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Abstract—Distributed implementations of gradient-based
methods, wherein a server distributes gradient computations
across worker machines, suffer from slow running machines,
called stragglers. Gradient coding is a coding-theoretic framework
to mitigate stragglers by enabling the server to recover the
gradient sum in the presence of stragglers. Approximate gradient
codes are variants of gradient codes that reduce computation
and storage overhead per worker by allowing the server to
approximately reconstruct the gradient sum.

In this work, our goal is to construct approximate gradient
codes that are resilient to stragglers selected by a computationally
unbounded adversary. Our motivation for constructing codes
to mitigate adversarial stragglers stems from the challenge of
tackling stragglers in massive-scale elastic and serverless systems,
wherein it is difficult to statistically model stragglers. Towards
this end, we propose a class of approximate gradient codes based
on balanced incomplete block designs (BIBDs). We show that
the approximation error for these codes depends only on the
number of stragglers, and thus, adversarial straggler selection has
no advantage over random selection. In addition, the proposed
codes admit computationally efficient decoding at the server.
Next, to characterize fundamental limits of adversarial straggling,
we consider the notion of adversarial threshold – the smallest
number of workers that an adversary must straggle to inflict
certain approximation error. We compute a lower bound on the
adversarial threshold, and show that codes based on symmetric
BIBDs maximize this lower bound among a wide class of codes,
making them excellent candidates for mitigating adversarial
stragglers.

I. INTRODUCTION

In many real-world applications, the size of training datasets

has grown significantly over the years to the point that it

is becoming crucial to implement learning algorithms in a

distributed fashion. However, in practice the gains due to

parallelization are often limited due to stragglers – workers

that are slowed down due to unpredictable factors such as

network latency, hardware failures, etc. [1], [2]. For instance,

recent studies [3], [4] have demonstrated that straggling ma-

chines may run ×5 to ×8 slower than a typical machine on

Amazon EC2. The straggler problem is even more daunting in

massive-scale computing systems such as [5], which use AWS

Lambda. Left untreated, stragglers severely impact latency, as

the performance in each iteration is determined by the slowest

machine.

This work is supported in part by National Science Foundation grants CCF-
1748585 and CNS-1748692.

Conventional approaches to mitigate stragglers involve de-

tecting stragglers, ignoring stragglers, or replicating jobs

across workers (see, e.g., [6]–[9]). Recently, using coding-

theoretic ideas to mitigate stragglers has gained significant re-

search attention, see, e.g., [10]–[13] for distributed computing,

and [3], [14]–[17] for distributed learning.

A coding theoretic framework for mitigating stragglers in

distributed gradient-based learning methods was first proposed

in [3]. The setup consists of N worker machines and a

parameter server. Training examples are partitioned into K
parts, and every worker is assigned L of the K parts. Each

worker computes the partial gradient on its assigned examples,

linearly combines the results according to some pre-specified

vector of coefficients, and returns the result to the server. Note

that the parameter L essentially specifies the computation and

storage load on individual workers. The authors showed that

by redundantly assigning the parts across the workers and by

judiciously choosing the coefficients of the linear combination

at each worker, it is possible to exactly recover the sum of all

gradients even if any S workers straggle, and fail to return

their results. Alternate code constructions for gradient coding

have been proposed in [11], [14], [15], [18].

Gradient coding schemes designed for exactly recovering

the gradient sum have two limitations. First, they fundamen-

tally require heavy computational and storage overhead at

each worker. In particular, in [3], it was established that any

coding scheme designed to tolerate S stragglers must have

L ≥ K(S + 1)/N . This implies that the higher the straggler

tolerance required, the larger is the computation and storage

overhead per worker. Second, since the schemes are designed

for a particular number of stragglers S, it is necessary to have

an estimate on S at the design time. This is not feasible

for many practical schemes as straggler behavior can vary

unpredictably.

In [15], the authors showed that these limitations can be

lifted by allowing the server to approximately recover the

gradient sum. Indeed, in many practical learning algorithms, it

is sufficient to approximately reconstruct the gradient sum. The

authors construct codes based on expander graphs, for which,

the ℓ2-error of the approximate gradient sum, referred to as

approximation error, degrades gracefully with the number of

stragglers. These so-called approximate gradient codes do not

require to have an estimate of the number of stragglers S a

priori, and allow the computation and storage overhead per
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worker to be substantially small.

In [19], the authors evaluate three families of approximate

gradient codes: fractional repetition codes (FRCs), Bernoulli

gradient codes (BCGs), and regularized BCGs based on

sparse random graphs. They show that FRCs achieve small

approximation error when the stragglers are chosen at random.

However, FRCs perform poorly for adversarial stragglers,

wherein an adversary can force to straggle any subset of

workers up to a given size. Further, it is shown that adversarial

straggler selection in general codes is NP-hard. In [20], the

authors propose stochastic block codes (SBCs), which make

it difficult for a computationally limited (polynomial-time

bounded) adversary to select stragglers.

In this work, our goal is construct approximate gradient

codes that can mitigate adversarial stragglers even for a com-

putationally unbounded adversary. Our key idea is to construct

codes based on combinatorial block designs. A block design

is a family of subsets of a (finite) set, chosen in such a way

that certain symmetry properties are satisfied (see [21] for

details). We note that codes resilient to adversarial stragglers

are useful in massive-scale elastic and serverless systems (such

as [5]), wherein it is difficult to statistically model stragglers.

Furthermore, we are interested in understanding fundamental

limits of adversarial straggler selection.

Our Contributions: We propose a class of gradient codes

based on balanced incomplete block designs (BIBDs) for

mitigating adversarial stragglers. We show that the approx-

imation error for these codes depends only on the number

of stragglers, and not on which specific set of workers is

straggling. Therefore, an adversary that can intelligently select

stragglers has no advantage over one that chooses an arbitrary

subset of stragglers. Moreover, for the proposed codes, the

decoding vector at the server can be computed in closed-

form. This enables the server to perform the decoding in a

computationally efficient manner.

Next, we define the notion of adversarial threshold for a

gradient code. The adversarial threshold specifies the mini-

mum number of workers that an adversary must straggle to

enforce that the approximation error is above a given target.

We compute a lower bound on the adversarial threshold.

Further, we show that codes based on symmetric BIBDs are

excellent candidates for mitigating adversarial stragglers, since

they maximize this lower bound among a wide class of codes.

II. FRAMEWORK

Notation: We use standard script for scalars, bold script

for vectors and matrices, and calligraphic letters for sets. For

a positive integer n, let [n] = {1, 2, . . . , n}. For a vector v,

let supp (v) denote the support of v. For a matrix H , let

HT be its transpose, H† be its Moore-Penrose inverse, Hi,j

be its (i, j)-th entry, Hj be its j-th column, and HT be the

sub-matrix of H corresponding to the columns indexed by a

set T ⊂ [n]. Let 1m denote the m × 1 all ones vector, and

Im denote the m×m identity matrix. Let Jm×n and 0m×n

denote the m× n all ones and all zero matrices, respectively;

when m = n, we simplify the notation to Jm and 0m.

A. Distributed Training

The process of learning the parameters w ∈ Rd of a model

given a dataset D = {(xi, yi)}Mi=1 of M samples, where xi ∈
Rd and yi ∈ R, can be cast as the empirical risk minimization

(ERM) problem given as

min
w

1

M

M
∑

i=1

ℓ (xi, yi;w) , (1)

where ℓ (xi, yi;w) is a loss function that measures the accu-

racy of the prediction made by the model w on the sample

(xi, yi).
One popular method to approximately solve the ERM is

stochastic gradient descent (SGD). SGD begins with some

initial guess of w as w
(0), and then iteratively updates the

parameters as w
(t+1) = w

(t) − αt∇ℓ
(

xit , yit ;w
(t)
)

, where

it is a sample index chosen randomly from [M ], and αt > 0
is the learning rate (or step size) at iteration t.

In a distributed setting, it is possible to take advan-

tage of parallelism by using mini-batch SGD. In every

iteration of mini-batch SGD, a (possibly random) subset

St of B samples is chosen and the model is updated as

w
(t+1) = w

(t) − αt

B

∑

i∈St
∇ℓ
(

xi, yi;w
(t)
)

.

Next, we describe the framework of gradient coding which

mitigates stragglers in a distributed implementation of mini-

batch SGD by redundantly assigning gradients to workers.

Remark 1: Even though we focus on mini-batch SGD for

the ease of exposition, our proposed coding techniques can be

applied to other common first-order methods in machine learn-

ing. Moreover, our techniques are applicable to any distributed

algorithm that requires the sum of multiple functions.

B. Gradient Coding

Consider a distributed master-worker setting consisting of

N worker machines W1, W2, . . ., WN , and a parameter server.

We focus our attention to a given iteration t, and fix a batch

of B samples St. Without loss of generality, assume that St =
{1, 2, . . . , B}. We omit the explicit dependence on the iteration

t hereafter, since our focus is on a given iteration.

We partition the batch into K subsets of equal size1,

denoted as D1, D2, . . . , DK . Define the gradient vector of

the partial data Di, called partial gradient, as gi :=
∑

xj ,yj∈Di
∇ℓ (xj , yj ;w). Note that the server is interested

in computing g :=
∑K

i=1 gi.

A gradient code (GC) consists of an encoding matrix E ∈
RK×N . The j-th column Ej of E corresponds to worker j,

and determines which samples are assigned to the worker and

what linear combination of gradients it returns to the server.

In particular, let supp (Ej) = Lj . Then, the j-th worker is

assigned the subsets {Di : i ∈ Lj}, and it sends back to the

server cj =
1
K

∑

i∈Lj
giEi,j .

Let L = maxj∈[N ] |supp (Ej)| and R =

minj∈[K]

∣

∣

∣
supp

(

(ET )j

)∣

∣

∣
. We refer to L as the computation

1We assume K | B for simplicity. Our schemes can be easily adapted
when K ∤ B.



TABLE I
NOTATION FOR GRADIENT CODING

N Number of workers

K Number of data partitions

L Computational load per worker

R Replication factor

E Encoding matrix of size K ×N

load of E since a worker works on at most L gradients. Note

that for load balancing, it is good to assign the same number

of gradient computations to each worker. We refer to R as

the replication factor of E since each gradient is computed

by at least R workers. We denote such a gradient code as an

(N,K,L,R)-GC. (We summarize the notation in Table I.)

Decoding consists of finding a linear combination of the

results from the non-straggling workers to approximate the

gradient sum g. Specifically, given a set of non-stragglers F ⊂
[N ] of size |F| = N−S, the server finds a vector v ∈ RN−S ,

and computes ĝ = CFv, where C =
[

c1 c2 · · · cN
]

.

Next, we use the framework of [19] (see also [15], [20])

to define the approximation error and the optimal decoding

vector for a given gradient code as follows.

Definition 1: Given an encoding matrix E, the approxima-

tion error errF (E) for a given set of non-stragglers F ⊆ [N ]
of size N − S is defined as

errF (E) = min
v∈RN−S

‖EFv − 1K‖22 , (2)

and a solution vopt to (2) is called an optimal decoding vector.

The worst-case approximation error for S (< N) stragglers is

defined as

errS (E) = max
F⊂[N ]

|F|=N−S

min
v∈RN−S

‖EFv − 1K‖22 . (3)

Note that the deviation of ĝ from g can be bounded in

terms of errF (E) as as ‖ĝ − g‖22 ≤ ‖G‖22 errF (E), where

G is the matrix consisting of all the gradient vectors [15]. Our

goal is to construct encoding matrices such that the worst-case

approximation error is small. In addition, it is desirable if an

optimal decoding vector can be computed efficiently.

III. PRELIMINARIES ON BLOCK DESIGNS

We briefly review the relevant notions from the theory of

block designs. For details, we refer the reader to [21].

Definition 2: [Design and Incidence Matrix] A design is a

pair (X,A), where X is a set of elements called points, and

A is a collection of nonempty subsets of X called blocks.

Consider a design (X,A) with X = {x1, x2, . . . , xv} and

A = {A1, A2, . . . , Ab}. Then, the incidence matrix of (X,A)
is a v × b binary matrix M such that M i,j = 1 if xi ∈ Aj

and M i,j = 0 if xi /∈ Aj .

Balanced incomplete block designs are probably the most-

studied type of designs. They are defined as follows.

Definition 3: [BIBD] A (v, b, k, r, λ)-balanced incomplete

block design (BIBD) is a design (X,A) with v points and b
blocks, each of size k, such that every point is contained in

TABLE II
NOTATION FOR BIBDS

v Number of points

b Number of blocks

k Number of points per block

r Number of blocks containing a point

λ Number of blocks containing a pair of points

M Incidence matrix of size v × b

exactly r blocks and any pair of distinct points is contained

in exactly λ blocks. (We summarize the notation in Table II.)

Remark 2: Note that the incidence matrix of a (v, b, k, r, λ)-
BIBD is such that its every column contains exactly k ones,

every row contains exactly r ones, and any two distinct rows

intersect in exactly λ locations. It is well-known that the

parameters v, b, k, r, and λ of a (v, b, k, r, λ)-BIBD should

be such that vr = bk and r(k − 1) = λ(v − 1).
Example 1: [Fano Plane] A (symmetric)

(7, 7, 3, 3, 1)-BIBD: X = {1, 2, . . . , 7} and

A = {123, 145, 167, 246, 257, 347, 356}. (To save space,

we write blocks in the form abc rather than {a, b, c}.)

Observe that every block contains 3 points, and every point

occurs in 3 blocks. In addition, every pair of distinct points

is contained in exactly one block.

IV. GRADIENT CODES USING BIBDS

In this section, we consider gradient codes based on BIBDs.

For any (v, b, k, r, λ)-BIBD (X = {X1, . . . , Xv},A =
{A1, . . . ,Ab}), let us construct a gradient code using the

BIBD in the following natural way. Consider a distributed

system with N = b workers. Partition the training dataset

into K = v subsets D1, D2, . . . , Dv, and allocate a subset Di

to worker j if the i-th point belongs to the j-th block, i.e.,

if Xi ∈ Aj . By the definition of a BIBD, each worker will

compute L = k gradients and each gradient will be computed

R = r times. This construction can be concisely described in

terms of the incidence matrix as follows.

Construction 1: Given a (v, b, k, r, λ)-BIBD with incidence

matrix M , construct a gradient code with the encoding matrix

E = M . The resulting gradient code is an (N = b,K =
v, L = k,R = r)-GC.

We note that the parameters of any code constructed using

a BIBD are restricted to NL = KR and R(L−1) = λ(K−1)
(see Remark 2). On the other hand, since BIBDs have received

significant research attention in combinatorics and a large

number of constructions have been proposed (see e.g. [22]),

this enables us to construct a class of gradient codes for a

wide range of parameters.

In the following sections, we focus our attention to codes

constructed using three well-studied families of BIBDs. We

show that these codes have two key advantages. First, combi-

natorial properties of BIBDs enable us to compute an optimal

decoding vector in closed-form. This results in extremely

simple and efficient decoding at the server. Secondly, these

codes are resilient to adversarial stragglers.



A. Gradient Codes Using Symmetric BIBDs

Symmetric designs form an important class of block de-

signs. The well-known Fisher’s inequality for BIBDs states

that, for any (v, b, k, r, λ)-BIBD, the parameters v and b should

satisfy b ≥ v. A (v, b, k, r, λ)-BIBD in which v = b (or,

equivalently r = k) is called a symmetric (v, b, k, r, λ)-BIBD.2

Using symmetric BIBDs in Construction 1 results in a class

of gradient codes with N = K = v,3 and L = R = k.

Remark 3: It is well-known that any pair of distinct blocks

of a symmetric (v, b, k, r, λ)-BIBD intersect in exactly λ
points. This ensures that for a gradient code constructed using

a symmetric BIBD, any pair workers share exactly λ gradients.

This property enables us to characterize the approximation

error as well as optimal decoding vector in closed form.

Theorem 1: Consider an (N,K,L,R)-GC obtained from a

symmetric BIBD using Construction 1.

1) For any set of non-stragglers F of size (N − S), an

optimal decoding vector is

vopt =

(

L

L+ λ(N − S − 1)

)

1N−S . (4)

2) The worst-case approximation error for S stragglers is

errS (E) = K −
L2(N − S)

L+ λ(N − S − 1)
. (5)

Proof: (Sketch) The key idea is to show that for any set of

non-stragglers of given size, it is possible to solve the normal

equation. This relies on the property that any pair of workers

share exactly λ gradient computations. The main technical tool

that we use is a matrix inversion lemma from [23] for the

inverse of the sum of two matrices (see Appendix A). The

complete proof is deferred to Appendix B.

Remark 4: Note that the optimal decoding vector (4) and

worst-case decoding error (5) depend only on the number of

stragglers and not on the specific set of stragglers. Therefore,

decoding at the server can be performed in a very efficient

way. Moreover, since any set of S stragglers is as harmful

as other (in terms of the approximation error), an adversary

cannot do better than straggling an arbitrary set of S stragglers.

This makes these codes resilient to adversarial straggling.

Note that it is possible to construct several classes of

gradient codes based on well-known families of symmetric

BIBDs. We present a few examples in the following.

1) Class of Gradient Codes Based on Projective Geome-

tries: For any prime power q and integer m ≥ 2, the projective

geometry of order q and dimension m can be used to obtain a

symmetric BIBD [21]. Using such a BIBD in Construction 1

yields a class of gradient codes with the following parameters:

N = K = (qm+1−1)/(q−1), L = K = (qm−1)/(q−1). Any

pair of distinct workers share exactly λ = (qm−1− 1)/(q− 1)
gradient computations.

2It is worth noting that the incidence matrix of a symmetric BIBD need
not be a symmetric matrix.

3We note that the parameter regime N = K has received primary research
attention, see e.g. [3], [15], [16], [19], [20].

As we will see in Sec. V, gradient codes based on projective

planes (i.e., m = 2) are nearly optimal in terms of the worst-

case approximation error when S = O(q) and q is sufficiently

large.

2) Class of Gradient Codes Based on Hadamard Designs:

For a positive integer m ≥ 2, a symmetric BIBD can be

constructed using a Hadamard matrix of order 4m [21]. Using

such a BIBD in Construction 1 yields a class of gradient

codes with the following parameters: N = K = 4m − 1,

L = K = 2m− 1. Any pair of distinct workers share exactly

λ = m− 1 gradient computations.

B. Gradient Codes Using Dual Designs

Given a (v, b, k, r, λ)-BIBD (X,A) with the incidence ma-

trix M , the design having incidence matrix MT is called the

dual design of (X,A). When the dual of a (v, b, k, r, λ)-BIBD

is used in Construction 1, it is easy to see that the resulting

code is a (N = v,K = b, L = r, R = k)-GC. Note that, unlike

symmetric BIBDs, using dual designs allows us to construct

codes for which N 6= K .

Since every pair of distinct points is contained in λ number

of blocks in a BIBD, any two distinct blocks of the dual

intersect in exactly λ points.

Theorem 2: Consider an (N,K,L,R)-GC with encoding

matrix E obtained from the dual of a BIBD using Construc-

tion 1. Then, for any set of non-stragglers F of size (N −S),
an optimal decoding vector is given by (4) and the worst-case

approximation error for S stragglers is given by (5).

Proof: The proof of Theorem 1 relies on the property that

any two blocks of a symmetric BIBD intersect in exactly λ
points. Since the same property holds for the dual of a BIBD,

the proof is identical to that of Theorem 1.

Note that codes constructed from duals of BIBDs also

admit computationally efficient decoding and are resilient to

adversarial straggling by the same arguments as in Remark 4.

It is possible to construct several classes of gradient codes

by considering duals of well-known families of BIBDs. We

present a few examples in the following.

1) Class of Gradient Codes Based on the Duals of Affine

Geometries: For any power of prime q and integer m ≥ 2,

the affine geometry of order q and dimension m can be

used to obtain a BIBD [21]. Using the dual of such a BIBD

in Construction 1 yields a class of gradient codes with the

following parameters: N = qm, K = q(qm − 1)/(q − 1),
L = (qm−1)/(q−1), R = qm−1 such that any pair of distinct

workers share λ = (qm−1−1)/(q−1) gradient computations.

2) Class of Gradient Codes Based on the Duals of Residual

and Derived Designs: Derived and residual BIBDs are well-

known methods to obtain new BIBDs from symmetric BIBDs

(see [21, Chapter 2.2]). Using the duals of these designs allows

us to construct gradient codes for a broad class of parameters.

C. Gradient Codes Using Resolvable Designs

Consider a gradient code with replication factor R. If the

number of stragglers S < R, then every gradient is computed

by at least one of the remaining workers. Note that any



exact gradient code can recover the gradient sum in this case.

Therefore, it is desirable to construct approximate gradient

codes that can exactly recover the gradient sum whenever

S < R. However, as we can see from (5) that this is not

the case for gradient codes obtained using either symmetric

BIBDs or dual designs.

In this section, we consider gradient codes based on a

special class of block designs called resolvable designs that

lift this limitation. We begin with the definition of a resolvable

BIBD.

Definition 4: [Resolvable BIBD] A parallel class in a design

is a subset of disjoint blocks whose union is the point set.

Let (X,A) be a (v, b, k, r, λ)-BIBD. A partition of A into r
parallel classes is called a resolution. A (v, b, k, r, λ)-BIBD is

said to be a resolvable BIBD if A has at least one resolution.

Remark 5: Note that a parallel class contains exactly v/k
blocks. Further, for any resolvable BIBD, it must be that b ≥
v + r − 1, or, equivalently, r ≥ k + λ (known as Bose’s

inequality).

In the rest of this section, we focus our attention to a

well-studied class of resolvable BIBDs called affine resolvable

BIBDs. A resolvable (v, b, k, r, λ)-BIBD with b = v + r − 1
(or, equivalently, r = k+ λ) is said to be an affine resolvable

BIBID.

Example 2: [Affine Plane of Order 2] A resolv-

able (9, 12, 3, 4, 1)-BIBD X = {1, 2, . . . , 9} and A =
{P1,P2,P3,P4}, where P1 = {123, 456, 789}, P2 =
{147, 258, 369}, P3 = {159, 267, 348}, and P4 =
{168, 249, 357}. Note that each Pi is a parallel class and the

partition {P1, . . . ,P4} forms a resolution.

Consider a gradient code obtained from a resolvable

(v, b, k, r, λ)-BIBD using Construction 1. The resulting code

is an (N = b,K = v, L = k,R = r)-GC.

Remark 6: Given an arbitrary resolution of the blocks A
as {P1,P2, . . . ,Pr}, the N workers can be partitioned into

R (= r) sets {T1, T2, . . . , TR} such that the j-th worker is

included in set Ti if the j-th block is in the set Pi. Then,

naturally, for every i ∈ [R], any pair of distinct workers in

Ti compute disjoint gradients. Moreover, for every part Ti,
i ∈ [R], workers in Ti together compute all the gradients.

Therefore, if the server receives the results from all the workers

in any Ti, it can exactly recover the gradient sum by simply

adding the partial gradient sums.

Remark 7: Consider an affine resolvable (v, b, k, r, λ)-BIBD

(X,A) with incidence matrix M . It is well-known that

any two blocks from different parallel classes of an affine

resolvable BIBD intersect in exactly k2/v points.4 Therefore,

any worker from Ti shares exactly L2/K gradients with

any worker from Tj such that j 6= i. For simplicity, define

µ := L2/K .

The above property enables us to characterize the approx-

imation error as well as optimal decoding vector in closed

form. However, the analysis in this case turns out to be more

4The parameters of an affine BIBD are such that k2/v is an integer.

intricate than the case of symmetric (or dual) BIBDs.5 Towards

this, we need to introduce the following notation.

Definition 5: Consider a set of non-stragglers F of size

(N − S). Define Fi := F ∩ Ti and Si := N/L− |Fi|. Note

that Si denotes the number of stragglers among the workers

from Ti, and that 0 ≤ Si ≤ N/L and
∑R

i=1 Si = S. We call

[S1 S2 · · · SR] as the straggler profile corresponding to the

set F .

Theorem 3: Consider an (N,K,L,R)-GC with encoding

matrix E obtained from an affine resolvable BIBD using

Construction 1. Consider a set of non-stragglers F of size

(N − S) with straggler profile [S1 S2 · · · SR]. Define

Ŝ0 := 0 and Ŝi :=
∑i

p=1 (K/L− Sp) for i ∈ [R]. Recall

that µ := L2/K .

1) If there exists an i ∈ [R] such that Si = 0, then an

optimal decoding vector is

vopt(j) =

{

1 for Ŝi−1 + 1 ≤ j ≤ Ŝi

0 otherwise,
(6)

and the corresponding approximation error is

errF (E) = 0.

2) Suppose Si > 0 for all i ∈ [R], then an optimal decoding

vector is

vopt(j) =
L/ (L− µ(K/L− Si))

(

1 +
∑R

p=1
µ(K/L−Sp)

L−µ(K/L−Sp)

) (7)

for Ŝi−1 + 1 ≤ j ≤ Ŝi, and the corresponding approxi-

mation error is

errF (E) = K + 2

R
∑

i=1

L(K/L− Si)ci(ci − 2)

+

R
∑

i=1

R
∑

j=1
j 6=i

µ(K/L− Si)(K/L− Sj)cicj ,(8)

where ci =
L/(L−µ(K/L−Si))

(

1+
∑

R
p=1

µ(K/L−Sp)

L−µ(K/L−Sp)

) .

Proof: (Sketch) For the first part, note that all the workers

from Ti return their computations. From Remark 6, simply

summing the results from the workers in Ti recovers the

gradient sum. The vector in (6) computes this sum. Clearly,

the approximation error in this case is zero.

For the second part, we show that it is possible to solve

the normal equation by computing E† in closed formed. For

this, we leverage the block intersection property of affine

resolvable designs mentioned in Remark 7. In this case, we

need to iteratively use the matrix inversion lemma given in

Appendix A. The complete proof is deferred to Appendix C.

5The increased complexity of analysis can be attributed to the fact that
any pair of workers for an affine design share either zero gradients or L2/K
gradients. On the other hand, for a symmetric (or dual) BIBD, any pair of
workers share the same number of gradients. In fact, affine resolvable designs
belong to a class of designs called quasi-symmetric designs: designs with the
property that any pair of blocks intersect in either x or y points.



Remark 8: Note that since optimal decoding vector depends

only on the straggler profile (number of stragglers from each

set Ti, i ∈ [R]), decoding at the server can be performed in

a very efficient way. Further, any adversary that can enforce

at most Si stragglers from set Ti, i ∈ [R], cannot worsen

the error by intelligently selecting stragglers as opposed to

randomly selecting stragglers.

TABLE III
GRADIENT CODES USING BLOCK DESIGNS. THE PARAMETER q IS A

POWER OF A PRIME AND m ≥ 2 IS AN INTEGER.

Class Design Parameters of GC

Symmetric

BIBD

Projective Geometry

(PG)

N = K =
(qm+1

−1)
(q−1)

,

L = R =
(qm−1)
(q−1)

Dual of a

BIBD

Dual of Affine Geometry

(Dual AG)

N = qm, K = q
(qm−1)
(q−1)

,

L =
(qm−1)
(q−1)

, R = qm−1

Resolvable

BIBD

Affine Geometry

(AG)

N = q
(qm−1)
(q−1)

, K = qm,

L = qm−1, R =
(qm−1)
(q−1)

D. Summary of Constructions

It is possible to construct several classes of gradient codes

based on well-known families of BIBDs. We summarize a few

examples in Table III.

V. PERFORMANCE EVALUATION

In this section, we numerically evaluate the performance of

the proposed design-based schemes. We consider the following

gradient coding schemes (see Table III, fix m = 2): (i) (N =
q2 + q + 1,K = q2 + q + 1, L = q + 1, R = q + 1)-GC

based on the projective plane of order q (denoted as PG), (ii)

(N = q2,K = q2 + q, L = q + 1, R = q)-GC based on the

dual of affine plane of order q (denoted as Dual AG), and (iii)

(N = q2 + 1, N = q2, L = q, R = q + 1)-GC based on the

affine plane of order q (denoted as AG).

We plot the worst-case approximation error normalized

by the number of gradients, i.e., errS (E) /K versus the

normalized number of stragglers, i.e., S/N . Specifically, we

consider the following two regimes: q = 5 and q = 9 in

Figures 1(a) and 1(b), respectively. Observe that the three

families PG, Dual AG, and AG have similar performance in

terms of approximation error.

For comparison, we plot the uncoded case which partitions

K = q2 + q + 1 gradients across N = q2 + q + 1 workers.

Note that the approximation error in this case equals

the number of stragglers. In addition, we also consider

an (N = (q + 1)2,K = (q + 1)2, L = q + 1, R = q + 1)-
fractional repetition code (FRC) [3], [19]. As expected, both

the uncoded and FRC schemes perform poorly when the

stragglers are adversarial.

In addition, we consider codes based on Margulis construc-

tion of Ramanujan graphs in [15, Example 19], denoted as RG.

For these codes, we plot the upper bound on the worst-case

approximation error derived in [15] as a proxy for the worst-

case approximation error. This is because, to obtain the worst-

case approximation error, one needs to consider all possible

subsets of stragglers. This becomes computationally infeasible

for large N and S. We see that the worst-case approximation

error for BIBD-based codes is substantially smaller than the

guarantees given by the upper bound for the RG scheme.

To see how well the proposed codes perform, we consider a

lower bound on the worst-case approximation error from [15].

In particular, in [15, Lemma 21], the authors showed that

for any (N,K,L,R)-GC E with K = N , the worst-case

approximation error can be lower bounded as errS (E) ≥
⌊S/L⌋. From Fig. 1(a) and 1(b), we can observe that the

proposed schemes perform close to this lower bound for

the small number of stragglers. It is worth noting that, in

massive-scale serverless systems, which are our motivation

to mitigate adversarial stragglers, only a small number of

machines straggle substantially (see, e.g., [24, Fig. 1]).

In fact, gradient codes based on projective planes are nearly

optimal for large q and S = O(q). To see this, consider

(N = q2 + q + 1,K = q2 + q + 1, L = q + 1, R = q + 1)-GC

based on the projective plane of order q. The worst-case

approximation error in (5) reduces to the following expression.

errS (EPG) =
S

(q + 1) + q+1−S
q

(9)

Observe that when S = O(q) and q is large, the error above

is close to the lower bound ⌊S/(q + 1)⌋.

VI. ROBUSTNESS AGAINST ADVERSARIAL STRAGGLING

Our goal in this section is to investigate fundamental limits

on the approximation error. As mentioned in the previous

section, for any (N,K,L,R)-GC E with K = N , the worst-

case approximation error can be lower bounded as errS (E) ≥
⌊S/L⌋ [15, Lemma 21]. In fact, the proof of [15, Lemma 21]

is constructive and gives an O(N2) time greedy algorithm to

find a set of stragglers that will enforce errS (E) ≥ ⌊S/L⌋. In

other words, even an adversary with limited computing power

can induce the error of at least ⌊S/L⌋. However, in general,

for a given gradient code and a number S, finding a set of S
stragglers that maximize the approximation error is shown to

be NP-hard in [19].6

To analyze fundamental limits for a computationally un-

bounded adversary, we consider the following problem: given

a gradient code and a target η, what is the minimum number

of stragglers that an adversary must introduce to ensure that

the approximation error is at least η?

Towards this, consider a bipartite graph G = (W ,D, E) for

a given (N,K,L,R)-GC with encoding matrix E as follows.

The left N vertices W correspond to the set of workers, while

the right K vertices D correspond to the set of gradients to be

computed. There is an edge {i, j} ∈ E from a vertex i ∈ W
to a vertex j ∈ D iff Ei,j 6= 0. Note that the graph G specifies

the placement scheme for the gradient code, i.e., how the data

parts are assigned to the workers.

6The authors consider the case when the decoding vector is fixed a priori. In
particular, it is assumed that the decoding vector is of the form v = ρ1N−S

for a fixed constant ρ.
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Fig. 1. Performance evaluation of gradient coding schemes based on block designs.

Consider a set T ⊂ D and let N (T ) ⊂ W denote the

neighbors of T in G. Now, suppose all the workers in N (T )
are straggling. Then, the gradients in T cannot contribute to

the gradient sum. Therefore, the approximation error must be

at least |T |. Based on this observation, we introduce the notion

of adversarial threshold by defining the following adversarial

straggling problem.

Definition 6: [Adversarial Threshold] Given a graph G as-

sociated with an (N,K,L,R)-GC and a constant 0 < η < K ,

define

S∗(η) := arg min
T ⊂D
|T |=η

|N (T ) |. (10)

We refer to refer to the above minimization problem as the

adversarial straggling problem, and S∗(η) as the adversarial

threshold.

Note that, given G, S∗(η) is the smallest number of workers

that must be selected by an adversarial straggler to enforce that

the approximation error is at least η.7

Next, we derive a lower bound on S∗(η). We restrict our

attention on a class C of gradient codes for which N = K ,

and the associated bipartite graph G is regular and connected.

Proposition 1: For any gradient code from the class C, and

for any η ≤ N/4, we have

S∗(η) ≥

(

3L− λ2

L+ λ2

)

η =: S∗
LB(η), (11)

where λ2 is the second largest eigenvalue of the graph G
associated with the code.8

Proof: See Appendix E.

Next, we show that codes obtained from symmetric BIBDs

are excellent candidates to mitigate adversarial stragglers,

since they achieve the maximum S∗(η) among the codes from

C.

7We do not consider an encoding matrix E explicitly in the formulation
for simplicity.

8For a brief review of eignevalues of a graph, see Appendix D.

Proposition 2: Let η ≤ N/4. Gradient codes obtained from

symmetric BIBDs via Construction 1 achieve the maximum

value of S∗(η) among the codes in C.

Proof: See Appendix F.
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APPENDIX A

MATRIX INVERSION LEMMA

Lemma 1: (cf. [23]) Let G and G+H be nonsingular matri-

ces where H is a matrix of rank one. Then, tr
(

HG−1
)

6= −1,

and the inverse of (G+H) is

(G+H)−1 = G−1 −
1

1 + tr
(

HG−1
)G−1HG−1. (12)

APPENDIX B

PROOF OF THEOREM 1

Consider an arbitrary set of non-stragglers F ⊂ [N ] of size

(N − S). Define S̄ := N − S. Recall that we have

vopt = arg min
v∈RN−S

‖EFv − 1K‖22 .

One optimal solution to the above least squares problem is

vopt = E
†
F1K .

Since E = M , each column of E contains exactly L ones

and any two columns of E intersect in exactly λ locations

(see Remark 2). Therefore, we have

ET
F1K = L1S̄ , (13)

ET
FEF = (L− λ)I S̄ + λJ S̄ . (14)

Note that the matrix on the right hand side of (14) above has

an eigenvalue L−λ with multiplicity S̄−1 and an eigenvalue

(L − λ) + λS̄ with multiplicity one. Thus, its determinant

is (L − λ)S̄−1((L − λ) + λS̄) 6= 0.9 Therefore, ET
FEF is

nonsingular, and we have E
†
F = (ET

FEF )
−1ET

F .

Next, we compute (ET
FEF )

−1 as follows:

(ET
FEF)

−1 (a)
= ((L− λ)I S̄ + λJ S̄)

−1
,

(b)
=

1

L− λ
I S̄ −

1

1 + tr
(

λ
L−λJ S̄

)

λ

(L− λ)2
J S̄ ,

=
1

L− λ
I S̄ −

1

1 +
(

λS̄
L−λ

)

λ

(L− λ)2
J S̄ ,

=
1

L− λ

[

I S̄ −
λ

L+ λ(S̄ − 1)
J S̄

]

, (15)

where (a) follows from (14), and (b) follows from Lemma 1

in Appendix A.

Now, we can compute vopt as

vopt
(c)
= (ET

FEF)
−1ET

F1K ,

(d)
=

1

L− λ

[

I S̄ −
λ

L+ λ(S̄ − 1)
J S̄

]

L1S̄ ,

=
L

L+ λ(S̄ − 1)
1S̄ , (16)

where (c) follows from vopt = E
†
F1K , and (d) follows

from (13). Finally, (4) follows from (16) noting that S̄ =
N − S.

Next, we compute errF (E) for an arbitrary set of non-

stragglers F of size S̄.

errF (E)
(e)
= (EFvopt − 1K)T (EFvopt − 1K) ,

= 1
T
K1K − 2vT

optE
T
F1K + vT

optE
T
FEFvopt,

(f)
= K − 2LvT

opt1S̄ + vT
opt((L− λ)I S̄ + λJ S̄)vopt,

(g)
= K −

2L2S̄

L+ λ(S̄ − 1)
+

L2((L − λ)S̄ + λS̄2)

(L+ λ(S̄ − 1))2
,

= K −
L2S̄

L+ λ(S̄ − 1)
, (17)

where (e) follows from errF (E) = ‖EFvopt − 1K‖22, (f)

follows from (13) and (14), and (g) follows after substituting

vopt from (16).

Since errF (E) does not depend on the specific set of

stragglers, but only the size of it, we get (5) from (17)

substituting S̄ = N − S.

9For any BIBD, k > λ. Therefore, we have L > λ. Note that the same
proof also works for Theorem 2, where we use a dual of a BIBD. In this
case, since r > λ, we again have L > λ.
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APPENDIX C

PROOF OF THEOREM 3

Consider an arbitrary set of non-stragglers F of size (N−S)
with straggler profile [S1S2 · · ·SR]. Recall that 0 ≤ Si ≤ N/L
and

∑R
i=1 Si = S. Define S̄i := K/L − Si for i ∈ [R] and

S̄0 := 0. We consider the second case when Si > 0 for every

i ∈ [R].
Recall that we need to solve

vopt = arg min
v∈RN−S

‖EFv − 1K‖22 .

One optimal solution to the above least squares problem is

vopt = E
†
F1K .

By following the proof of Bose’s inequality for resolvable

block designs, we have that any sub-matrix of E with an

arbitrary column removed from each of T1, T2, . . . , TR has

full column rank. Since we have Si > 0 for every i ∈ [R], it

follows that EF has full column rank. Therefore, ET
FEF is

nonsingular, and we have E
†
F = (ET

FEF)
−1ET

F .

From Remark 7, we obtain that

ET
F1K = L1S̄ , (18)

ET
FEF = Ĵ + µJ S̄ , (19)

where Ĵ is a block matrix defined as

Ĵ =











Ĵ S̄1

Ĵ S̄2

. . .

Ĵ S̄R











(20)

such that Ĵ S̄i
= LI S̄i

− µJ S̄i
for i ∈ [R]. Note that we

suppress the zero entries in the right hand side of (20) for

simplicity.

Next, from (19) and Lemma 1 (in Appendix A), we get:

(ET
FEF )

−1 = Ĵ
−1

−
1

1 + tr
(

µJ S̄Ĵ
−1
) Ĵ

−1
µJ S̄Ĵ

−1
. (21)

Due to the block structure of Ĵ , we have

Ĵ
−1

=













Ĵ
−1

S̄1

Ĵ
−1

S̄2

. . .

Ĵ
−1

S̄R













, (22)

where Ĵ
−1

S̄i
can be computed as follows:

Ĵ
−1

S̄i
=
(

LIS̄i
+ (−µ)J S̄i

)−1
,

(a)
=

1

L
I S̄i

−
1

1 + tr
(

−µJ S̄i

1
LI S̄i

)

1

L
I S̄i

(−µ)J S̄i

1

L
I S̄i

,

=
1

L
I S̄i

+
µ

L(L− µS̄i)
J S̄i

. (23)

The equality (a) above is obtained using Lemma 1.

Using (22) and (23), we verify that

µJ S̄Ĵ
−1

=
[(

µ
L−µS̄1

)

J S̄×S̄1
· · ·

(

µ
L−µS̄R

)

J S̄×S̄R

]

,

(24)

and thus, tr
(

µJ S̄Ĵ
−1
)

=
∑R

p=1
µS̄p

L−µS̄p
. Using (24), one can

verify that

Ĵ
−1

µJ S̄Ĵ
−1

=





A1,1 A1,2 · · · A1,R

A2,1 A2,2 · · · A2,R

AR,1 AR,2 · · · AR,R



 , (25)

where

Ai,j = µ

(

1

L− µS̄i

)(

1

L− µS̄j

)

J S̄i×S̄j
. (26)

We verify, by substituting the above results in (21) and

using (18), that (ET
FEF )

−1ET
F1K results in the expression

of vopt given in (7).

Finally, note that

errF (E)=(EFvopt − 1K)
T
(EFvopt − 1K)

=1
T
K1K − 2vT

optE
T
F1K + vT

optE
T
FEFvopt.(27)

Expression (8) is obtained by using (18), (19), and (7) in (27).

APPENDIX D

OVERVIEW OF EXPANSION AND SPECTRAL PROPERTIES OF

A GRAPH

Let G = (V , E) be a finite, undirected and connected graph

on N vertices. For a subset of vertices F ⊂ V , the boundary

∂F is the set of edges connecting F to V \F . The expanding

constant or isopetimetric constant of G is defined as (see [25])

h(G) = min
∅6=F⊂V

|∂F|

min{|F|, |V \ F|}
. (28)

It is well-known that expansion properties of a graph are

closely related to the adjacency matrix A of the graph, defined

as follows: Ai,j = 1 iff vertices i and j are connected by an

edge, i.e., {i, j} ∈ E . Since A is a real symmetric matrix,

it has real eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λN . When G is L-

regular, it is well-known that λ1 = L , λ2 < L and λN ≥ −L,

where equality holds iff G is bipartite [25].

Theorem 4: (cf. [26]) If G is a finite, connected, L-regular

graph, then

L− λ2

2
≤ h(G) ≤

√

2L(L− λ2). (29)

Connected regular graphs for which λ2 is smaller than the

vertex degree are called as expanders.

Theorem 5: (cf. [27]) Let G = (V , E) be a connected,

(L,R)-regular graph. Then

λ2 ≥

(

|E| − LR
|E|
L − 1

)
1
2

. (30)

For the r-regular graph of a symmetric (v, b, k, r, λ)-BIBD,

the bound in (30) is satisfied with equality.



APPENDIX E

PROOF OF PROPOSITION 1

Let G = (W ,D, E) be the associated bipartite graph.

Consider any T ⊂ D of size η and let S = N (T ) ⊂ W .

Let S = |S|. Note that there are ηL edges from T to S.

Further, there are SL edges such that, for each edge, one of

the endpoints is incident on S. Let ∂(S ∪T ) be the boundary

of S∪T . Recall that this is the set of edges connecting S∪T to

{W∪D}\{S∪T }. Therefore, we have LS = Lη+|∂(S∪T )|,
from which, we get

S = η +
1

L
|∂(S ∪ T )| (31)

= η +

(

S + η

L

)(

|∂(S ∪ T )|

S + η

)

(32)

(a)

≥ η +
S + η

L
h(G) (33)

(b)

≥ η +

(

S + η

L

)(

L− λ2

2

)

, (34)

where (a) follows from (28) and η ≤ N/4, and (b) follows

from Theorem 4. The result follows after rearranging (34).

APPENDIX F

PROOF OF PROPOSITION 2

From (11), observe that the smaller the λ2 the larger

is S∗
LB(η). Therefore, the result follows immediately from

Theorem 5.
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