this theorem is similar to the proof

of [23, Theorem 2.2.1].

Suppose C = {X1,X2, · · · ,XN} such that for each i ∈
[N ], Xi = {xi,1, xi,2, · · · , xi,M} ⊆ A

L. First, we have the

following claim, which we will prove later.

Claim 2: For any distinct i1, i2 ∈ [N ], we have

dS(Xi1 ,Xi2) ≤
1

M

∑

j1,j2∈[M ]

dH(xi1,j1 , xi2,j2).

Now, let

A =
∑

i1,i2∈[N ]

∑

j1,j2∈[M ]

dH(xi1,j1 , xi2,j2).

Since d is the minimum distance of C, by the averaging

principle [24], we have

d ≤

(

N

2

)−1
∑

{i1,i2}⊆[N ]

dS(Xi1 ,Xi2)

=
1

2

(

N

2

)−1
∑

i1,i2∈[N ],i1 6=i2

dS(Xi1 ,Xi2)

≤
1

2

(

N

2

)−1
∑

i1,i2∈[N ]

dS(Xi1 ,Xi2)

≤
1

N(N − 1)

∑

i1,i2∈[N ]





1

M

∑

j1,j2∈[M ]

dH(xi1,j1 , xi2,j2)





=
1

N(N − 1)

1

M
·A, (8)

where the last inequality is obtained by Claim 2.

For each a ∈ A and ℓ ∈ [L], let nℓ,a be the number of

(i, j) ∈ [N ]× [M ] such that xi,j(ℓ) = a. Then for each fixed

ℓ ∈ [L], we have
∑

a∈A

nℓ,a = NM. (9)

Moreover, we have

A =
∑

i1,i2∈[N ]

∑

j1,j2∈[M ]

dH(xi1,j1 , xi2,j2)

=

L
∑

ℓ=1

∑

a∈A

nℓ,a(NM − nℓ,a)

= L(NM)2 −
L
∑

ℓ=1

∑

a∈A

n2
ℓ,a. (10)

For each ℓ ∈ [L], by the Cauchy-Schwartz inequality,
(

∑

a∈A

nℓ,a

)2

≤ q
∑

a∈A

n2
ℓ,a,

where q = |A|. Combining this with (10), we obtain

A ≤ L(NM)2 −
L
∑

ℓ=1

1

q

(

∑

a∈A

nℓ,a

)2

= L(NM)2 −
L
∑

ℓ=1

1

q
(NM)

2

=

(

1−
1

q

)

L(NM)2, (11)

where the first equality is obtained from (9). Combining (8)

and (11), we obtain

d ≤
1

N(N − 1)

1

M
·

(

1−
1

q

)

L(NM)2.

Solving N from the above inequality we obtain

N ≤
d

d− rLM
,

where r = 1− 1
q

.

To complete the proof of Theorem 4, we still need to prove

Claim 2.



8

Proof of Claim 2: Let SM denote the permutation group

on [M ]. Note that for any j1, j2 ∈ [M ], not necessarily distinct,

there are (M−1)! permutations χ ∈ SM such that χ(j1) = j2.

We have
∑

χ∈SM

∑

j∈[M ]

dH(xi1,j , xi2,χ(j))

= (M − 1)!
∑

j1,j2∈[M ]

dH(xi1,j1 , xi2,j2). (12)

Further, by Definition 1 and the averaging principle [24], we

have

dS(Xi1 ,Xi2) ≤
1

M !

∑

χ∈SM

dχ(Xi1 ,Xi2)

=
1

M !

∑

χ∈SM

∑

j∈[M ]

dH(xi1,j , xi2,χ(j))

=
(M − 1)!

M !

∑

j1,j2∈[M ]

dH(xi1,j1 , xi2,j2)

=
1

M

∑

j1,j2∈[M ]

dH(xi1,j1 , xi2,j2),

where the second equality comes from (12).

Consider the redundancy of the codes. For any code C ⊆
A

L with constant codeword size M and minimum distance

d > rLM , where r = 1− 1
q

, by Theorem 4, we have

r(C) = logq

(

qL

M

)

− logq |C|

≥ logq

(

qL

M

)

− logq(
d

d− rLM
)

= logq
qL!(d− rLM)

M !(qL −M)!d
.

For the special case that d = LM , we have d
d−rLM

= q >

qM− 1
L , where r = 1− 1

q
. Thus, the bound given in Theorem 3

is tighter than the bound given in Theorem 4 for M > 1. It is

still not known whether the bound in Theorem 4 is achievable

for other cases.

C. Singleton-like Bound

For each code C = {X1,X2, · · · ,XN} ⊆ P(AL), denote

V (C) =
N
⋃

i=1

Xi. (13)

Further, let S̃q(L,M,K, d) denote the maximum number of

codewords in a sequence-subset code C over a q-ary alphabet A

with sequence length L, constant codeword size M , minimum

sequence-subset distance at least d and |V (C)| ≤ K . Clearly,

for any K ≤ qL,

S̃q(L,M,K, d) ≤ S̃q(L,M, qL, d) = Sq(L,M, d). (14)

We first prove a recursive bound on S̃q(L,M,K, d) in the

following theorem.

Theorem 5: Suppose d ≤ LM and K ≤ qL. We have

S̃q(L,M,K, d) ≤

⌊

K

M
S̃q(L,M − 1,K − 1, d)

⌋

. (15)

Proof: Let C = {X1,X2, · · · ,XN} ⊆ P(AL) be a

sequence-subset code with constant codeword size M , min-

imum distance at least d such that |V (C)| ≤ K and code size

|C| = N = S̃q(L,M,K, d), where Xi ⊆ A
L for each i ∈ [N ].

For each x ∈ V (C), let

C(x) = {X ∈ C; x ∈ X}

and

C̃(x) = {X̃ = X\{x};X ∈ C(x)}.

Then C̃(x) ⊆ P(AL) has constant codeword size M − 1, size

|C̃(x)| = |C(x)| and |V (C̃(x))| ≤ K − 1.

Moreover, for any distinct X̃i1 , X̃i2 ∈ C̃(x), by the construc-

tion of C̃(x), we have X̃i1 = Xi1\{x} and X̃i2 = Xi2\{x} for

some distinct Xi1 ,Xi2 ∈ C(x), so X̃i1\X̃i2 = Xi1\Xi2 and

X̃i2\X̃i1 = Xi2\Xi1 . By Corollary 1, we have

dS(X̃i1 , X̃i2) = dS(Xi1 ,Xi2).

Then we have dS(C̃(x)) = dS(C(x)). On the other hand, since

C(x) ⊆ C, we have dS(C(x)) ≥ dS(C) ≥ d. Thus, dS(C̃(x)) ≥
d.

By the above discussion, for each x ∈ V (C), we have

|C̃(x)| ≤ S̃q(L,M − 1,K − 1, d). (16)

Now, we estimate |C̃(x)|. Since |C̃(x)| = |C(x)|, it is suf-

ficient to estimate |C(x)|. Denote V (C) = {x1, x2, · · · , xK̃},

where K̃ = |V (C)|. Consider the N × K̃ matrix I = (ai,j)
such that ai,j = 1 if xj ∈ Xi, and ai,j = 0 otherwise. Note

that the number of ones in row i of I is |Xi| = M and the

number of ones in column j of I is |C(xj)|. By counting the

total number of ones in I , we obtain
∑

x∈V (C)

|C(x)| =
∑

X∈C

|X| = MN.

By the averaging principle [24], there exists an xj0 ∈ V (C)
such that

|C(xj0)| ≥
MN

|V (C)|
≥

MN

K
.

Hence,

N ≤
K

M
|C(xj0)| =

K

M
|C̃(xj0)|.

Note that |C| = S̃q(L,M,K, d) = N . Then we have

S̃q(L,M,K, d) ≤
K

M
|C̃(x0)|.

This, combining with (16), implies that

S̃q(L,M,K, d) ≤
K

M
S̃q(L,M − 1,K − 1, d).

Noticing that S̃q(L,M,K, d) is an integer, then

S̃q(L,M,K, d) ≤

⌊

K

M
S̃q(L,M − 1,K − 1, d)

⌋

,

which completes the proof.
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Now, we can prove a Singleton-like bound for sequence-

subset codes as follows.

Theorem 6 (Singleton-like Bound): Suppose rLM0 < d ≤
LM0, where r = 1− 1

q
and M0 =

⌈

d
L

⌉

. Then

Sq(L,M, d)

≤

⌊

qL

M

⌊

qL − 1

M − 1
· · ·

⌊

qL −M +M0 + 1

M0 + 1
f(L,M0, d)

⌋

· · ·

⌋⌋

,

where

f(L,M0, d) =











⌊

qM
− 1

L

0

⌋

if d = LM0;

d

d− rLM0
if rLM0<d<LM0.

(17)

Proof: Repeatedly using Theorem 5 with M −M0 times,

we obtain

S̃q(L,M, qL, d) ≤

⌊

qL

M

⌊

qL − 1

M − 1
· · ·

⌊

qL −M +M0 + 1

M0 + 1

S̃q(L,M0, q
L −M +M0, d)

⌋

· · ·

⌋⌋

.

Moreover, according to (14), we have

Sq(L,M, d) = S̃q(L,M, qL, d)

and

S̃q(L,M0, q
L −M +M0, d) ≤ Sq(L,M0, q

L, d)

= Sq(L,M0, d).

Combining the above three equations, we have

Sq(L,M, d) ≤

⌊

qL

M

⌊

qL − 1

M − 1
· · ·

⌊

qL −M +M0 + 1

M0 + 1

Sq(L,M0, d)

⌋

· · ·

⌋⌋

. (18)

Let f(L,M0, d) be defined as in (17). By Theorem 3 and

Theorem 4, we have

Sq(L,M0, d) ≤ f(L,M0, d).

Combining this with (18), we have

Sq(L,M, d) ≤

⌊

qL

M

⌊

qL − 1

M − 1
· · ·

⌊

qL −M +M0 + 1

M0 + 1

f(L,M0, d)

⌋

· · ·

⌋

,

which completes the proof.

Remark 3: It is easy to see that
⌊

qL

M

⌊

qL − 1

M − 1
· · ·

⌊

qL −M +M0 + 1

M0 + 1
f(L,M0, d)

⌋

· · ·

⌋⌋

≤

(

M−M0−1
∏

k=0

qL − k

M − k

)

f(L,M0, d)

and

(

qL

M

)

=

(

M−M0−1
∏

k=0

qL − k

M − k

)

(

qL −M +M0

M0

)

.

Hence, the bound in Theorem 6 gives a bound on the code

rate as

Sq(L,M, d)
(

qL

M

)
≤

1
(

qL−M+M0

M0

)
· f(L,M0, d),

where f(L,M0, d) is defined as in (17).

Consider the redundancy of the codes. For any code C ⊆
A

L with constant codeword size M and minimum distance d
satisfying rLM0 < d ≤ LM0, where r = 1 − 1

q
and M0 =

⌈

d
L

⌉

, by Remark 3, we have

Sq(L,M, d) ≤

(

qL

M

)

1
(

qL−M+M0

M0

)
· f(L,M0, d).

Thus, the redundancy

r(C) = logq

(

qL

M

)

− logq |C|

≥ logq

(

qL

M

)

− logq

(

(

qL

M

)

1
(

qL−M+M0

M0

)
· f(L,M0, d)

)

= logq
(qL −M +M0)!

M0!(qL −M)!f(L,M0, d)
,

where f(L,M0, d) is defined as in (17).

Clearly, Theorem 3 is a special case of Theorem 6 with

M = M0 = ⌈ d
L
⌉ and d = LM0. It is still not known whether

the bound given in Theorem 6 is achievable for the case that

d < LM0 or M > M0.

IV. CONSTRUCTIONS OF SEQUENCE-SUBSET CODES

In this section, we give some constructions of sequence-

subset codes. As in Section III, we will always assume that A

is an alphabet of size q.

A. Construction of Optimal Codes

The following construction gives a family of optimal

sequence-subset code (with respect to code size) for the special

case that d = LM and M
1
L is an integer.

Construction 1: Suppose d = LM , M
1
L < q is an

integer and N =
⌊

qM− 1
L

⌋

. Partition A into N mutually

disjoint subsets, say W1,W2, · · · ,WN , such that |Wi| ≥ M
1
L ,

i = 1, 2, · · · , N . For each i ∈ [N ], pick a subset Xi =
{xi,1, xi,2, · · · , xi,M} ⊆ WL

i , and let C = {Xi; i ∈ [N ]}.

Theorem 7: The code C obtained by Construction 1 is an

(L,M,N, d)q sequence-subset code.

Proof: Since N =
⌊

qM− 1
L

⌋

, we have N ≤ qM− 1
L ,

and hence NM
1
L ≤ q. The set A can always be partitioned

into W1,W2, · · · ,WN satisfying the expected conditions.

Moreover, since |WL
i | ≥ |M | for all i ∈ [N ], the subsets

Xi = {xi,1, xi,2, · · · , xi,M} ⊆ WL
i , and hence C, can always

be constructed as in Construction 1.

Clearly, C ⊆ P(AL) is a sequence-subset code with constant

codeword size M and |C| = N =
⌊

qM− 1
L

⌋

. Moreover,

for any distinct i1, i2 ∈ [N ] and any j1, j2 ∈ [M ], since
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W1,W1, · · · ,WN are mutually disjoint, xi1,j1 ∈ WL
i1

and

xi2,j2 ∈ WL
i2

, it is easy to see that

dH(xi1,j1 , xi2,j2) = L.

By (1) and (2), for any distinct i1, i2 ∈ [N ], we have

dS(Xi1 ,Xi2) = LM = d,

which implies that dS(C) = d. Thus, C is an (L,M,N, d)q
sequence-subset code.

Example 3: As an illustrative example of Construction 1,

we let A = {0, 1, · · · , 15}, L = 4 and M = 16. Then q = 16,

d = 64, M
1
L = 2 and N =

⌊

qM− 1
L

⌋

= 8. We partition

A into W1,W2, · · · ,W8, where Wi = {2(i − 1), 2i − 1},

i = 1, 2, · · · , 8. Then we can choose Xi = W 4
i and let C =

{X1,X2, · · · ,X8}. For example, we have X1 = {0000, 0001,

0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011,

1100, 1101, 1110, 1111} and X2 = {2222, 2223, 2232, 2233,

2322, 2323, 2332, 2333, 3222, 3223, 3232, 3233, 3322, 3323,

3332, 3333}. Clearly, dS(X1,X2) = 64 = d = LM . In fact,

it is easy to verify that for all distinct i, j ∈ {1, 2, · · · , 8}
dS(Xi,Xj) = 64 = d = LM .

Note that by Theorem 3, if d = LM , then Sq(L,M, d) ≤
⌊

qM− 1
L

⌋

, and so the code C constructed in Theorem 7 is

optimal with respect to code size, and hence we have the

following corollary.

Corollary 2: Suppose d = LM and M
1
L is an integer. We

have

Sq(L,M, d) =
⌊

qM− 1
L

⌋

.

For any fixed m ∈ {2, · · · , q}, we can let d = LmL, and

then we have M
1
L =

(

d
L

)
1
L = m is an integer. In this case,

N =
⌊

qM− 1
L

⌋

=
⌊

q
m

⌋

.

Remark 4: For the case that d = LM but M
1
L is not

an integer, let N be any fixed positive integer such that
⌊

q
N

⌋

≥ M
1
L . Then we can partition A into N mutually

disjoint subsets W1,W1, · · · ,WN such that for each i ∈ [N ],
|Wi| ≥ M

1
L . By the same construction as in Theorem 7,

we can obtain an (L,M,N, d)q sequence-subset code. Thus,

we have N∗ ≤ Sq(L,M, d) ≤
⌊

qM− 1
L

⌋

, where N∗ =

max
{

N ;
⌊

q
N

⌋

≥ M
1
L

}

.

B. Construction Based on Binary Codes

In the rest of this section, to distinguish from sequence-

subset code (i.e., a subset of the power set P(AL) of the set

A
L), we will call any subset of A

L a conventional code. An

(L,N, d)q conventional code is a subset of AL with N code-

words and the minimum Hamming distance d (recalling that q
is the size of the alphabet A). Our following constructions of

sequence-subset codes are based on conventional codes with

respect to the Hamming distance.

The following construction is a modification of Construction

2 of [14].

Construction 2: Let C1 = {x1, x2, · · · , xK} ⊆ A
L be a

conventional code over A and C2 = {w1,w2, · · · ,wN} ⊆ F
K
2

be a conventional binary code. For each wi ∈ C2, let

Xi = {xj ; j ∈ supp(wi)},

where supp(wi) = {j ∈ [K];wi(j) 6= 0} is the support of wi.

Finally, let

C = {X1,X2, · · · ,XN}.

Then we have the following theorem.

Theorem 8: Suppose C1 has the minimum (Hamming) dis-

tance d1 and C2 has the minimum (Hamming) distance d2.

Then the code C obtained by Construction 2 has sequence

length L, code size |C| = N , and the minimum sequence-

subset distance dS(C) satisfies

dS(C) ≥ d1 ·

⌈

d2
2

⌉

.

Proof: Clearly, C has sequence length L and code size

|C| = N . It remains to prove that dS(C) ≥ d1 ·
⌈

d2

2

⌉

.
Let Xi1 and Xi2 be any distinct codewords of C. We need

to prove dS(Xi1 ,Xi2) ≥ d1 ·
⌈

d2

2

⌉

.
Without loss of generality, assume that |Xi1 | ≤ |Xi2 |. Then

we have |Xi1\Xi2 | ≤ |Xi2\Xi1 |. To simplify notation, denote

X̃i1 = Xi1\Xi2 and X̃i2 = Xi2\Xi1 .

For an arbitrary injection χ : X̃i1 → X̃i2 , by (1),

dχ(X̃i1 , X̃i2)=
∑

x∈X̃i1

dH(x, χ(x))+L(|X̃i2 |−|X̃i1 |). (19)

Since C1 has the minimum (Hamming) distance d1 and by

construction of C, x and χ(x) are distinct codeword in C1, so
∑

x∈X̃i1

dH(x, χ(x)) ≥ |X̃i1 | · d1.

Moreover, since C1 ⊆ A
L, then L ≥ d1. Hence, (19) implies

that

dχ(X̃i1 , X̃i2) ≥ |X̃i1 | · d1 + d1(|X̃i2 | − |X̃i1 |)

= d1 · |X̃i2 |

= d1 · |Xi2\Xi1 |. (20)

By the construction of C, Xi1 = {xj ; j ∈ supp(wi1)} and

Xi2 = {xj ; j ∈ supp(wi2)} for some distinct wi1 ,wi2 ∈ C2.

Then we have

|Xi1\Xi2 |+ |Xi2\Xi1 | = dH(wi1 ,wi2 ) ≥ d2,

where d2 is the minimum (Hamming) distance of C2. Note

that |Xi1\Xi2 | ≤ |Xi2\Xi1 |. Then by the above equation, we

have |Xi2\Xi1 | ≥
d2

2 . Moreover, since |Xi2\Xi1 | is an integer,

so

|Xi2\Xi1 | ≥

⌈

d2
2

⌉

.

Combining this with (20), we have

dχ(X̃i1 , X̃i2) ≥ d1 ·

⌈

d2
2

⌉

.
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Note that χ : Xi1\Xi2 → Xi2\Xi1 is an arbitrary injection.

By Definition 1 and Corollary 1, we have

dS(Xi1 ,Xi2) = dS(Xi1\Xi2 ,Xi2\Xi1) ≥ d1 ·

⌈

d2
2

⌉

,

which completes the proof.

Example 4: Let C1 be a binary [5, 3] linear code with

generator matrix G1 and C2 be a binary linear [8, 3] code with

generator matrix G2, where

G1 =





1 0 0 1 0
0 1 0 0 1
0 0 1 1 1





and

G2 =





1 0 0 1 1 1 0 0
0 1 0 0 0 1 1 1
0 0 1 1 0 1 0 1



 .

We have L = 5, K = N = 8, the minimum distance

of C1 is d1 = 2 and the minimum distance of C2 is

d2 = 4. Denote C1 = {x1, x2, · · · , x8}, where x1 = 00000,

x2 = 10010, x3 = 01001, x4 = 00111, x5 = 11011,

x6 = 10101, x7 = 01110, x8 = 11100. Then by Construction

2, for each codeword w ∈ C2, we can obtain a subset

Xw = {xj ; j ∈ supp(w)} ⊆ F
5
2, and this gives a code

C = {Xw;w ∈ C2}. For example, for w = 10011100, we

have Xw = {x1, x4, x5, x6} = {00000, 00111, 11011, 10101};

for w′ = 11101110, we have Xw′ = {x1, x2, x3, x5, x6, x7} =
{00000, 10010, 01001, 11011, 10101, 01110}. By Corollary 1,

we have dS(Xw,Xw′) = dS(X
′
w,X′

w′), where X′
w = Xw\Xw′ =

{x4} = {00111} and X′
w′ = Xw′\Xw′ = {x2, x3, x7} =

{10010, 01001, 01110}. Further, by (1) and (2), we can obtain

dS(X
′
w,X′

w′) = 2 + 2L = 12. Note that |Xw| 6= |Xw′ |, so the

code C is not a constant-codeword-size code.

Remark 5: The code C obtained by Construction 2 may or

may not have constant codeword size, depending on whether

C2 is a constant weight binary code. In fact, C is a constant-

codeword-size code if and only if C2 is a constant-weight

binary code.

To compare |C| with the bound in Theorem 6, we let C1
be an (L,K, d1) code over A and C2 be a (K, 2δ,M) binary

constant-weight code such that L > d1 >
(

1− 1
q

)

L and

δ < q. Then by construction 2 and Theorem 8, we can obtain

a sequence-subset code C with sequence length L, code size

|C| = |C2|, constant codeword size M , and minimum distance

dS(C) ≥ d = d1δ. For C1, by the Plotking bound [20],

K ≤ K0 ,

⌊

d1
d1 − rL

⌋

,

where r = 1− 1
q

. Then we have

|C2| ≤ A(K, 2δ,M) ≤ A(K0, 2δ,M),

where for any n, d and w, A(n, d, w) denotes the maximum

number of codewords of a binary constant weight code of

length n, minimum Hamming distance d and constant weight

w. By the Johnson bound [21],

A(K0, 2δ,M) ≤

⌊

K0

M

⌊

K0 − 1

M − 1
· · ·

⌊

K0 −M + δ

δ

⌋

· · ·

⌋⌋

.

Then we have

|C| = |C2| ≤

⌊

K0

M

⌊

K0 − 1

M − 1
· · ·

⌊

K0 −M + δ

δ

⌋

· · ·

⌋⌋

.

On the other hand, since L > d1 >
(

1− 1
q

)

L and δ < q,

we have M0 =
⌈

d1δ
L

⌉

= δ and
(

1− 1
q

)

LM0 < d1δ < LM0.

According to Theorem 6, we have

|C| ≤

⌊

qL

M

⌊

qL − 1

M − 1
· · ·

⌊

qL −M +M0 + 1

M0 + 1

d1δ

d1δ − rLδ

⌋

· · ·

⌋⌋

=

⌊

qL

M

⌊

qL − 1

M − 1
· · ·

⌊

qL −M + δ + 1

δ + 1
K0

⌋

· · ·

⌋⌋

.

Note that
⌊

qL

M

⌊

qL − 1

M − 1
· · ·

⌊

qL −M + δ + 1

δ + 1
K0

⌋

· · ·

⌋⌋

>

⌊

K0

M

⌊

K0 − 1

M − 1
· · ·

⌊

K0 −M + δ

δ

⌋

· · ·

⌋⌋

,

which can be obtained from the simple facts that K0 =
⌊

d1

d1−rL

⌋

< qL and K0 ≥ K0−M+δ
δ

(noticing that δ = M0 ≤

M). Hence, the size of codes obtained from Construction 2

does not achieve the bound in Theorem 6.

C. Construction Based on q-ary Codes (q ≥ 2)

In this subsection, we present a construction based on q-ary

codes, where q ≥ 2.

Construction 3: Let A and B be two alphabets of size q and

q̃, respectively. Let C1 be an (L,Mq̃, d1)q conventional code

over A and C2 be an (M,N, d2)q̃ conventional code over B.

The Mq̃ codewords of C1 can be indexed as

C1 = {xi,j : i ∈ [M ], j ∈ B}.

From each c = (c1, c2, · · · , cM ) ∈ C2, we can obtain a subset

Xc = {x1,c1 , x2,c2 , · · · , xM,cM} ⊆ C1,

and finally, let

C = {Xc; c ∈ C2}. (21)

Then C is a sequence-subset code over A and we have the

following theorem.

Theorem 9: The code C obtained by Construction 3 has

sequence length L, constant codeword size M , code size

|C| = N , and minimum sequence-subset distance

dS(C) ≥ d1d2.

Proof: From the construction it is easy to see that C has

sequence length L, constant codeword size M and code size

|C| = N . It remains to prove that dS(C) ≥ d1d2, that is,

dS(Xc,Xc′) ≥ d1d2 for any distinct Xc and Xc′ in C, where

c = (c1, c2, · · · , cM ) and c′ = (c′1, c
′
2, · · · , c

′
M ) are any pair

of distinct codewords in C2.

Let A be the set of all i ∈ [M ] such that ci 6= c′i. Since C2
has the minimum (Hamming) distance d2, then

|A| = dH(c, c′) ≥ d2.
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Denote

X̃c = {xi,ci ; i ∈ A} and X̃c′ = {xi,c′
i
; i ∈ A}.

Then by the construction, we have

X̃c = Xc\Xc′ and X̃c′ = Xc′\Xc.

By Corollary 1, it suffices to prove that dS(X̃c, X̃c′) ≥ d1d2.

Note that |X̃c| = |X̃c′ | = |A| and X̃c ∩ X̃c′ = ∅. Then for

any injection χ : X̃c → X̃c′ , we have

dχ(X̃c, X̃c′) =
∑

x∈X̃c

dH(x, χ(x))

≥ |A| · d1

≥ d1d2,

where the equality comes from (1), the first inequality comes

from the assumption that C1 has the minimum (Hamming)

distance d1, and the second inequality comes from the fact

that |A| ≥ d2. By Definition 1, dS(X̃c, X̃c′) ≥ d1d2, and hence

by Corollary 1, dS(Xc,Xc′) ≥ d1d2. Since Xc and Xc′ are any

pair of distinct codewords in C, we have dS(C) ≥ d1d2, which

completes the proof.

Example 5: For illustration of Construction 3, we give a

simple example with M = 4 and q = q̃ = 2. Let C1 be

the [5, 3] binary linear code given in Example 4 and C2 =
{c1, c2, c3, c4} be a binary code, where c1 = 0000, c2 = 0101,

c3 = 1010 and c4 = 1111. The codewords of C1 can be

denoted as xi,j , i = 1, 2, 3, 4, j = 0, 1 such that x1,0 = 00000,

x2,0 = 01001, x3,0 = 10010, x4,0 = 11011, x1,1 = 00111,

x2,1 = 01110, x3,1 = 10101 and x4,1 = 11100. Then by

Construction 3, we have C = {Xc1 ,Xc2 ,Xc3 ,Xc4}, where

Xc1 = {x1,0, x2,0, x3,0, x4,0}, Xc2 = {x1,0, x2,1, x3,0, x4,1},

Xc3 = {x1,1, x2,0, x3,1, x4,0} and Xc4 = {x1,1, x2,1, x3,1, x4,1}.

It is easy to see that d2 = 2 and dS(Xc,Xc′) ≥ d1d2 = 4
for any distinct c, c′ ∈ C2. For example, by Corollary 1,

dS(Xc1 ,Xc2) = dS({x2,0, x4,0}, {x2,1, x4,1}) = 6.

The following is a more general example of Construction

3.

Example 6: Let C1 be an [L, k, d1]q linear code such that

the first k symbols of the codewords of C1 are the information

symbols. For any given integer r such that 1 ≤ r < k, let

q̃ = qr and M = qs, where s = k − r. Note that there exists

a bijection π : [M ] → F
s
q . Moreover, fixing a basis, each

element of Fqr can be uniquely represented as a vector in F
r
q,

so we can identify each element of Fqr as a vector in F
r
q . Then

for each i ∈ [M ] and each j ∈ Fqr , we can let

xi,j = (x1, x2, · · · , xL) :

(x1, x2, · · · , xs) = π(i) and (xs+1, · · · , xk) = j.

Now, let C2 be an [M,K, d2]qr linear code, where K ∈
[M ] is another design parameter. Then for each c =
(c1, c2, · · · , cM ) ∈ C2, we can obtain

Xc = {x1,c1 , x2,c2 , · · · , xM,cM } ⊆ C1,

that is, for each i ∈ [M ], xi,ci = (x1, x2, · · · , xL) such that

(x1, x2, · · · , xs) = π(i) and (xs+1, · · · , xk) = ci.

Finally, we have

C = {Xc; c ∈ C2}.

By Theorem 10, C is a sequence-subset code of sequence

length L, constant codeword size M = qs, code size

|C| = |C2| = qrK , and minimum sequence-subset distance

dS(C) ≥ d1d2.
As a special case of Example 6, suppose q ≥ L − 1 and

s ≤ k
2 . We can let C1 be an [L, k, L− k+1]q MDS code and

C2 be a [qs,K, qs −K +1]qr MDS code. Then the minimum

distance of C satisfies dS(C) ≥ (L− k+1)(qs −K+1). This

special case is essentially similar to the method used in [7].

Let C be a sequence-subset code obtained by Construction 3.

To compare |C| with the bound in Theorem 4, we consider q̃ >

q, L > d1 >
(

1− 1
q

)(

1− 1
q̃

)−1

L and M > d2 > (1− 1
q̃
)M .

Then L > d1 >
(

1− 1
q

)

L and LM > d1d2 >
(

1− 1
q

)

LM .

By the Plotking bound [20], we have

Mq̃ = |C1| ≤
d1

d1 − rL
, (22)

where r = 1− 1
q
, and

N = |C2| ≤
d2

d2 − r̃M
, (23)

where r̃ = 1− 1
q̃
, On the other hand, by Theorem 4,

|C| = N ≤
d1d2

d1d2 − rLM
. (24)

By (22), we have

rL

d1
> 1−

1

Mq̃
≥ 1−

1

q̃
= r̃,

which implies that

1−
r̃M

d2
> 1−

rLM

d1d2
,

and so
d2

d2 − r̃M
<

d1d2
d1d2 − rLM

.

By (23) and (24), |C| does not achieve the bound in Theorem

4.

D. Construction Based on Sequence Index

In this subsection, if x = (x(1), x(2), · · · , x(L)) ∈ A
L and

I = {i1, i2, · · · , im} ⊆ [L] such that i1 < i2 < · · · < im,

then we denote x(I) = (x(i1), x(i2), · · · , x(im)).
The construction given in this subsection is a slight im-

provement of the Construction 1 of [14].

Construction 4: Let C1 = {s1, s2, · · · , sM} ⊆ A
L1 be a

conventional code over A with block length L1 and the min-

imum (Hamming) distance d1, and C2 = {u1, u2, · · · , uN} ⊆
A

d1M be a conventional code over A with block length d1M
and the minimum (Hamming) distance d2. For each j ∈ [M ],
let

Ij = {ℓ ∈ Z; (j − 1)d1 < ℓ ≤ jd1}
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and for each i ∈ [N ], let

Xi = {xi,1, xi,2, · · · , xi,M}

such that for each j ∈ [M ],

xi,j = (sj , ui(Ij)).

Finally, let

C = {Xi; i ∈ [N ]}. (25)

Then C is a sequence-subset code over A. In this construc-

tion, each codeword sj of C1 serves as an index of the sequence

xi,j of the codeword Xi, and ui(Ij) is the information part of

xi,j . For this reason, this construction is called a construction

based on sequence index. Moreover, we have the following

theorem.

Theorem 10: The code C obtained by Construction 4 has

sequence length L = L1 + d1, constant codeword size M ,

code size |C| = N , and minimum sequence-subset distance

dS(C) ≥ d2.

Proof: Clearly, C has sequence length L = L1 + d1,

constant codeword size M and code size |C| = N . It remains

to prove that dS(C) ≥ d2.
Let i1, i2 ∈ [N ] be any two distinct elements of [N ],

we need to prove that dS(Xi1 ,Xi2) ≥ d2, where Xi1 =
{xi1,1, xi1,2, · · · , xi1,M} and Xi2 = {xi2,1, xi2,2, · · · , xi2,M}.

For any permutation3 χ : [M ] → [M ], let

N = {j ∈ [M ];χ(j) = j}

and

Ñ = {j ∈ [M ];χ(j) 6= j}.

Then N ∩ Ñ = ∅ and N ∪ Ñ = [M ]. Moreover, by (1), we

have

dχ(Xi1 ,Xi2) =

M
∑

j=1

dH(xi1,j , xi2,χ(j))

=
∑

j∈N

dH(xi1,j, xi2,χ(j)) +
∑

j∈Ñ

dH(xi1,j , xi2,χ(j)

=
∑

j∈N

dH(xi1,j, xi2,j) +
∑

j∈Ñ

dH(xi1,j, xi2,χ(j).

(26)

We will estimate the two terms of the right side of Equation

(26) separately.

First, by the construction, we have

M
∑

j=1

dH(xi1,j, xi2,j) =
M
∑

j=1

dH(ui1(Ij), ui2(Ij))

= dH(ui1 , ui2) = d2.

Moreover, since for each i ∈ [N ] and j ∈ [M ], ui(Ij) has

length d1, then again by construction of C, we have

dH(xi1,j , xi2,j) = dH(ui1(Ij), ui2(Ij)) ≤ d1.

3Note that any bijection between Xi1 and Xi2 can be uniquely represented
by a permutation on the index set [M ], so when applying (1) to the pair
{Xi1 ,Xi2}, we can use permutations on [M ] to replace bijections between
Xi1 and Xi2 .

Hence, we obtain

∑

j∈N

dH(xi1,j , xi2,j)=

M
∑

j=1

dH(xi1,j , xi2,j)−
∑

j∈Ñ

dH(xi1,j , xi2,j)

=

M
∑

j=1

dH(ui1(Ij), ui2(Ij))

−
∑

j∈Ñ

dH(ui1 (Ij), ui2(Ij))

≥ d2 − |Ñ | · d1.

Second, since C1 has the minimum (Hamming) distance d1,

then by construction of C, we have
∑

j∈Ñ

dH(xi1,j, xi2,χ(j) ≥
∑

j∈Ñ

dH(sj , sχ(j)) ≥ |Ñ | · d1.

Combining the above two inequalities with (26), we obtain

dχ(Xi1 ,Xi2) =
∑

j∈N

dH(xi1,j , xi2,j) +
∑

j∈Ñ

dH(xi1,j , xi2,χ(j)

≥
(

d2 − |Ñ | · d1
)

+ |Ñ | · d1

= d2.

Since χ : [M ] → [M ] is an arbitrary bijection, then by

Definition 1, we have

dS(Xi1 ,Xi2) ≥ d2.

Moreover, since i1 and i2 are any two distinct elements of

[N ], so we have

dS(C) ≥ d2,

which completes the proof.

Example 7: Let A = F2, C1 = {s1, s2} and C2 =
{u1, u2, u3}, where s1 = 0000, s2 = 1111, u1 = 00000000,

u2 = 11111000 and u3 = 01010111. We can check that

L1 = d1 = 4, M = 2, N = 3 and d2 = 5. We can divide each

ui into M = 2 segments, each of length L1 = 4, and denote

each ui = ui,1ui,2. For example, u3,1 = 0101 and u3,2 =
0111. By Construction 4, we can obtain C = {X1,X2,X3},

where X1 = {s1u1,1, s2u1,2} = {00000000, 11110000},

X2 = {s1u2,1, s2u2,2} = {00001111, 11111000} and X3 =
{s1u3,1, s2u3,2} = {00000101, 11110111}. It is easy to verify

that dS(C) = 5 = d2.

In Construction 1 of [14], each sequence xi,j = (sj , ui,j)
such that each ui,j is viewed as an element of the field

FqL−⌈logM⌉ and (ui,1, · · · , ui,M ) is a codeword of an MDS

code over FqL−⌈log M⌉ . In comparison, our construction uses

codes (i.e., C2) of length d1M over Fq (rather than its exten-

sion field), and ui,1, · · · , ui,M are obtained by dividing each

codeword of C2 into M segments of length d1, which allows

us to construct C2 with greater sequence-subset distance. For

example, suppose q = 2, d1 = 8 M = 10 and N = 248. Then

by Construction 1 of [14], we need a [10, 6] MDS codes over

the field F28 , which has minimum distance 5. In comparison,

by our construction, we can let C2 be a [80, 48] linear code

over F2 with minimum distance d2 = 10 (e.g., see [25]). By
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Theorem 10, the corresponding sequence-subset code has a

greater minimum distance.

Construction 4 can be extended to the following construc-

tion.

Construction 4′: Let C1, C2 and Ij , j ∈ [M ], be the same

as in Construction 4. Let n be a given positive integer. For

each n-tuple i = (i1, i2, · · · , in) ∈ [N ]n, let

Xi = {xi,1, xi,2, · · · , xi,M}

such that for each j ∈ [M ],

xi,j = (sj , ui1(Ij), · · ·, uin(Ij)).

Finally, let

C̃ = {Xi; i = (i1, i2, · · · , in) ∈ [N ]n}.

Then we have the following theorem.

Theorem 11: The code C̃ obtained by Construction 4′ has

sequence length L = L1+nd1, constant codeword size M and

code size |C̃| = Nn, and minimum sequence-subset distance

dS(C̃) ≥ d2.

Proof: Clearly, the code C̃ has sequence length L =
L1 + nd1, constant codeword size M and code size |C̃| =
Nn. To estimate the minimum distance of C̃, suppose

(i1, i2, · · · , in) = i 6= i′ = (i′1, i
′
2, · · · , i

′
n) ∈ [N ]n. Without

loss of generality, assume i1 6= i′1. For each j ∈ [M ],
consider the subsequence x′

i,j = (sj , ui1(Ij)) of xi,j and

the subsequence x′i′,j = (sj , ui′1
(Ij)) of xi′,j . By the same

discussions as in the proof of Theorem 10, we can prove

that dS(X
′
i,X′

i′) ≥ d2, where X′
i = {x′i,j; j ∈ [M ]} and

X′
i′ = {x′i′,j; j ∈ [M ]}. Since sequences in X′

i (resp. X′
i′)

are subsequences of Xi (resp. Xi′), then it is easy to see

that dS(Xi,Xi′) ≥ dS(X
′
i ,X′

i′) ≥ d2. Hence, the minimum

sequence-subset distance of C̃ satisfies dS(C̃) ≥ d2.

Example 8: Let C1 and C2 be the same as in Exam-

ple 7, and let n = 2. As in Example 7, we can de-

note each ui as ui = ui,1ui,2. By Construction 4′,

for each i = (i1, i2) ∈ {1, 2, 3}2, we have Xi =
{s1ui1,1ui2,1, s2ui1,2ui2,2}. For example, for i = (1, 1),
X(1,1) = {000000000000, 111100000000}; for i = (1, 2),
X(1,2) = {000000001111, 111100001000}; for i = (3, 2),
X(3,2) = {000001011111, 111101111000}. We can esti-

mate dS(X(1,2),X(3,2)) as follows. Consider dS(X
′
(1,2),X′

(3,2)),
where X′

(1,2) = {s1u2,1, s2u2,2} = {00000000, 11110000}
is a subsequence of X(1,2) and X′

(3,2) = {s1u3,1, s2u3,2} =
{00000101, 11110111} is a subsequence of X(3,2). Note that

X′
(1,2) and X′

(3,2) are two distinct codewords of the code

constructed in Example 7, so we have dS(X
′
(1,2),X′

(3,2)) ≥ 5,

and hence dS(X(1,2),X(3,2)) ≥ dS(X
′
(1,2),X′

(3,2)) ≥ 5. Sim-

ilarly, we can verify that dS(Xi,Xi′) ≥ 5 for all distinct

i, i′ ∈ {1, 2, 3}2. Thus, the minimum sequence-subset distance

of C̃ satisfies dS(C̃) ≥ 5 = d2, where C̃ = {Xi; i ∈ {1, 2, 3}2}.

In fact, we have dS(C̃) = 5 because we can verify that

dS(X(1,2),X(3,2)) = 5.

V. CONCLUSIONS AND DISCUSSIONS

We introduced a new metric over the power set of the

set of all vectors over a finite alphabet, which generalizes

the classical Hamming distance and was used to establish

a uniform framework to design error-correcting codes for

DNA storage channel. Some upper bounds on the size of the

sequence-subset codes were derived and some constructions

of such codes were proposed.

A. Open Problems in Sequence-subset Codes

It is still an open problem to analyze the tight upper bound

on the size of sequence-subset codes and design optimal codes

for general parameters of sequence length, codeword size and

minimum distance. Another interesting problem is how to

design sequence-subset codes for DNA storage channel that

can be efficiently encoded and decoded.

B. Sequence-Subset Distance for Multisets

The sequence-subset distance (Definition 1) can be directly

generalized to multisets of sequences in A
L. The following is

an example of sequence-subset distance between multisets.

Example 9: Suppose A = {0, 1} and L = 4. Consider

X1 = {x1, x2, x3} and X2 = {y1, y2, y3, y4}, where x1 =
x2 = 0101, x3 = 1011, y1 = 0111, y2 = 1101, and y3 = y4 =
1001. Let χ0 : X1 → X2 be such that χ0(xi) = yi, i = 1, 2, 3.

Then we can obtain dH(xi, χ0(xi)) = 1 for all i ∈ {1, 2, 3},

and by (1), we have dχ0
(X1,X2) = 7. Note that dH(xi, yj) ≥ 1

for all xi ∈ X1 and yj ∈ X2. Then we have dχ(X1,X2) ≥ 7 for

all χ ∈ X , and hence by (2), dS(X1,X2) = dχ0
(X1,X2) = 7.

By similar discussions as in Section II.A, we can prove

that the function dS(X,Y) is a distance function, where X

and Y are multisets of sequences in A
L. Using sequence-

subset distance between multisets, we can allow the output

of the DNA storage channel to be multisets (rather than sets)

of sequences in A
L. Since in the real DNA storage, some DNA

strands may have many copies that are sequenced, multisets

are more suitable than sets for the output of the DNA storage

channel.

Another advantage of using multisets as the output of the

DNA storage channel is that it captures the case when there

are t (> 1) strands that are changed to the same strand by

substitution errors. Note that if using sets as the output of the

channel, then t−1 of these sequences have to be viewed as lost

sequences, which induces a larger sequence-subset distance

between the input and output.

To study the properties of codes over the space of all mul-

tisets of A
L with sequence-subset distance is also a possible

research direction.

APPENDIX A

PROOF OF LEMMA 1

If X1∩X2 = ∅, the claim is naturally true. In the following,

we assume that X1 ∩ X2 6= ∅.

First, we claim that for each χ ∈ X such that dS(X1,X2) =
dχ(X1,X2) and each y ∈ X1 ∩ X2, there exists an x ∈ X1

such that y = χ(x). This can be proved, by contradiction, as



15

follows. Suppose there is a y ∈ X1 ∩ X2 such that y 6= χ(x′)
for all x′ ∈ X1. Since y ∈ X1 ∩ X2, then we have χ(y) 6= y,

and hence we can let χ′ : X1 → X2 be such that χ′(y) = y

and χ′(x′) = χ(x′) for all x′ ∈ X1\{y} (see Fig. 2 for an

illustration). Note that dH(y, χ
′(y)) = 0 < dH(y, χ(y)) and

dH(x
′, χ′(x′)) = dH(x

′, χ(x′)) for all x′ ∈ X1\{y}. By (1),

we have dχ′(X1,X2) < dχ(X1,X2), which contradicts to (2).

Hence, by contradiction, for each y ∈ X1∩X2, there exists an

x ∈ X1 such that y = χ(x).

y

yy0

χ
′

χχ
′=χ χ

′=χ

· · · · · ·

· · · · · ·

X1 :

X2 :

Fig 2. An illustration of the injections in the proof of Lemma 1: For the
injection χ, there exists a y ∈ X1∩X2 such that χ(y) 6= y. Denote χ(y) = y0.
Then we can modify the injection χ to a different injection χ′ by letting
χ′(y) = y, and the image of all other elements of X1 keep unchanged.

y

yy0

χχ χ
′

χ
′

χ
′=χ χ

′=χ

· · · · · ·x

· · · · · ·

X1 :

X2 :

Fig 3. An illustration of the bijections in the proof of Lemma 1: For the
bijection χ, we have χ(x) = y and χ(y) = y0 6= y, where y ∈ X1 ∩X2. We
modify the bijection χ to a different bijection χ′ by letting χ′(x) = y0 and
χ′(y) = y, and the image of all other elements of X1 keeping unchanged.

Now, pick a χ ∈ X such that dS(X1,X2) = dχ(X1,X2)
and denote

N (χ) = {y′ ∈ X1 ∩ X2;χ(y
′) 6= y′}.

If N (χ) = ∅, then by the definition of N (χ), χ(x) = x for

all x ∈ X1 ∩ X2 and we can choose χ0 = χ. Otherwise, pick

a y ∈ N (χ) and we have χ(y) = y0 for some y0 ∈ X2\{y}.

Moreover, by previous discussion, there exists an x ∈ X1 such

that y = χ(x). Then we can let χ′ : X1 → X2 be such that

χ′(x) = y0, χ′(y) = y and χ′(x′) = χ0(x
′) for all x′ ∈

X1\{x, y} (see Fig. 3 for an illustration). Note that

dH(x, χ
′(x)) + dH(y, χ

′(y)) = dH(x, y0) + dH(y, y)

= dH(x, y0)

≤ dH(x, y) + dH(y, y0)

= dH(x, χ(x)) + dH(y, χ(y))

and by construction of χ′,

dH(x
′, χ′(x′)) = dH(x

′, χ(x′)), ∀x′ ∈ X1\{x, y}.

By (2), we have

dS(X1,X2) = dχ(X1,X2) = dχ′(X1,X2).

Again by construction of χ′, we have N (χ′) = N (χ)\{y},
and hence

|N (χ′)| = |N (χ)| − 1,

where

N (χ′) = {y ∈ X1 ∩ X2;χ
′(y) 6= y}.

If N (χ′) = ∅, then χ′(x) = x for all x ∈ X1∩X2 and we can

choose χ0 = χ′. Otherwise, by the same discussion, we can

obtain a χ′′ : X1 → X2 such that dS(X1,X2) = dχ′′ (X1,X2)
and |N (χ′′)| = |N (χ′)|− 1, and so on. Noting that N (χ′′) ⊆
X1 ∩ X2 is a finite set, we can always find a χ0 ∈ X such

that dS(X1,X2) = dχ0
(X1,X2) and

N (χ0) = {y ∈ X1 ∩ X2;χ0(y) 6= y} = ∅.

Hence, we have χ0(x) = x for all x ∈ X1 ∩ X2, which

completes the proof.

APPENDIX B

PROOF OF LEMMA 2

It suffices to prove that if X′
2 ⊆ X2 and |X1| ≤ |X′

2| =
|X2| − 1, then

dS(X1,X′
2) ≤ dS(X1,X2).

Without loss of generality, we can assume

X1 = {x1, · · · , xn},

X′
2 = {y1, · · · , yn, yn+1, · · · , yn+s−1}

and

X2 = {y1, · · · , yn, yn+1, · · · , yn+s−1, yn+s},

where s ≥ 1, such that

dS(X1,X′
2) =

n
∑

i=1

dH(xi, yi) + L(s− 1).

By Definition 1, we can suppose

dS(X1,X2) =

n
∑

i=1

dH(xi, yℓi) + Ls,

where {ℓi; i = 1, 2, · · · , n} is a subset of {1, 2, · · · , n + s}.

We have the following two cases.

Case 1: n+ s /∈ {ℓ1, ℓ2, · · · , ℓn}. In this case, we have

dS(X1,X′
2) =

n
∑

i=1

dH(xi, yi) + L(s− 1)

≤
n
∑

i=1

dH(xi, yℓi) + L(s− 1)

<

n
∑

i=1

(dH(xi, yℓi) + Ls

= dS(X1,X2),

where the first inequality is obtained by (2).

Case 2: There exists a k ∈ {1, 2, · · · , n} such that

n + s = ℓk. Noticing that s ≥ 1, then there exists an

m ∈ {1, 2, · · · , n + s − 1} such that m /∈ {ℓ1, ℓ2, · · · , ℓn}.
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Denote ℓ′k = m and ℓ′i = ℓi for i ∈ {1, 2, · · · , n}\{k}. Then

we have

{ℓ′1, ℓ
′
2, · · · , ℓ

′
n} ⊆ {1, 2, · · · , n+ s− 1}. (27)

Moreover, noticing that {xk, ym, yℓk
} ⊆ X1 ∪ X2 ⊆ A

L,

then dH(xk, ym) ≤ L and dH(xk, yℓk) ≤ L. Hence, we can

obtain

dH(xk, ym)− dH(xk, yℓk) ≤ L. (28)

And further we have

dS(X1,X′
2) =

n
∑

i=1

dH(xi, yi) + L(s− 1)

≤
n
∑

i=1

dH(xi, yℓ′
i

) + L(s− 1)

=

n
∑

i=1

dH(xi, yℓi
)− dH(xk, yℓk) + dH(xk, ym)

+ L(s− 1)

≤
n
∑

i=1

(dH(xi, yℓi) + L+ L(s− 1)

= dS(X1,X2),

where the first inequality is obtained by (27) and (2), and the

second inequality is obtained by (28).

Thus, we always have dS(X1,X′
2) ≤ dS(X1,X2), which

completes the proof.

APPENDIX C

PROOF OF THEOREM 1

By Definition 1, it is easy to see that for any two subsets

X1 and X2 of A
L, dS(X1,X2) = dS(X2,X1) ≥ 0. Moreover,

by Corollary 1, we can easily see that dS(X1,X2) = 0 if and

only if X1 = X2. To prove that dS(·, ·) is a distance function,

we only need to prove the triangle inequality, that is,

dS(X1,X2) ≤ dS(X1,X3) + dS(X2,X3)

for any three subsets X1, X2 and X3 of A
L. Without loss of

generality, we can assume that |X1| ≤ |X2|. Then we have the

following three cases.

Case 1. |X1| ≤ |X2| ≤ |X3|. In this case, we can fix a

subset X′
3 ⊆ X3 of size |X′

3| = |X2|. Then by Lemma 2,

dS(X1,X′
3) ≤ dS(X1,X3) and dS(X2,X′

3) ≤ dS(X2,X3). It

suffices to prove that

dS(X1,X2) ≤ dS(X1,X′
3) + dS(X2,X′

3).

Without loss of generality, we can assume

X1 = {x1, · · · , xn},

X2 = {y1, · · · , yn, yn+1, · · · , yn+s},

X′
3 = {z1, · · · , zn, zn+1, · · · , zn+s}

such that

dS(X1,X′
3) =

n
∑

i=1

dH(xi, zi) + Ls,

dS(X2,X′
3) =

n+s
∑

i=1

dH(yi, zi)

and

dS(X1,X2) =

n
∑

i=1

dH(xi, yℓi) + Ls,

where s ≥ 0 and {ℓ1, ℓ2, · · · , ℓn} ⊆ {1, 2, · · · , n+ s}. Then

we have

dS(X1,X2) =

n
∑

i=1

dH(xi, yℓi) + Ls

≤
n
∑

i=1

dH(xi, yi) + Ls

≤
n
∑

i=1

(dH(xi, zi) + dH(yi, zi)) + Ls

≤
n
∑

i=1

dH(xi, zi)+Ls+
n+s
∑

i=1

dH(yi, zi)

= dS(X1,X′
3) + dS(X2,X′

3)

≤ dS(X1,X3) + dS(X2,X3),

where the first inequality is obtained by (2) and the last

inequality is obtained by Lemma 2.

Case 2. |X1| ≤ |X3| ≤ |X2|. In this case, we can assume

X1 = {x1, · · · , xn},

X3 = {y1, · · · , yn, yn+1, · · · , yn+s},

X2 = {z1, · · · , zn, zn+1, · · · , zn+s, zn+s+1, · · · , zn+s+t}

such that

dS(X1,X3) =

n
∑

i=1

dH(xi, yi) + Ls,

dS(X2,X3) =
n+s
∑

i=1

dH(yi, zi) + Lt

and

dS(X1,X2) =

n
∑

i=1

dH(xi, zℓi) + L(s+ t),

where s, t ≥ 0 and {ℓ1, ℓ2, · · · , ℓn} ⊆ {1, 2, · · · , n + s + t}.

Then we have

dS(X1,X2) =

n
∑

i=1

dH(xi, zℓi) + L(s+ t)

≤
n
∑

i=1

dH(xi, zi) + L(s+ t)

≤
n
∑

i=1

(dH(xi, yi) + dH(yi, zi)) + L(s+ t)

≤
n
∑

i=1

dH(xi, yi)+Ls+

n+s
∑

i=1

dH(yi, zi)+Lt

= dS(X1,X3) + dS(X2,X3),

where the first inequality is obtained by (2).



17

Case 3. |X3| ≤ |X1| ≤ |X2|. In this case, we can assume

X3 = {x1, · · · , xn},

X1 = {y1, · · · , yn, yn+1, · · · , yn+s},

X2 = {z1, · · · , zn, zn+1, · · · , zn+s, zn+s+1, · · · , zn+s+t}

such that

dS(X1,X3) =

n
∑

i=1

dH(xi, yi) + Ls,

dS(X2,X3) =

n
∑

i=1

dH(xi, zi) + L(s+ t)

and

dS(X1,X2) =

n+s
∑

i=1

dH(yi, zℓi) + Lt,

where s, t ≥ 0 and {ℓ1, ℓ2, · · · , ℓn} ⊆ {1, 2, · · · , n + s + t}.

Then we have

dS(X1,X2) =

n+s
∑

i=1

dH(yi, zℓi) + Lt

≤
n+s
∑

i=1

dH(yi, zi) + Lt

≤
n+s
∑

i=1

(dH(xi, yi) + dH(xi, zi)) + Lt

≤
n
∑

i=1

dH(xi, yi)+Ls+

n
∑

i=1

dH(xi, zi)+L(s+t)

= dS(X1,X3) + dS(X2,X3),

where the first inequality is obtained by (2), and the third

inequality is obtained from the simple fact that dH(·, ·) ≤ L.

For all cases, we have proved that

dS(X1,X2) ≤ dS(X1,X3) + dS(X2,X3).

Hence, dS(·, ·) satisfies the triangle inequality.

By the above discussion, we proved that dS(·, ·) is a distance

function over P(AL).
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