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Abstract—This paper considers the problem of simultaneous
information and energy transmission (SIET), where the energy
harvesting function is only known experimentally at sample
points, e.g., due to nonlinearities and parameter uncertainties
in harvesting circuits. We investigate the performance loss due
to this partial knowledge of the harvesting function in terms
of transmitted energy and information. In particular, we assume
harvesting functions are a subclass of Sobolev space and consider
two cases, where experimental samples are either taken noise-
lessly or in the presence of noise. Using constructive function
approximation and regression methods for noiseless and noisy
samples respectively, we show that the worst loss in energy
transmission vanishes asymptotically as the number of samples
increases. Similarly, the loss in information rate vanishes in the
interior of the energy domain, however, does not always vanish at
maximal energy. We further show the same principle applies in
multicast settings such as medium access in the Wi-Fi protocol.
We also consider the end-to-end source-channel communication
problem under source distortion constraint and channel energy
requirement, where distortion and harvesting functions both are
known only at samples.

Index Terms—Energy harvesting, information theory, multi-
cast, joint source-channel coding, Sobolev spaces

I. INTRODUCTION

There is growing interest in simultaneous information and
energy transmission (SIET) where a single patterned energy
signal carries both over a noisy channel. Information-theoretic
investigation in this direction started in [1], and has now
spawned hundreds of results in the wireline [2] and especially
the wireless setting (referred to as SWIPT (simultaneous
wireless information and power transmission) in literature),
see e.g. [3], [4] for recent surveys. These classes of problems
are important for sensor networks, Internet of Things (IoT),
and similar settings where terminals may require energy.

Past theoretical works typically assume simple energy har-
vesting functions such as quadratic [5], so the amount of
energy obtained from received signal y(t) is

∫ τ
0
y2(t)dt,

where τ is the symbol duration. However, practical energy
harvesting circuits have nonlinearities and nonidealities that
complicate the relationship between channel output symbol
values and their harvested energy [6]–[10]. Indeed, this energy
harvesting function may only be available through samples
from experiments [11]–[16] or perhaps from analog electronic
circuit simulations [17]. See Fig. 1 for examples of harvesting
circuits and their nonlinear energy harvesting functions, known
only at samples [18]. Due to physical considerations from
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Fig. 1. Samples of energy harvesting functions of the circuit shown as an
inset, with one and nine stages of voltage multipliers. Circuit design and
experimental simulation data taken from [18, Figs. 1 and 3], redrawn and
replotted to show relationship between RF and harvested energy.

electromagnetics, however, we know these energy harvesting
functions will be smooth in the sense of Sobolev [19]. Since
our knowledge of harvesting functions will only be partial, it
leads to a general problem of energy-requiring channel coding
(and joint source-channel coding1) with partial knowledge of
the energy harvesting function.

Unlike the received symbol, which is uncontrollable due to
channel noise—e.g., in the low signal to noise ratio (SNR)
regime, thus, it results in uncontrolled harvested energy as
well—the transmitted symbol is always under control. Moti-
vated by this limitation, unlike [1], we think of the harvesting
function as a function (or a stochastic function, e.g. in the case
of noisy measurements) of the transmitted symbol, which is
a sufficiently general model for many modern communication
systems.

The goal of this work is to investigate how much worst-case
loss in SIET energy and information performance is incurred
due to the partial knowledge of the harvesting function from
samples. In particular, we study fundamental limits of point-
to-point SIET systems when the signalling scheme is optimally
designed based not on the full harvesting function but based
on the given samples under the assumption the harvesting
function is from some class of smooth functions. We consider
two settings separately: when samples are noiseless or when
samples are noisy. We draw on results from approximation

1As far as we can tell, joint source-channel coding has not been considered
in the SIET literature even in the full knowledge setting.
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Fig. 2. System model for multicast.

theory including the spline method in function approximation
[20] for noiseless samples, and the local polynomial estimator
in non-parametric regression [21] for noisy samples. We prove
that the worst-case amount of energy transmission is asymp-
totically close to the energy when the harvesting function is
fully known. The worst-case information transmission is also
asymptotically close in the interior of energy domain, but
sampled knowledge of the harvesting function may result in
full information loss in general when the system is designed
for the maximum energy transmission. If the codeword is
designed with a small margin away from the maximum energy
transmission, it is still possible in general to achieve arbitrarily
small information loss.

Moving beyond the point-to-point case, we also consider a
multiterminal setting. As well as other multiterminal settings
[22], [23], a setting of medium access as in the Wi-Fi downlink
protocol has been of recent interest in energy transmission
using downlink Wi-Fi, but largely disconnected from optimal
physical-layer designs [24]. In particular we consider multicast
from a central access point, where energy and the same
message are desired by several receivers, as in the beacon
signal and protocol information that take up much of Wi-Fi
traffic. See Fig. 2 for a block diagram on the multicast setting,
where we have different channels, harvesting functions, and
energy requirements for different receiver nodes. We find that
the energy and information asymptotics from the point-to-
point setting continue to hold for multicast.

Returning to the point-to-point setting, we also consider
end-to-end transmission with both source and channel coding.
As far as we know, such joint source and channel coding
(JSCC) problems have remained unstudied in the SIET lit-
erature, even under full information on the distortion function
for lossy source coding and the energy harvesting function.
Here, we consider the problem with samples for the distortion
and harvesting functions. We build on results for lossy source
coding with a sampled distortion function due to Niesen et
al. [25], and make use of similar proof techniques. Since the
distortion loss in source coding ( [25]) and energy harvesting
loss in SIET (Sec. III) both asymptotically vanish, one might
expect the performance loss in the end-to-end problem to also
vanish asymptotically. We clarify conditions for which the loss
vanishes and also give an example where the loss is bounded
away from zero irrespective of the number of samples. This

is important to note for end-to-end system design.
The rest of this paper is organized as follows. Sec. II for-

mally defines the unicast problem. Sec. III studies energy and
information losses incurred due to the lack of full knowledge
of the true energy function for point-to-point communication.
Sec. IV extends results to multicast. Sec. V considers the
end-to-end transmission problem with source distortion and
channel harvesting functions. Sec. VI concludes.

II. PROBLEM FORMULATION

Consider the now-standard formulation of SIET systems
from [1], where the goal is to use a patterned energy signal
to simultaneously transmit reliable information and energy
over a noisy channel. Recall that in a standard SIET system,
first at the transmitter, messages are encoded into a codeword
xn ∈ Xn to protect against channel noise, where n is
codeword length. Then, the codeword is modulated into a
sequence of n baseband signals using a given modulation
scheme, and then up-converted into a sequence of physical
radio frequency (RF) waves. Attenuation and noise corrupt
the RF waves so that the receiver observes a noisy version of
RF waves, which is denoted by Y n ∈ Yn. The receiver repeats
the process in reverse, that is, down-converts into a baseband
signal, demodulates, and decodes.

The received RF signal is also passed through an energy-
harvesting circuit as in Fig. 1—either directly or through a
signal splitting architecture [5], [26]—to capture energy. We
suppose the information decoder and energy harvester both
process the same signal. Our mathematical formulation sub-
sumes a signal splitting scheme with a certain ratio ρ, called
static power splitting [5], with proper scaling of harvesting
function. Since the receiver obtains energy from the received
RF signal, in addition to maximizing information transmission
between the transmitter and the receiver, a guarantee on the
amount of energy delivery, say B, via the RF signal is also
required.

As shown in [1], the fundamental limits of this problem are
governed by the capacity-energy function:

Cb(B) = max
PX :E[b(Y )]≥B

I(X;Y ), (1)

where X ∈ X , Y ∈ Y are transmitted and received sym-
bols, respectively, and b(Y ) is the energy harvesting function
for the received symbol Y . Note that the minimum energy
requirement of (1) can be also written in terms of x using
conditional expectation, i.e., letting β(x) := EY |x[b(Y )],

EY [b(Y )] = EX
[
EY |X [b(Y )]

]
= EX [β(X)].

Hence we can think of the harvesting function as a (perhaps
random) function2 of the transmission alphabet symbols, with

2We assume β is experimentally available at sample points, e.g. by
performing multiple measurments and averaging them at each point. The
average corresponds to noiseless samples in Sec. III-A when it is sufficiently
accurate, otherwise noisy in Sec. III-B.
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Fig. 3. Typical Cβ , CΓ(β,m) curves are depicted. Two losses ∆E,∆I incurred
by sampling are defined in Sec. II-C.

the following equivalent capacity-energy expression: for a
harvesting function f and a set of harvesting functions F ,

Cf (B) = max
PX :E[f(X)]≥B

I(X;Y ), (2)

CF (B) = sup
PX :E[f(X)]≥B ∀f∈F

I(X;Y ), (3)

which are used throughout the sequel. CF (B) indicates the
maximal information rate at which we can send energy no
smaller than B for any harvesting function in F . Note that
CF (B) ≤ Cf (B) since the underlying probability space of
(3) is a subset to that of (2). As illustrated in Fig. 3, the
tradeoff is non-increasing and concave.

We also define energy-capacity functions Bf (R), BF (R)
as

Bf (R) = max
PX :I(X;Y )≥R

E[f(X)], (4)

BF (R) = max
PX :I(X;Y )≥R

inf
f∈F

E[f(X)]. (5)

Clearly, Bf (R), BF (R) are dual optimization problems of
Cf (B), CF (B).

A probability distribution for X that achieves Cf (B) is
called a capacity-achieving distribution, i.e.,

P ∗X ∈ arg max
PX :E[f(X)]≥B

I(X;Y ),

where ‘∈’ indicates that such capacity-achieving distribution
is not necessarily unique. The maximizers with respect to
CF (B), Bf (R), BF (R) are similarily defined and also called
capacity-achieving distributions. In this case, the constraint
function (or set) will be clear from context. Also note that
when a certain PX is given, it can be thought of as Shannon’s
random codebook with rate I(X;Y ), generated from PX [27].

A. Channel Alphabets

In this work, we take X = [0, 1] and Y as the set of all
possible received signals, as determined by the physics of the
system. Taking the input alphabet as the unit interval rather
than the real line imposes a peak power constraint [1], [2], [28]
and is motivated by practical discrete-time analog or dense
constellation digital communication systems, as follows.
• AWGN channel: The standard AWGN channel has X =
Y = R and codewords xn ∈ Rn. However, due to

limitations on RF front end, we may assume X = [−a, a]
so it is possible to assume X = [0, 1] without loss of
generality.

• AM in discrete-time: In amplitude modulation (AM), at
each time slot analog information x ∈ [0, 1] = X is
modulated and up-converted to x cos(2πfct), where fc is
the carrier frequency.

• Dense constellation QAM: Although the constellation set
is discrete in 2-dimensional space, it can be thought of
as a 2-dimensional continuous interval when sufficiently
dense, say [0, 1]2 = X 2. As an example, in dense
quadratic amplitude modulation (QAM), a constellation
point x = [x1, x2] ∈ [0, 1]2 generates the RF wave
x1 sin(2πfct)− x2 cos(2πfct).

• Dense constellation OFDM: Consider a binary sequence
of length 2N , x = [x1, x2, . . . , x2N ] ∈ {0, 1}2N . Using
a 2N -bit binary representation of real values in [0, 1], it
can be thought of as {0, 1}2N ≈ [0, 1] = X when N is
large enough. Once x = [x1, . . . , x2N ] ∈ X is chosen, the
generated baseband signal is

∑N
k=1 x2k−1 sin(2πkt/T )−

x2k cos(2πkt/T ).
• Dense constellation DSSS: Similar to OFDM, we can

assume x = [x1, x2, . . . , x2N ] ∈ X ≈ [0, 1]. Each bit of x
is XORed with an assigned pseudo-noise (PN) sequence.

B. Continuity

We make two continuity assumptions. The first is to as-
sume that the channel is continuous in the sense that when
x1, x2 ∈ X are close, the distributions of Y1 and Y2 are also
close. More precisely, when a sequence xn → x, the resulting
received signals Yn → Y in distribution.34 The second is
to assume the energy harvesting function β(·) is smooth on
X , due to physical continuity of electromagnetic signals and
circuits [19]. To define the smoothness rigorously, let us first
introduce the Lq norm and the Sobolev space Wλ

q .
Definition 1: For a Lebesgue-measurable function f on X ,

let the Lq norm for q ∈ [1,∞] be

||f ||q =

{(∫
X |f(x)|qdx

)1/q
if 1 ≤ q <∞,

ess supx∈X |f(x)| if q =∞.

Let Lq = Lq(X ) be the set of all Lq-integrable functions on
X , i.e., ||f ||q <∞ if f ∈ Lq .

Definition 2: For λ ∈ N, q ∈ [1,∞], the Sobolev space
Wλ
q (X ) is defined as the set of functions in Lq such that

derivatives of order equal or less than λ exist and are in Lq ,
i.e.,

Wλ
q (X ) := {f ∈ Lq(X ) : f (k) ∈ Lq ∀k ≤ λ},

3This makes particular sense when noise is signal-independent, such as in
OFDM or DSSS, where a set of length-2N binary sequences in examples
above can be rearranged in a Gray code manner so two successive elements
differ only in one bit out of 2N bits. Then the one-bit difference results in RF
signals that also differ only by one subcarrier element in OFDM and one PN
sequence duration in DSSS, respectively. Due to the independence of noise,
received signals are also similarly distributed so that the channel is continuous
in the above sense.

4Note that this notion of continuity has nothing to do with capacity-
achieving input distributions and their discreteness [28]. Such discreteness
does appear in the conditions for Thm. 7.
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where f (k) is the kth derivative of f .
We define our class of energy harvesting functions, ΓK , as

a subset of Wλ
∞(X ) satisfying:

ΓK = {β ∈ Wλ
∞(X ) : ||β(k)||∞ ≤ K ∀k ≤ λ}.

When the argument of || · ||q for q ∈ [1,∞] is a real-valued
vector x ∈ Rd, ||x||q denotes the `q norm with slight abuse
of notation.

||x||q =


(∑d

i=1 |xi|q
)1/q

if 1 ≤ q <∞,
max1≤i≤d |xi| if q =∞.

C. Sampling and Losses
We consider regular fixed design of samples, that is, m

samples are evenly-spaced on X = [0, 1] so that xi = i
m−1

where i = 0, 1, . . . ,m−1. Energy samples are experimentally
taken either in the absence of noise or in the presence of
noise, which yield different strategies. However, the choice of
strategy does not make a substantial difference as we will see.

For noiseless samples {( i
m−1 , β( i

m−1 ))}m−1
i=0 , let

Γ(β,m) ⊂ ΓK be the set of harvesting functions that
agree on the sample points. Upon observing samples, one
takes a conservative strategy to transmit energy no smaller
than B for any harvesting function in Γ(β,m). In other
words, one seeks the codebook that achieves CΓ(β,m)(B).

So for a given β, the energy and information losses incurred
by partial knowledge are defined as

∆E(R;β,Γ(β,m)) = Bβ(R)−BΓ(β,m)(R),

∆I(B;β,Γ(β,m)) = Cβ(B)− CΓ(β,m)(B), (6)

and since the true β is unknown, we take supremum over
harvesting function in case of energy loss.

∆E(R) = sup
β∈ΓK

∆E(R;β,Γ(β,m)). (7)

However, we do not take supremum for information loss
and consider (6) for two reasons: energy ranges are different
depending on harvesting functions, and taking supremum for
information loss conceals an important insight from Thm. 8
and Cor. 9.

For noisy samples, we assume i.i.d. additive measurement
noise Zi with mean zero and variance σ2 so that samples are
{( i
m−1 , β( i

m−1 ) + Zi)}m−1
i=0 . Since samples are noisy, unlike

noiseless samples, one cannot certify the set of true harvesting
functions and design codebook for all functions in the set.
Hence, one reconstructs β̂m as accurately as possible and
designs the codebook as if β̂m is the true harvesting function.
Noting that β̂m depends on observational noise as well as β,
we know that β̂m is a stochastic mapping from β. Those facts
lead us to the expected losses and minimax definition in case
of energy loss as follows, where the expectations are over
sample noise.

∆̄E(R;β, β̂m) = E
[
|Bβ(R)−Bβ̂m(R)|

]
,

∆̄I(B;β, β̂m) = E
[
|Cβ(B)− Cβ̂m(B)|

]
, (8)

∆̄E(R) = inf
β̂m

sup
β∈ΓK

∆̄E(R;β, β̂m). (9)

Notice from the definition, it is immediate that
∆I(B;β,Γ(β,m)),∆I(B;β, β̂m) are upper-bounded by
the unconstrained capacity Cmax, i.e., for any B,

∆I(B;β,Γ(β,m)), ∆̄I(B;β, β̂m) ≤ Cmax := max
PX

I(X;Y ),

(10)

which will be shown to be tight at maximum energy.

III. SAMPLING LOSS IN ENERGY AND INFORMATION

This section addresses point-to-point SIET performance
losses due to m-sample knowledge of the harvesting function.
As will be seen later, the best transmitted energy based
on β̂m is arbitrary close to that based on β, so one can
still design near-optimal codewords in terms of transmitted
energy. Also the speed of convergence is optimal for noiseless
samples under some conditions. The loss in information due
to sampled knowledge vanishes at interior points of energy
transmission, however, it could be arbitrary at the maximum
energy transmission, say Bmax for noiseless samples. Thus,
a system designer needs to be careful when targeting Bmax
or should design with a small margin away from Bmax. We
constructively propose kernel-based reconstruction for noise-
less and noisy samples, yielding near-optimal performance
guarantees on transmitted energy.

A. Noiseless Samples

Consider noiseless samples. Reconstructing a continuous
signal from samples has been a popular topic in signal pro-
cessing [29], [30], approximation theory [31], and many other
engineering fields. Among numerous reconstruction methods,
consider the spline method (our converse argument in Thm. 7
will show this to be a good choice), which has piecewise
polynomials as interpolant kernels to achieve efficient im-
plementation. Since it is a local technique, rather than a
global polynomial approximation method such as Lagrange
interpolation, the value of the reconstructed function f̂m(x)
only depends on a few neighboring samples of x and numerical
instability called Runge’s phenomenon does not appear [30].
See surveys [29], [32] for introductory material and [33] for
details.

Before giving our main theorems and proofs, first recall the
following result on spline reconstruction in Sobolev spaces.

Lemma 3 (Prop. 3.1 in [20]): For f ∈ Wλ
∞, let f̂SP

m ∈
Γ(f,m) be the spline reconstructed function. Then, for some
constant c,

||f − f̂SP
m ||∞ ≤ cm−λ||f (λ)||∞ ∀f ∈Wλ

∞.

Now we give a main result, which shows one can attain
near-optimal transmitted energy despite the sampled harvest-
ing function.

Theorem 4: ∆E(R) = O(m−λ) ∀R ≥ 0.
Proof: Note that the best codebooks for Bβ(R) and

BΓ(β,m)(R) are not necessarily identical. However, as will
be seen, any codebook performs almost the same under β and
β̂m ∈ Γ(β,m).
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First consider an arbitrary distribution PX and Shannon’s
random codebook generated from it. Then,∣∣∣EPX [β(X)]− EPX [β̂m(X)]

∣∣∣
≤ EPX

[
|β(X)− β̂m(X)|

]
=

∫
X
PX(x)|β(x)− β̂m(x)|dx

≤
∫
X
PX(x)||β − β̂m||∞dx = ||β − β̂m||∞, (11)

where the last inequality follows from the sup-norm definition,
||β−β̂m||∞ = ess supx∈X |β(x)−β̂m(x)|. Furthermore, using
the triangle inequality, we have

||β − β̂m||∞ ≤ ||β − β̂SP
m ||∞ + ||β̂SP

m − β̂m||∞.

The first term is bounded by cm−λ||β(λ)||∞ by Lem. 3.
Furthermore, note that β̂SP

m can be seen as a spline recon-
struction for another β′ ∈ Γ(β,m) since β, β′ both agree on
sample points. This means the second term is also bounded
by cm−λ||β(λ)||∞. Therefore, from the definition of ΓK ,∣∣∣EPX [β(X)]− EPX [β̂m(X)]

∣∣∣ ≤ 2cKm−λ. (12)

It should be noted that (12) is independent of PX , β, β̂m.
Next, fix R ≥ 0 and consider A := {PX : I(X;Y ) ≥ R}.

Also define two capacity-achieving distributions P ∗X , Q
∗
X ∈ A

for Bβ(R), BΓ(β,m)(R), respectively. Then, we have a chain
of inequalities

Bβ(R)
(a)

≥ BΓ(β,m)(R) = min
β̂m∈Γ(β,m)

EQ∗X [β̂m(X)]

(b)

≥ min
β̂m∈Γ(β,m)

EP∗X [β̂m(X)]

(c)

≥ EP∗X [β(X)]− 2cKm−λ

= Bβ(R)− 2cKm−λ,

where (a) follows from the definitions (4) and (5), (b) follows
since P ∗X is suboptimal for BΓ(β,m)(R), and (c) follows since
(12) holds for all β ∈ ΓK and β̂m ∈ Γ(β,m). Hence, we
conclude that ∆E(R;β,Γ(β,m)) = O(m−λ) for all β ∈ ΓK .
Since R is arbitrary and the bound does not depend on β,
∆E(R) = O(m−λ) for all R.

From the result, we know that the conservative transmission
scheme performs near-optimally in terms of energy. However,
the scheme needs optimization with respect to uncountably
many β̂m ∈ Γ(β,m), which does not reveal a clear codebook
design. The following corollary suggests that β̂SP

m is a good
proxy for unknown β enabling us to design near-optimal
codewords as if β̂SP

m is the true harvesting function.
Corollary 5: Codewords designed based on β̂SP

m achieves
O(m−λ) loss of transmitted energy with respect to Bβ(R).

Proof: Fix an arbitrary R ≥ 0 and consider
Bβ̂SP

m
(R), Bβ(R). Two optimal codebooks are generated from

the capacity-achieving distributions for Bβ̂SP
m

(R), Bβ(R), say
P ∗X , Q

∗
X .

Then, under β the optimal codebook for β̂SP
m (i.e., P ∗X )

performs as:

|Bβ̂SP
m

(R)− EP∗X [β(X)]|

=
∣∣∣EP∗X [β̂SP

m (X)
]
− EP∗X [β(X)]

∣∣∣
(a)

≤ ||β − β̂SP
m ||∞ ≤ cKm−λ,

where (a) follows from (12). As P ∗X is suboptimal for β, we
know that

Bβ(R) ≥ Bβ̂SP
m

(R)− cKm−λ.

Similarly, exchanging roles of β, β̂SP
m and considering the

optimal codebook for β (i.e., Q∗X ) gives

|Bβ(R)− EQ∗X [β̂SP
m (X)]| ≤ ||β − β̂SP

m ||∞ ≤ cKm−λ.

As Q∗X is suboptimal for β̂SP
m , we know that

Bβ̂SP
m

(R) ≥ Bβ(R)− cKm−λ.

Combining the two, we have

Bβ̂SP
m

(R) + cKm−λ ≤ Bβ(R) ≤ Bβ̂SP
m

(R)− cKm−λ.

Hence, we conclude that the codebook designed based on β̂SP
m

is nearly optimal within O(m−λ).
It should be noted that Thm. 4 is not tight in general, e.g.,

consider a peak-power constrained AWGN channel [28] and
suppose the capacity-achieving distribution, which is discrete,
is supported on (a part of) sample points. As β, β̂m always
agree on sample points, ∆E(R) is zero. However, there are
cases such that the bound in Thm. 4 is tight. Before proceeding
to demonstration, we define function-wise loss.

∆′E(R;β, β̂m) = |Bβ(R)−Bβ̂m(R)|,

∆′E(R) = sup
β∈ΓK ,

β̂m∈Γ(β,m)

∆′E(R;β, β̂m).

Lemma 6: ∆′E(R) ≤ ∆E(R).
Proof: Consider the left side

∆′E(R) = sup
β,β̂m

|Bβ(R)−Bβ̂m(R)|

and note that β̂m is a candidate for β, but, β is also a candidate
for β̂m since they both agree on the sample points. Hence, we
can exchange β, β̂m and without loss of generality, it is suffi-
cient to consider pairs (β, β̂m) such that Bβ(R) ≥ Bβ̂m(R).
For any such (β, β̂m),

Bβ(R)−Bβ̂m(R) ≤ Bβ(R)−BΓ(β,m)(R)

by definition of BΓ(β,m)(R). Taking supremum over all such
(β, β̂m) does not change the inequality, which completes the
proof.

Therefore, to show the lower bound on ∆E(R), it is
sufficient to show a lower bound for ∆′E(R). The following
theorem states conditions for which ∆′E(R) = Ω(m−λ), i.e.,
the bound is tight.
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Theorem 7: Fix some B ∈ (0, Bmax). Suppose the capacity-
achieving distribution P ∗X yielding the Shannon’s random
codebook of rate R = Cβ̂m(B) satisfies one of the following
conditions:

1) P ∗X is continuous and non-vanishing on X , i.e.,
P ∗X(x) ≥ c for some c.

2) P ∗X is supported on a finite set of mass points5 disjoint
from the sample points, as specified in the proof.

Then, ∆′E(R) = Ω(m−λ) at R.
Proof: We consider ∆′(R;β, β̂m) and the lower bound

can be shown by a bumpy function. Thm. 4.3 in [37] states
that there exists a non-negative function f such that f(xi) = 0
at every xi and ||f ||1 ≥ c′m−λ. First consider the case 1).
Take β, β̂m as

β(x) = M ∀x ∈ X ,
β̂m(x) = M(1− f(x)) ∀x ∈ X ,

where M is a constant. Then, Bβ(R) = M for any codebook.
Also,

Bβ̂m(R) = E
[
β̂m(X)

]
=

∫
X
P ∗X(x)β̂m(x)dx

=

∫
X
P ∗X(x)M(1− f(x))dx = M −M

∫
X
P ∗X(x)f(x)dx

≤ M −M
∫
X
cf(x)dx = M − cM ||f ||1

≤ M − cc′Mm−λ.

Thus, ∆E(R;β, β̂m) = |Bβ(R)−Bβ̂m(R)| ≥ cc′Mm−λ. We
have the desired lower bound of ∆E(R) as Ω(m−λ).

For the case 2), we repeat the above argument with β(x) =
M, β̂m = M(1− f(x)). Since P ∗X is supported on a discrete
set, say {xk},

Bβ(R)−Bβ̂m(R) = M

∫
X
P ∗X(dx)f(x)

= M
∑
k

P ∗X(xk)f(xk).

Note that by the norm monotonicity with respect to a bounded
measure, ||f ||∞ ≥ ||f ||1 ≥ c′m−λ, there is a disjoint point
from samples such that f(x) ≥ c′m−λ. So when {xk} satisfy
f(xk) ≥ c′m−λ,

Bβ(R)−Bβ̂m(R) ≥M
∑
k

P ∗X(xk)c′m−λ = Mc′m−λ,

which proves ∆E(R) = Ω(m−λ).
The next theorem and corollary deal with the informa-

tion loss incurred by sampling. As will be seen below, the
loss is negligible on most of the targeted energy range,
however, the trivial unconstrained capacity upper bound on
∆I(B;β,Γ(β,m)) given as (10) could be indeed tight at Bmax.

Theorem 8: For any β ∈ ΓK and B ∈ [0, Bmax),

∆I(B;β,Γ(β,m))→ 0 as m→∞.

5The discrete distribution is particularly important because the optimal input
distribution is discrete in many cases especially when X is compact and
convex and channel noise is additive, see [2], [28], [34], [35]. Also refer to
[36] for general channels.

Furthermore, there is a pair of harvesting function and channel
for which ∆I(Bmax;β,Γ(β,m)) = Cmax.

Proof: Let us prove the first claim. At B = 0, note that
it is the same as the unconstrained capacity, i.e., Cβ(0) =
Cβ̂m(0) = Cmax. So ∆I(0;β,Γ(β,m)) = 0.

For B ∈ (0, Bmax), recall that since Cβ(B) is concave, it is
continuous over the interior of its domain, i.e., continuous on
(0, Bmax). Thm. 4 guarantees that for every B, there exists a
B′ that attains CΓ(β,m)(B) = Cβ(B′) for some close B,B′

with |B −B′| = O(m−λ), so that at B ∈ (0, Bmax),

∆I(B;β,Γ(β,m)) = Cβ(B)− CΓ(β,m)(B)

= Cβ(B)− Cβ(B′)

= Cβ(B)− Cβ(B +O(m−λ)).

Due to the continuity of Cβ , ∆I(B;β,Γ(β,m))→ 0 as B +
O(m−λ)→ B. The first claim is proved.

To show the second claim, fix a large m. We will prove by
a counterexample. Take a constant β, that is, β(x) = M over
all x. Then, as any PX is admissible for B ≤M and none is
for B > M ,

Cβ(B) =

{
Cmax if B ≤M
0 if B > M.

However, Γ(β,m) definitely has an element such that
β̂m(x) < β(x) = M except for given sample points. In other
words, β̂m < β almost everywhere, so that E[β̂m(X)] < M
unless PX only has point masses on the sample points.
Therefore, discrete PXs are the only admissible probability
distributions for the energy requirement M(= Bmax).

For such a discrete PX , consider an adversarial channel

Y = (X + Z) mod 1,

where Z is an input-dependent additive noise on X = [0, 1].
The dependency is as follows: Z is uniform over [0, 1] when
X ∈ { i

m−1}
m−1
i=0 , and the probability density of Z is more

concentrated around 0 as X is more distant from { i
m−1}

m−1
i=0 .

Since the discrete PX only sees uniform noise, I(X;Y ) is
zero, i.e., CΓ(β,m)(M) = 0, however, we can send information
using a non-discrete PX because noise is biased toward 0 ex-
cept for sample points. Hence, ∆I(Bmax;β,Γ(β,m)) = Cmax
for this harvesting function and channel.
Since we can construct the above counterexample at any
particular B, supβ∈ΓK ∆I(B;β,Γ(β,m)) = Cmax. This does
not give any insight into design from samples.

Although Thm. 8 describes the convergence of ∆I, it does
not characterize ∆I in terms of the number of samples. As the
next corollary shows, the Lipschitz continuity enables us to
characterize ∆I(B) in terms of m for all B ∈ (0, Bmax).

Corollary 9: Suppose the channel yields Lipschitz continu-
ous Cβ(B) with Lipschitz coefficient M for β ∈ ΓK except
for its end points, i.e., for B1, B2 ∈ (0, Bmax),

|Cβ(B1)− Cβ(B2)| ≤M |B1 −B2|. (13)

Then, ∆I(B;β,Γ(β,m)) = O(m−λ) for any B ∈ [0, Bmax).
Proof: When B = 0, it is unconstrained capacity, so

∆I(0;β,Γ(β,m)) = 0.
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For B ∈ (0, Bmax) and a given β ∈ ΓK ,

∆I(B;β,Γ(β,m)) = Cβ(B)− CΓ(β,m)(B)

≤ Cβ(B)− Cβ(B +O(m−λ))

≤MO(m−λ) = O(m−λ),

where the last inequality follows from (13).
Thm. 4 and Cor. 5 ensure Shannon’s random codebook

designed for β̂SP
m is nearly close to the optimal codebook

for β in terms of transmitted energy. Further, Thm. 7 shows
that its performance is in fact asymptotically tight under some
conditions on P ∗X .

From the same argument, Thm. 8 and Cor. 9 both basically
ensure that the codebook designed as if β̂SP

m is the true
harvesting function also delivers nearly maximal information.
However, please be careful when interpreting the second
statement of Thm. 8. The statement does not imply the
codebook fails to be decoded correctly at Bmax; rather it
means that partial knowledge of the harvesting function may
lower (or set higher) the targeted information rate by a non-
vanishing amount in the codebook design stage. However such
a mismatched codebook is always decodable since the channel
remains the same regardless of sampling. This pitfall leads a
system designer to stepping back from Bmax, i.e., setting a
safety energy margin from Bmax.

B. Noisy Samples

Consider noisy samples. In particular, received signal varies
even for the same transmission signal. Or the noise could be
due to errors in measuring battery status. In particular, we
consider i.i.d. additive noise Zi with mean zero and variance
σ2 so that samples are {(xi, Ti)}m−1

i=0 , where xi = i
m−1 , Ti =

β( i
m−1 ) + Zi.
As a constructive reconstruction method, we consider local

polynomial estimation of order λ [21], denoted by β̂LP
m , since

ΓK is differentiable upto order λ. Consider a symmetric kernel
φ(x) on [−1, 1] such that |φ(x)| ≤ φmax < ∞ and let h be
bandwidth. Then, β̂LP

m (x) for a particular x is obtained from
{wt}λt=0 that solves

min
wi

m−1∑
i=0

φ

(
xi − x
h

)(
Ti −

λ∑
t=0

wt(xi − x)t

)2

. (14)

To express β̂LP
m (x) in closed form, it is convenient to introduce

vector and matrix representations:

Xx =


1 (x0 − x) · · · (x0 − x)λ

1 (x1 − x) · · · (x1 − x)λ

...
...

. . .
...

1 (xm−1 − x) · · · (xm−1 − x)λ

 ,
T = [T0, T1, . . . , Tm−1]T ,

w = [w0, w1, . . . , wλ]T ,

Φx =


φ(x0−x

h ) 0 · · · 0
0 φ(x1−x

h ) · · · 0
...

...
. . .

...
0 0 · · · φ(xm−1−x

h )

 .

Then, (14) is rewritten as a least squares problem

min
w

(T−Xxw)TΦx(T−Xxw),

and the solution to this is

w∗ = [w∗0 , w
∗
1 , . . . , w

∗
λ]T = (XT

xΦxXx)−1(XT
xΦxT).

Then, β̂LP
m (x) = w0, in other words,

β̂LP
m (x) = eT1 (XT

xΦxXx)−1(XT
xΦxT), (15)

where length-(λ+ 1) vector e1 has a 1 in the first coordinate
and 0s otherwise. In particular when the order is zero, it is
called the Nadaraya-Watson estimator [21].

Lemma 10 (Thm. 1.6 in [21]): If h = hm = αm−
1

2λ+3 for
some α > 0, the following estimation error bound holds for
β ∈ ΓK :

sup
x∈X

E
[
(β(x)− β̂LP

m (x))2
]

= O
(
m−

2(λ+1)
2λ+3

)
. (16)

For further results in nonparametric regression, see [21], [38].
Like for noiseless samples, the following theorem shows

that the average loss ∆̄E(R) incurred due to sampled knowl-
edge about β is asymptotically negligible.

Theorem 11: For R ≥ 0,

∆̄E(R) = O
(
m−

λ+1
2λ+3

)
.

Proof: First note that due to the Jensen’s inequality,

sup
x∈X

(
E[|β(x)− β̂LP

m (x)|]
)2

≤ sup
x∈X

E
[
(β(x)− β̂LP

m (x))2
]

= O
(
m−

2(λ+1)
2λ+3

)
,

which implies

E[|β(x)− β̂LP
m (x)|] = O

(
m−

λ+1
2λ+3

)
∀x ∈ X . (17)

Now fix PX so that rate R = I(X;Y ) is also fixed. The
expectation in (16) is over the sampling noise distribution,

EZ
[∣∣∣EX [β(X)]− EX [β̂LP

m (X)]
∣∣∣]

≤ EZ
[
EX [|β(X)− β̂LP

m (X)|]
]

= EX
[
EZ [|β(X)− β̂LP

m (X)|]
]

(a)

≤ EX
[
O
(
m−

λ+1
2λ+3

)]
(b)
= O

(
m−

λ+1
2λ+3

)
,

where (a) follows from (17) and (b) follows since (17) holds
for every x. By the same argument as in the proof of Thm. 4,
we know that

∆̄E(R;β, β̂LP
m ) = EZ

[
|Bβ(R)−Bβ̂LP

m
(R)|

]
= O

(
m−

λ+1
2λ+3

)
,

which does not depend on β.
As β ∈ ΓK , R ≥ 0 are arbitrary, and the local polynomial

estimator is a particular choice of estimator, taking the infi-
mum over all estimators implies ∆̄E(R) ≤ ∆̄E(R;β, β̂LP

m ) =

O
(
m−

λ+1
2λ+3

)
.

Paralleling arguments for noiseless samples, the information
loss can be also specified.

Corollary 12: The following are true:
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1) For B ∈ [0, Bmax), ∆̄I(B;β, β̂m)→ 0 as m→∞.
2) Suppose the channel yields M -Lipschitz continu-

ous Cβ(B) on (0, Bmax). Then, ∆̄I(B;β, β̂m) =

O
(
m−

λ+1
2λ+3

)
for all B ∈ [0, Bmax).

3) There is a a pair of harvesting function and channel for
which ∆̄I(Bmax;β, β̂m) = Cmax.

Proofs are basically the same as the proofs of Thm. 8 and
Cor. 9, so omitted.

IV. SAMPLING LOSS IN SIET MULTICAST

Now we investigate the multicast setting in Fig. 2. Consider
a single transmitter (i.e., access point) and L receiver nodes.
The transmitter sends a signal Xn which conveys not only a
common message W , but also energy to operate each node.
These nodes observe (Y (`))n through individual channels and
have their own harvesting functions β(`) ∈ ΓK , ` = 1, . . . , L
and energy requirements B(`), which are not necessarily
identical since physical devices may be different. As before,
we are limited in knowing the harvesting functions only at
sample points either in the absence or presence of noise.

The next proposition states the capacity-energy tradeoff for
the SIET multicast problem with full knowledge of harvesting
functions [39]. Here, superscript (MC) explicitly denotes that
it is a multicast quantity. For notational simplicity, we use
vector notations

B = [B(1), . . . , B(L)],

β = [β(1), . . . , β(L)],

β̂m = [β̂(1)
m , . . . , β̂(L)

m ],

Γ(β,m) = [Γ(β(1),m), . . . ,Γ(β(L),m)].

Proposition 13 (Thm. 1 in [39]): For L-user SIET multicast,
the capacity-energy function is given by

C
(MC)
β (B) = max

PX :∀`
E[β(`)(X)]≥B(`)

min
1≤`≤L

I(X;Y (`)).

Also like (3), it is easy to extend to the set of possible
harvesting functions.

CΓ(β,m)(B) = max
PX :∀`

E[β(`)(X)]≥B(`)

∀β̂(`)∈Γ(β(`),m)

min
1≤`≤L

I(X;Y (`)).

Let B(`)
β (R), B

(`)
Γ(β,m)(R) be the amounts of energy deliv-

ered to `th node using the rate R codebook designed for β
and Γ(β,m), respectively, that is,

B
(`)
β (R) = max

PX :∀`
I(X;Y (`))≥R

E[β(`)(X)]

B
(`)
Γ(β,m)(R) = max

PX :∀`
I(X;Y (`))≥R

min
β̂m∈Γ(β(`),m)

E[β̂m(X)]

Hence, sampling losses (6)–(9) defined for the point-
to-point case extend to multicast as follows. Note that

∆
(MC)
E (R),∆

(MC)
I (B) are for noiseless samples and

∆̄
(MC)
E (R), ∆̄

(MC)
I (B) are for noisy samples.

∆
(MC)
E (R) = sup

β(`)∈ΓK
max

1≤`≤L
B

(`)
β (R)−B(`)

Γ(β,m)(R),

∆
(MC)
I (B;β,Γ(β,m)) = C

(L)
β (B)− C(L)

Γ(β,m)(B),

∆̄
(MC)
E (R) = inf

β̂
(`)
m

sup
β(`)∈ΓK

max
1≤`≤L

E
[
|B(`)

β (R)−B(`)

β̂m
(R)|

]
,

∆̄
(MC)
I (B;β, β̂m) = E

[
|C(L)

β (B)− C(L)

β̂m
(B)|

]
.

Note that ∆
(MC)
I (B), ∆̄

(MC)
I (B) do not have maximum over `

because all nodes receive the same information in multicast.
Theorem 14 (Noiseless samples): The asymptotic bounds in

Thms. 4, 8 and Cor. 9 hold for multicast when samples are
noiseless, that is:

1) ∆
(MC)
E (R) = O(m−λ).

2) ∆
(MC)
I (B;β,Γ(β,m)) → 0 as m → ∞ if B(`) ∈

[0, B
(`)
max) for all `.

3) Letting C
(MC)
max := maxPX min1≤`≤L I(X;Y (`)), there

exists a channel such that ∆
(MC)
I (B;β,Γ(β,m)) =

C
(MC)
max if some B(`) = B

(`)
max.

4) Suppose C(MC)
β (B) is M -Lipschitz with `q norm, where

1 ≤ q ≤ ∞, that is,

|Cβ(B1)− Cβ(B2)| ≤M ||B1 −B2||q.

Then, ∆
(MC)
I (B;β,Γ(β,m)) = O(m−λ).

Theorem 15 (Noisy samples): The asymptotic bounds in
Thm. 11 and Cor. 12 also hold for multicast when samples
are noisy, that is,

1) ∆̄
(MC)
E (R) = O

(
m−

λ+1
2λ+3

)
.

2) ∆̄
(MC)
I (B;β, β̂m) → 0 as m → ∞ if B(`) ∈ [0, B

(`)
max)

for all `.
3) Suppose C(MC)

β (B) is M -Lipschitz with `q norm, where
1 ≤ q ≤ ∞, that is,

|Cβ(B1)− Cβ(B2)| ≤M ||B1 −B2||q.

Then, ∆̄
(MC)
I (B;β, β̂m) = O

(
m−

λ+1
2λ+3

)
.

We omits proofs of both theorems since proof techniques
follow the point-to-point proofs.

V. END-TO-END COMMUNICATION WITH SAMPLES

Consider the end-to-end information transmission problem
in the SIET framework, which consists of source and channel
components. The first is a source-distortion pair (PS , d), where
a source sequence {Si} is drawn from PS on S, and a non-
negative distortion measure d : S × Ŝ → R+ is given. The
second is a channel-harvesting pair (PY |X , β), where β is a
non-negative energy harvesting function. Note that unlike the
standard problem where there is a channel cost constraint, here
there is an energy requirement.

In the end-to-end transmission problem, the goal is to
minimize distortion D between the two terminals, but also
maximize energy transmission B. That is, the goal is to find
the best energy-distortion pair (B,D) such that E[d(S, Ŝ)] ≤
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,

,

Fig. 4. An illustration of the energy-distortion tradeoff. The dotted line is for
the estimated harvesting and distortion functions.

D and E[β(X)] ≥ B. For given harvesting and distortion
functions (β, d), we can define the optimal (B,D) tradeoff
curve (perhaps degenerate), π(β, d), as follows [40].

Definition 16: The curve π(β, d) is said to be optimal if
every (B,D) ∈ π(β, d) satisfies both of the followings.

1) D cannot be decreased without decreasing B.
2) B cannot be increased without increasing D.
A typical π(β, d) curve is illustrated in Fig. 4. It is con-

tinuous, monotone increasing, and convex if non-degenerate.
The monotonicity is due to Def. 16. In addition, if it is non-
convex, the curve can be improved by time-sharing so we can
conclude it is convex. Continuity follows from convexity.

In place of full knowledge of (d, β), we only have sam-
ples for both distortion and harvesting functions so we have
(d̂m, β̂m). Informally, (d̂m, β̂m) is close to the true pair when
the number of samples is large. Analogous to our main result
in Sec. III for the SIET channel coding problem, the source
coding problem with sampled distortion measure was studied
by Niesen, et al. [25] who showed that the distortion loss
vanishes as the number of samples increases. See the Appendix
for detailed problem setting and results with its extension
to noisy samples. Further, we have shown that designing
codebooks as if (β̂m, d̂m) are the true functions is nearly
optimal for noiseless and noisy cases. Hence, the question
that naturally follows is whether π(β̂m, d̂m) is also close to
π(β, d).

For two optimal tradeoff curves π(β, d), π(β̂m, d̂m), let
us define loss incurred by sampling. Let Ππ(B,D) be the
projection of (B,D) onto curve π under `1 distance; when
there are several projection points, pick any one arbitrarily.
Then we define two component losses for noiseless and noisy
samples, respectively, as6

∆(β, d, β̂m, d̂m)

= sup
(B′,D′)∈π(β̂m,d̂m)

||(B′, D′)−Ππ(β,d)(B
′, D′)||1,

∆̄(β, d, β̂m, d̂m)

= sup
(B′,D′)∈π(β̂m,d̂m)

E
[
||(B′, D′)−Ππ(β,d)(B

′, D′)||1
]
.

By definition, ∆, ∆̄ are the maximal possible losses from
the true optimal curve when we design optimal end-to-

6Note that ∆(β, d, β̂m, d̂m), ∆̄(β, d, β̂m, d̂m) are well-defined even when
π(β, d) or π(β̂m, d̂m) is degenerate.

′

∗

′

′

∗

Fig. 5. The proof of Thm. 17. Solid curves and dotted curves denote π(β, d)
and π(β̂m, d̂m), respectively. The left illustrates that there is no point in
the `1-ball centered at (B′, D′), drawn in red. The right illustrates that the
channel codebook at B∗ performs B′, marked as triangle, under β̂m.

′

.
′

Fig. 6. An example in the proof of Thm. 18. Solid curves denote true
quantities Cβ(B), Rd(D), π(β, d) and dotted curves denote quantities for
estimated functions. Note that d = d̂m and π(β, d) is degenerate. κ = k1

k2
indicates the ratio that k1 source symbols are mapped to k2 channel symbols.

end transmission as if (β̂m, d̂m) is the true harvesting and
distortion function pair.7 By Shannon’s separation theorem
[41], any operating point (B,D) in π can be attained by a
separately designed pair of good source and channel codes.
Moreover, distortion loss in source coding and harvesting loss
in channel coding due to sampling vanish by results in [25]
(restated in Appendix) and Sec. III. Thus one might conjecture
that a system design based on (β̂m, d̂m) is nearly optimal,
i.e., ∆, ∆̄ → 0 as m → ∞. This is partially true with
additional restricion on harvesting and distortion functions.
The following theorem formally shows it.

Theorem 17: Define two sets,

B := {β ∈ ΓK : Cβ(B) is Lipschitz over all B ≥ 0},
D := {d(·, ŝ) ∈ ΓK ∀ŝ : Rd(D) is Lipschitz over all D ≥ 0},

and two minimax losses

∆ := inf
β̂m,d̂m

sup
β∈B,d∈D

∆(β, d, β̂m, d̂m),

∆̄ := inf
β̂m,d̂m

sup
β∈B,d∈D

∆̄(β, d, β̂m, d̂m).

Then, ∆ = O(m−λ) and ∆̄ = O
(
m−

λ+1
2λ+3

)
.

Proof: Consider (β̂m, d̂m) are estimated by the spline
method for noiseless samples and by the local polynomial
regression for noisy samples, i.e., (β̂m, d̂m) = (β̂SP

m , d̂SP
m ) for

noiseless and (β̂m, d̂m) = (β̂LP
m , d̂LP

m ) for noisy samples. Let us

7Also we can consider the other direction of projection, which is projection
from π(β, d) onto π(β̂m, d̂m). But, since what we want to know is how close
our estimation is to the true one, this makes less sense in practice.
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only focus on noiseless samples. Proof will be shown by con-
tradiction: suppose that there exists (B′, D′) ∈ π(β̂SP

m , d̂SP
m )

such that the `1-balls centered at (B′, D′) with radius O(m−λ)
has no intersection with π(β, d).

First consider the optimal codebook pair at (B′, D′). Al-
though the channel codebook is designed for β̂SP

m , actual
harvested energy B is also close to B′, i.e., B = B′+O(m−λ).
Similarly, the source codebook also achieves the actual distor-
tion D = D′+O(m−λ). Since these codebooks are suboptimal
for the true (β, d), there will be a point (B∗, D∗) on π(β, d)
such that B∗ ≥ B ≥ B′− cm−λ and D∗ ≤ D ≤ D′+ cm−λ.

Pick a point (B∗, D∗) ∈ π(β, d) such that D∗ = D′.
We know that this point exists from the Lipschitz continuity.
From the assumption, we know that B∗ is outside of the `1-
ball, i.e., B∗ > B′ + cm−λ. Consider the optimal codebook
pair at (B∗, D∗). From the first argument of the proof of
Thm. 4, we know that the channel codebook delivers energy
B∗ + O(m−λ) under harvesting function β̂SP

m . However, this
codebook is definitely suboptimal for β̂SP

m , which means that
π(β̂SP

m , d̂SP
m ) has a point (D′, B′) such that B′ > B∗− cm−λ.

This implies |B′ − B∗| ≤ cm−λ, a contradiction. Therefore,
∆(β, d, β̂SP

m , d̂SP
m ) = O(m−λ). Since the bound is independent

of (β, d) and (β̂SP
m , d̂SP

m ) are specific reconstructions, we can
further reduce the loss. Therefore, ∆ = O(m−λ) holds. The
argument is illustrated in Fig. 5.

For noisy sample, the arguments still hold with (β̂LP
m , d̂LP

m )

so ∆̄ = O
(
m−

λ+1
2λ+3

)
.

Despite the above theorem showing ∆, ∆̄ converge to
zero for B,D, the next theorem demonstrates its components
∆(β, d, β̂m, d̂m) and ∆̄(β, d, β̂m, d̂m) could be arbitrary large
unless β ∈ B, d ∈ D, even when β̂m, d̂m are sufficiently
accurate. It suggests the possibility that accurate reconstruction
may not be enough to provide performance guarantee for end-
to-end communication.

Theorem 18: There exists a case where
∆(β, d, β̂m, d̂m), ∆̄(β, d, β̂m, d̂m) are bounded away from 0
even when m→∞.

Proof: Consider an example with noiseless samples il-
lustrated in Fig. 6. For the source coding part, suppose the
Rd curve is strictly convex and assume that our estimate is
perfect, i.e., d = d̂m so that Rd(D) = Rd̂m(D).

For the channel part, suppose β(x) = M for all x ∈ X
for some constant M . Then, every PX is admissible with
respect to energy requirement M since every PX achieves
E[β(X)] = M . Let Cmax = maxPX I(X;Y ) and P ∗X be the
unique capacity-achieving distribution which is non-vanishing
everywhere on X . By the separation theorem, this combina-
tion yields a degenerate JSCC curve π(β, d) = (M,Dmin).
Cβ(B), Rd(D), π(β, d) are illustrated with solid line.

On the other hand, suppose our estimate is β̂m(x) = M(1−
f(x)), where f(x) is a small non-negative bumpy function
such that f(xi) = 0 only at every xi. There are two end points
in Cβ̂m : One point is induced by P ∗X , which still achieves the
best in information delivery, however, EP∗X [β̂m] = M − ε for
some ε > 0. The other is by some discrete probability, that is,
engineers design a codebook that only utilizes a finite number
of points in X , which is strictly suboptimal in information

transmission. Since β̂m(x) = M only at xi, the transmitted en-
ergy is maximized when PX has only point masses on xi, but
such restriction on distribution incurs non-vanishing mutual
information loss. Therefore resulting π(β̂m, d̂m) is a convex
curve connecting (M − ε,Dmin) and (M,D′). Therefore,

||(M,D′)−Ππ(β,d)(M,D′)||1 = D′ −Dmin,

which is non-vanishing, so ∆(β, d, β̂m, d̂m) is also non-
vanishing.

The argument for ∆̄(β, d, β̂m, d̂m) is immediate since
∆̄(β, d, β̂m, d̂m) ≥ ∆(β, d, β̂m, d̂m).

VI. CONCLUSION

We have studied performance loss in SIET due to
experimentally-sampled harvesting functions. To our knowl-
edge, this is the first study of how sampled knowledge of per-
haps nonlinear and nonideal harvesting circuits affects SIET
(or SWIPT). Energy loss and information loss are separately
considered for noiseless and noisy samples, and extended to
multicast setting. We show theoretical asymptotics for these
losses that energy loss asymptotically vanishes as O(m−λ)
for noiseless samples and it is indeed asymptotically optimal
under some technical conditions. For noisy samples, the speed
of convergence in energy loss is lowered to O(m−

λ+1
2λ+3 ) due

to noise in characterizing the harvesting circuit.
We also suggest spline and local polynomial reconstruc-

tion as practical reconstruction methods that attain the above
asymptotics. B-spline (basis-spline) method requires O(m)
complexity [42] and the local polynomial estimator at each
x requires complexity at most polynomial in m since (15)
resulted from matrix algebra.

With regard to information loss, large number of samples
does not always guarantee vanishing information loss. To get
a vanishing information loss, a certain energy margin from
Bmax needs to be guaranteed. Hence, it is necessary for system
designers to set a sufficient energy transmission margin from
Bmax.

Another important problem is end-to-end information trans-
mission. Motivated by [25], which shows the optimal source
code for a sampled distortion function is also near-optimal for
the true distortion function, one might guess that Shannon’s
separation theorem would yield a combination of near-optimal
source code and channel code that combine to be near-
optimal in the energy-distortion tradeoff. It is true when further
restriction is given on harvesting and distortion functions.

APPENDIX

Let us restate the main result of [25], which considers the
lossy source coding problem with noiseless samples of the
distortion function. The following assumptions are made on
the source component. Suppose S = [0, 1], Ŝ is some discrete
set, and d(·, ŝ) ∈ ΓK for all ŝ ∈ Ŝ. For instance, S is a set
of images, Ŝ is a set of quantized images or labels of images,
and d(s, ŝ) is human perception loss which is unknown. Like
a harvesting function, only a finite number of evenly-spaced
sample points of d are known. In particular, for each ŝ ∈ Ŝ,
{(si, d(si, ŝ))}m−1

i=0 are given by experiment, where si = i
m−1 .
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So m × |Ŝ| samples are given. In the case of noisy samples,
{(si, d(si, ŝ) + Zi)}m−1

i=0 are given for each ŝ ∈ S, where Zi
is i.i.d. additive noise with mean zero and variance σ2

2 .
For a distortion function f and a set of distortion functions

F , rate-distortion functions are defined as

Rf (D) = inf
PŜ|S :E[f(S,Ŝ)]≤D

I(S; Ŝ),

RF (D) = min
PŜ|S :E[f(S,Ŝ)]≤D ∀f∈F

I(S; Ŝ).

Distortion-rate functions are defined as

Df (R) = min
PŜ|S :I(S;Ŝ)≤R

E[f(S, Ŝ)],

DF (R) = min
PŜ|S :I(S;Ŝ)≤R

max
f∈F

E[f(S, Ŝ)].

Then, the sampling loss in distortion for noiseless samples is
defined as

∆D(R) = sup
d∈ΓK

DΓ(d,m)(R)−Dd(R).

For noisy samples, we can generalize the distortion loss to
noisy samples, similarly to (9).

∆̄D(R) = inf
d̂m

sup
d∈ΓK

E
[
|Dd(R)−Dd̂m

(R)|
]
,

where d̂m is the estimate of the distortion function. Then, we
have the following distortion bound for noiseless samples.

Lemma 19 (Thm. 1 in [25]): If PS(s) < c ∀s ∈ S with
some constant c,

∆D(R) = O(m−λ).

We generalize to the noisy samples case as follows.
Lemma 20: If PS(s) < c ∀s ∈ S with some constant c,

∆̄D(R) = O
(
m−

λ+1
2λ+3

)
.

Proof: Pick an arbitrary compression kernel PŜ|S . Then,
rate R = I(S; Ŝ) is also fixed. For given (d, d̂LP

m ), noting that
the expectation is over the noise distribution,

EZ
[∣∣∣ES,Ŝ [d(S, Ŝ)]− ES,Ŝ [d̂LP

m (S, Ŝ)]
∣∣∣]

≤ EZ
[
ES,Ŝ [|d(S, Ŝ)− d̂LP

m (S, Ŝ)|]
]

= ES,Ŝ
[
EZ [|d(S, Ŝ)− d̂LP

m (S, Ŝ)|]
]

=
∑
ŝ∈Ŝ

∫
S
PS(s)PŜ|S(ŝ|s)EZ [|d(s, ŝ)− d̂LP

m (s, ŝ)|]ds. (18)

As PS(s) ≤ c and PŜ|S(ŝ|s) ≤ 1 for all ŝ ∈ Ŝ, (18) can be
further bounded.

(18) ≤ c
∑
ŝ∈Ŝ

∫
S
EZ [|d(s, ŝ)− d̂LP

m (s, ŝ)|]ds

≤ c′
∑
ŝ∈Ŝ

∫
S
m−

λ+1
2λ+3 ds

= c′|Ŝ|m−
λ+1
2λ+3 = O

(
m−

λ+1
2λ+3

)
,

where the last inequality follows from the local polynomial
estimator in Lem. 10. By the same argument as in the proof
of Thm. 4 we have

EZ
[
|Dd(R)−Dd̂LP

m
(R)|

]
= O

(
m−

λ+1
2λ+3

)
.

Since the bound does not depend on the choice of d(·, ŝ) ∈
ΓK , infimum over estimators only further improves the loss
of the local polynomial estimator,

∆̄D(R) = inf
d̂m

sup
d∈ΓK

E
[
|Dd(R)−Dd̂m

(R)|
]

= O
(
m−

λ+1
2λ+3

)
.
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[38] L. Györfi, M. Kohler, A. Krzyżak, and H. Walk, A Distribution-Free
Theory of Nonparametric Regression. New York: Springer-Verlag,
2002.

[39] T.-Y. Wu, A. Tandon, L. R. Varshney, and M. Motani, “Multicasting
energy and information simultaneously,” arXiv:1806.11271v1 [cs.IT].,
Jun. 2018.

[40] M. Gastpar, “To code or not to code,” Ph.D. dissertation, École Poly-
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