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Abstract

We consider the task of faithfully simulating a distributed quantum measurement, wherein we provide a protocol
for the three parties, Alice, Bob and Eve, to simulate a repeated action of a distributed quantum measurement using
a pair of non-product approximating measurements by Alice and Bob, followed by a stochastic mapping at Eve.
The objective of the protocol is to utilize minimum resources, in terms of classical bits needed by Alice and Bob
to communicate their measurement outcomes to Eve, and the common randomness shared among the three parties,
while faithfully simulating independent repeated instances of the original measurement. To achieve this, we develop
a mutual covering lemma and a technique for random binning of distributed quantum measurements, and, in turn,
characterize a set of sufficient communication and common randomness rates required for asymptotic simulatability
in terms of single-letter quantum information quantities. Furthermore, using these results we address a distributed
quantum rate-distortion problem, where we characterize the achievable rate distortion region through a single-letter
inner bound. Finally, via a technique of single-letterization of multi-letter quantum information quantities, we provide
an outer bound for the rate-distortion region.
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I. INTRODUCTION

Easurements interface the intricate quantum world with the perceivable macroscopic classical world by
M associating a classical attribute to a quantum state. However, quantum phenomena, such as superposition,
entanglement and non-commutativity contribute to uncertainty in the measurement outcomes. A key concern, from
an information-theoretic standpoint, is to quantify the amount of “relevant information” conveyed by a measurement
about a quantum state.

Winter’s measurement compression theorem [1] (also elaborated in [2]) quantifies the “relevant information” as
the amount of resources needed to simulate the output of a quantum measurement applied on a given state in an
asymptotic sense. Imagine that an agent (Alice) performs a measurement M on a quantum state p, and sends a
set of classical bits to a receiver (Bob). Bob intends to faithfully recover the outcomes of Alice’s measurements
without having access to p. The measurement compression theorem states that at least quantum mutual information
(I(X; R)) amount of classical information and conditional entropy (S(X|R)) amount of common shared randomness
are needed to obtain a faithful simulation, where R denotes a reference of the quantum state, and X denotes the
auxiliary register corresponding to the random measurement outcome. Wilde et al. [2] extended the measurement
compression problem by considering additional resources available to each of the participating parties. One such
formulation allows Bob to further process the information received from Alice using local private randomness. In
analogy with [3], this problem formulation is referred to as non-feedback measurement simulation, while the former
is termed as simulation with feedback. This quantified the benefit of private randomness in terms of enhancing the
trade-off between classical bits communicated and common random bits consumed. In particular, the use of private
randomness increases the requirement of classical communication bits, while reducing the common randomness
constraint.

The measurement compression theorem finds applications in several paradigms including local purity distillation
[2] and private classical communication over quantum channels [4]. This theorem was later used by Datta, et al.
[5] to develop a quantum-to-classical (g-c) rate-distortion theory. The problem involved lossy compression of a
quantum information source into classical bits, with the task of compression performed by applying a measurement
on the source. In this problem, the objective is to minimize the storage of the classical outputs resulting from the
measurement, while being able to recover the quantum state (from classical bits) within a fixed level of distortion
as measured by an observable. To achieve this, the authors in [6] advocated the use of measurement compression
protocol, and subsequently characterized the so-called rate-distortion function in terms of single-letter quantum
mutual information quantities. The authors further established that by employing a naive approach of measuring
individual output of the quantum source, and then applying Shannon’s rate-distortion theory to compress the classical
data obtained is insufficient to achieve optimal rates. Further, the problem of measurement compression in the
presence of quantum side information was studied in [2]. The authors here combined the ideas from [1] and [7] to
reduce the classical communication rate and common randomness needed to simulate a measurement in presence
of quantum side information. Recently, authors in [8] came up with a completely different technique for analyzing
the measurement simulation protocols, while considering the problem of quantum measurement compression with
side information. They provide a protocol based on convex-split and position based decoding, and bound rates from
above in terms of smooth max and hypothesis testing relative entropies (defined in [8]).

In this work, we consider scenarios where the quantum measurements are performed in a distributed fashion on
bipartite entangled states, and quantify “relevant information” for these distributed quantum measurements in an
asymptotic sense. As shown in Fig. 1, a composite bipartite quantum system AB is made available to two agents,
Alice and Bob, where they have access to the sub-systems A and B, respectively. Two separate measurements, one

for each sub-system, are performed in a distributed fashion with no communication taking place between Alice and
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Fig. 1. The diagram of a distributed quantum measurement applied to a bipartite quantum system AB. A tensor product measurement
M4 ® Mg is performed on many copies of the observed quantum state. The outcomes of the measurements are given by two classical bits.
The receiver functions as a classical-to-quantum channel § mapping the classical data to a quantum state.

Bob. Imagine that there is a third party, Eve, who is connected to Alice and Bob via two separate classical links. The
objective of the three parties is to simulate the action of repeated independent measurements performed on many
independent copies of the given composite state. To achieve this objective, Alice and Bob send classical bits to
Eve at rate R; and Rj, respectively. Further, common randomness at rate C' is also shared amidst the three parties.
Eve performs classical processing of the received bits and common randomness. We study two settings, based on
whether or not Eve has access to private randomness. As an application of this quantification, we consider the
quantum-to-classical distributed rate distortion problem where Eve is allowed to use classical-to-quantum channels.
In this work, we focus on memoryless quantum systems in finite dimensional Hilbert spaces. We summarize the
contributions of this work in the following:

o We formulate the problem of faithful simulation of distributed quantum measurements that can be decomposed
as a convex-linear combination (incorporating Eve’s stochastic processing) of separable measurements, as stated
in Definition 1. The asymptotic performance limit for this problem is given by the set of all communication
rates (R1, R2) and all common randomness rates C, referred to as the achievable rate region, under which
the above-stated measurement is distributively simulated. We devise a distributed simulation protocol for this
problem, and provide a quantum-information theoretic inner bound to the achievable rate region in terms of
computable single-letter information quantities (see Theorem 6). This is the first main result of the paper.

o As an immediate application of our results on the simulation of distributed measurements, we develop an
approach for a distributed quantum-to-classical rate distortion theory, where the objective is to reconstruct a
quantum state at Eve, with the quality of reconstruction measured using an additive distortion observable.
The asymptotic performance limit is given by the set of all communication rate pairs (R;, R2) at which the
distortion D is achieved. For the achievability part, we characterize an inner bound in terms of single-letter
quantum mutual information quantities (see Theorem 3). This is the second main result of the paper. The
classical version of this result is called the Berger-Tung inner bound [9].

« We then develop a technique for deriving converse bounds based on a combination of tensor-product and direct-
sum Hilbert spaces (also referred to as a multi-particle system). Using this technique, we derive a single-letter
outer-bound on the optimal rate distortion region (see Theorem 4), by converting a multi-letter expression into
a single-letter expression. This is the third main result of the paper.

The organization of the paper is as follows. In Section II, we set the notation and state requisite definitions.
Instead of first presenting the above-stated inner bound to the performance limits of the problem of simulation of
distributed measurements in its full generality, for pedagogical reasons, in Section III, we first consider a special
case, where the processing at Eve is restricted to a deterministic function, and provide a simple proof based on the
application of Winter’s measurement compression theorem. In this setup, we compress each individual measurements
M4 and Mp, comprising the decomposing of M 4p. As a result, faithful simulation of M4 is possible when at



least nI(U; R4) classical bits of communication and nS(U|R ) bits of common randomness are available between
Alice and Eve. Similarly, a faithful simulation of Mp is possible with nI(V; Rp) classical bits of communication
and nS(V|Rp) bits of common randomness between Eve and Bob, where R4 and Rp are purifications of the
sub-systems A and B, respectively, and U and V denote the auxiliary registers corresponding to their measurement
outcomes. The challenge here is that the direct use of single-POVM compression theorem for each individual
POVMs, M4 and Mp, does not necessarily ensure a “distributed” faithful simulation of the overall measurement,
M ap. To accomplish this, we develop a Mutual Covering Lemma (see Lemma 4), which also helps in converting
the information quantities in terms of the reference R of the joint state pap.

Further, an interesting aspect about the distributed setting is that one can further reduce the amount of classical
communication by exploiting the statistical correlations between Alice’s and Bob’s measurement outcomes. The
challenge here is that the classical outputs of the approximating POVMs (operating on n copies of the state p4p)
are not independent identically distributed (IID) sequences — rather they are codewords generated from random
coding. For this we develop a proposition for mutual packing (Proposition 2), that characterizes the binning rates
in term of single-letter information quantities. This issue also arises in classical distributed source coding problem
which was addressed by Wyner-Ahlswede-Korner [9] by developing Markov lemma and Mutual packing lemma.
The idea of binning in quantum setting has been explored from a different perspective in [10] and [11] for quantum
data compression involving side information. Toward the end of the section, we also provide an example to illustrate
the inner bound to the achievable rate region.

In Section V, we apply this special setting of the distributed measurement simulation with deterministic processing
to the g-c distributed rate distortion problem. Since, the proof of the inner bound of this rate distortion problem
requires only the special case of distributed measurement simulation, this is another reason for providing the special
case in the previous section.

In Section VI, we consider the non-feedback measurement compression problem for the point-to-point setting.
The authors in [2] have discussed this formulation and provided a rate region with a proof of achievability and
converse. However, the assumed equations (53) and (54) in proving the direct part (see [2]) do not appear to be true,
to the best to our knowledge, but only in an average sense. A stronger version of this theorem is also developed in
[12] using a different technique, wherein the authors have extended the Winter’s measurement compression for fixed
independent and identically distributed inputs [1] to arbitrary inputs. Since the result is crucial for the distributed
simulation problem with stochastic processing, to be described in the next section (Section VII), we formally state
the problem and provide an alternative proof of the direct part for completeness (see Theorem 5).

Finally, the above proof of non-feedback simulation in the point-to-point setting provides us with necessary tools
for the next task, namely, distributed quantum measurement simulation with stochastic processing. The objective of
incorporating the additional processing at the decoder is to reduce the required shared randomness. Our objective
in the distributed problem, considered in Section III, was to simulate M4 ® Mp. We achieve this by proving that
a pair of POVMs that can faithfully simulate M4 and Mp individually, can also faithfully simulate M4 ® Mp
(Lemma 4). However, it will be shown that, because of the presence of Eve’s stochastic processing, decoupling the
current problem into two symmetric point-to-point problems is not feasible. Therefore, we perform a non-symmetric
partitioning while being analytically tractable. Moreover, we provide a single-letter achievable inner bound that is

symmetric with respect to Alice and Bob. We conclude the paper with a few remarks in Section IX.

II. PRELIMINARIES

We here establish all our notations, briefly state few necessary definitions, and also provide Winter’s theorem on
measurement compression.
Notation: Given any natural number M, let the finite set {1,2,---, M} be denoted by [1, M]. Let B(H) denote the

4



algebra of all bounded linear operators acting on a finite dimensional Hilbert space H. Further, let D() denote the
set of all unit trace positive operators acting on . Let I denote the identity operator. The trace distance between
two operators A and B is defined as |A — B|; £ Tr|A — B|, where for any operator A we define |A| £ VATA.
The von Neumann entropy of a density operator p € D(H) is denoted by S(p). The quantum mutual information
for a bipartite density operator pap € D(Ha ® Hp) is defined as

I(A; B), 2 S(pa) + S(pB) — S(pan)-

Given any ensemble {p;, pi}ie[Lm], the Holevo information, as in [13], is defined as
x({pi, pi}) 2 S(Zpim) — > piS(pi).
i i

A positive-operator valued measure (POVM) acting on a Hilbert space H is a collection M a {A}zex of positive

operators in B(7#) that form a resolution of the identity:

Ae=0VzeX, Y A, =1
reX

where X' is a finite set. If instead of the equality above, the inequality > A, < I holds, then the collection is said
to be a sub-POVM. A sub-POVM M can be completed to form a POVM, denoted by [M ], by adding the operator
Ao & (I =3, A,) to the collection. Let W7, , denote a purification of a density operator p € D(H4). Given a
POVM M 2 {A;Z‘}gce x acting on p, the post-measurement state of the reference together with the classical outputs
is represented by

: A A

(4@ M)W, A 3 foxal @ Tral (17 @ A)WE, .} (1)

zeX

Consider two POVMs My = {A4},cx and Mp = {Af }yey acting on H 4 and H g, respectively. Define M 4QMp a
(A ® Af }zex yey With this definition, M4 ® Mp is a POVM acting on H4 ® Hp. By M®" denote the n-fold
tensor product of the POVM M with itself.

Definition 1 (Joint Measurements). A POVM Map = {A2P} ..z, acting on the joint state pap € D(Ha Q@ Hp),
is said to have a separable decomposition with stochastic integration if there exist POVMs M, = {Aﬁl}ueu and
Mp = {AB},cy and a stochastic mapping Py : U xV — Z such that
AB = ZPZ‘UVV(Z|U,U)]\§ QAB, vzez,
U,v
where ¢,V and Z are some finite sets. Further, if the mapping Pz, is a deterministic function then the POVM
is said to have a separable decomposition with deterministic integration.

Measurement Compression Theorem: Here, we provide a brief overview of the measurement compression
theorem [1]. A key concern, from an information-theoretic standpoint, is to quantify the amount of “relevant
information” conveyed by a measurement about a quantum state. Winter quantified “relevant information” by
measuring the minimum amount of classical information bits needed to “simulate” the repeated action of a
measurement M on a quantum state p. In this context, an agent (Alice) performs an approximating measurement
M®™) on a quantum state p®" and sends a set of classical bits to a receiver (Bob). In addition, Alice and Bob share
some amount of common randomness. Bob intends to faithfully recover the outcomes of the original measurement
M without having access to the quantum state based on the bits received from Alice and the common randomness.
The objective is to minimize the rate of classical bits under the constraint that the recovered and the original

outcomes be statistically indistinguishable. This is formally defined in the following.



Definition 2 (Faithful simulation [2]). Given a POVM M £ {As}zex acting on a Hilbert space H 4 and a density
operator p € D(H 4), a sub-POVM M 2 {/N\gc}gcE x acting on H 4 is said to be e-faithful to M with respect to p,
for € > 0, if the following holds:

Z H\fp(Az - ]\x)\/ﬁHl + Tr {(I — Z]\z)p} <e. )

The above trace norm constraint can be equivalently expressed in terms of a purification of state p using the

following lemma.

Lemma 1. [2] For any state p € D(H) with any purification \Il’é 4 and any pair of POVMs M and M acting on
H, the following identity holds

I(id @ M)(W5 1) = (id @ M)(W )1 = 3, Ivp(Az = Aa) /ol 3)

where Ay and A, are the operators associated with M and M, respectively.

Theorem 1. [1] For any € > 0, any density operator p € D(H 4) and any POVM M acting on the Hilbert space
Ha, there exist a collection of POVMs M(h) for uw e [1,N], each acting on HE", and having at most 2"
outcomes such that M(™ 2 % > u M) s e-faithful to M®" with respect to p®" if

R>I(U; R), + d(e), %logg N+ R > SU), +5(e),

where opy & (id®@ M) (V% 4), and 6(e) \, 0 as €\, 0.

Remark 1. A strong converse of the above result is also provided in [1].

IITI. SIMULATION OF DISTRIBUTED POVMS WITH DETERMINISTIC PROCESSING

Now, we develop an extension of Winter’s measurement compression [1] to quantum measurements performed
in a distributed fashion with deterministic processing. Consider a bipartite composite quantum system (A, B)
represented by Hilbert Space H4 ® Hp. Let pap be a density operator on H 4 ® H . Consider two measurements
M4 and Mp on sub-systems A and B, respectively. Imagine that three parties, named Alice, Bob and Eve, are
trying to collectively simulate these two measurements, one applied to each sub-system. The three parties share
some amount of common randomness. Alice and Bob perform a measurement MXZ) and M gﬂ on n copies of sub-
systems A and B, respectively. The measurements are performed in a distributed fashion with no communication
taking place between Alice and Bob. Based on their respective measurements and the common randomness, Alice
and Bob send some classical bits to Eve. Upon receiving these classical bits, Eve applies a processing operation on
them and then wishes to produce an n-letter classical sequence. The objective is to construct n-letter measurements
Mg”) and M ](3") that minimize the classical communication and common randomness bits while ensuring that the
overall measurement induced by the action of the three parties is close to ME?" ® Mg". The problem is formally

defined in the following.

Definition 3. For a given finite set Z, and a Hilbert space H4 ® Hp, a distributed protocol with parameters (n,
©1, 02, N) is characterized by

1) a collections of Alice’s sub-POVMs Mg’“ ), w € [1, N] each acting on 7—[(2” and with outcomes in a subset £
satisfying |£;| < ©;.

2) a collections of Bob’s sub-POVMs M ](3“ ), u € [1, N] each acting on ’H%n and with outcomes in a subset Lo,
satisfying |La| < Oo.



3) a collection of Eve’s decoding maps f) : £1 x Ly — Z" for pu € [1,N].
The overall sub-POVM of this distributed protocol, given by M 4p, is characterized by the following operators:

A A, (1) B,(w) n n
Azn N ulz:l ﬂ{f(,t) Iy,lo)= Zn}A ®A12 s Ve Z s (4)

where AZ"(“ ) and Ai’(“ ) are the operators corresponding to the sub-POVMs ]\;[1&“ ) and M j(B“ ), respectively.

In the above definition, (©1, ©O2) determines the amount of classical bits communicated from Alice and Bob to
Eve. The amount of common randomness is characterized by /N, and u can be viewed as the common randomness

bits distributed among the parties. The mapping f(**) represents the action of Eve on the received classical bits.

Definition 4. Given a POVM M, 2 {A4P} . = acting on H 4 ®Hp, and a density operator psp € D(HA®HB),
a triplet (R1, Ro, C) is said to be achievable, if for all e > 0 and for all sufficiently large n, there exists a distributed
protocol with parameters (n, ©1, 02, N) such that its overall sub-POVM M yp is e-faithful to Mf?g with respect
to p%7% (see Definition 2), and

1 1
—logy N < C +¢, —logs ®; < R, +¢, i=1,2.
n n
The set of all achievable triples (R;, Ro, C') is called the achievable rate region.

The following theorem provides an inner bound to the achievable rate region, which is proved in Section 1V,

Theorem 2. Given a density operator pap € D(Ha @ Hp) and a POVM Myp 2 {AAB) .z acting on Ha ®
Hp having a separable decomposition with deterministic integration (as in Definition 1), a triple (R1, R, C) is

achievable if the following inequalities are satisfied:

> I(U;RB)y, — I(U;V)e,, (5a)

Ry =2 I(V; RA) 6, — I(U; V)4, (5b)

Ri+Ry>I1I(U;RB)y, + I(V;RA)6, —I(U;V)g,, (5¢)

R+ C=SU|V)s,, (5d)

Ry +C=S(V|U)og,, (5e)

Ri+ Ry +C=8U,V)e,, (5f)

for some decomposition with POVMs M4 = {A2}uey and Mp = {AB},cy and a function g : U x V — Z, where

the information quantities are computed for the auxiliary states oFVB 2 (idp @ My ® idp)(V5es), ofAV a

(idgr ®id4 ® Mp)(V525), and okVV 2 (idp ® M4 ® Mp)(V4Ey), with WAL being a purification of pap, and

U and V are some finite sets.

Remark 2. An alternative characterization of the above rate region can be obtained in terms of Holevo information.
For this, we use the canonical ensembles {/\u ) pf} {)\v ,pf} and {)\uv ,pAB} defined as

XA Tr{A pak. AP & Te{AP o), XAB & Tr{(AA ®A)pan),
R . X 1 _ R
N N T D N G T LN TR

Using this, we get
I({U;RB),, = x ({M,p4}) and I(V;RA),, = x ({5, 551).

Also, I(U;V),,, and S(U,V),, are equal to the classical mutual information and joint entropy with respect to the
joint distribution {\AB}, respectively.



Before providing a proof in the next section, we briefly discuss two corner points of the rate region with
respect to the common randomness available. Firstly, consider the regime where the sum rate (R + Rg) is at its
minimum achievable, i.e., equation (5c) is active. This requires the largest amount of common randomness, given
by the constraint C' > S(U|RB)y, + S(V|RA),,. Next, let us consider the regime where C' = 0. This implies
Ry + Ry = S(U,V),,. This regime corresponds to the quantum measurement M4 ® Mp followed by classical
Slepian-Wolf compression [14]. Fig. 2 demonstrates the achievable rate region in these cases.

R,
M C=o

SV - B C>SUIRB),, +S(VIRA),,
I(V; RA),, €~

S(U|V)q,

I(V; RA),, — I(U,V),, |&-

>
R4

| SV0)g, | SWU)g,
v
I(U; RB),, — 1(U,V),, I(U;RB),,

<€-—4--

Fig. 2. The inner bound to the achievable rate region given in Theorem 2 at two planes: 1) with no common randomness, i.e., C = 0
(green color), and 2) with at least S(U|RB)o, + S(V|RA)s, amount of common randomness (blue color). As a result, the latter region
contains the former.

We encounter two challenges in developing the single-letter inner bound to the achievable rate region as stated
in Theorem 2: 1) The direct use of single-POVM compression theorem, proved using random coding arguments
as in [1], for each individual POVMs, M4 and Mp, does not necessarily ensure a “distributed” faithful simulation
for the overall measurement, M 4 ® Mp. This issue is unique to the quantum settings. One of the contributions of
this work is to prove this when the two sources A and B are not necessarily independent, i.e., pap # pa ® pB
(see Lemma 4).

2) The classical outputs of the approximating POVMs (operating on n copies of the source) are not independently
and identically distributed (1ID) sequences - rather they are codewords generated from random coding. The Slepian-
Wolf scheme [14] (also referred to as binning in the literature) is developed for distributed compression of 11D
source sequences. Applicability of such an approach to the problem requires that the classical outputs produced from
the two approximating POVMs are jointly typical with high probability. This issue also arises in classical distributed
source coding problem which was addressed by Wyner-Ahlswede-Korner by developing Markov Lemma and
Mutual Packing Lemma (Lemma 12.1 and 12.2 in [15]). Building upon these ideas, we develop quantum-classical
counterparts of these lemmas for the multi-user quantum measurement simulation problem (see the discussion in

Section IV-B and Proposition 2). Let us consider an example to illustrate the above inner bound.

Example 1. Suppose the composite state p4p is described using one of the Bell states on H4 ® Hp as

PP = 2(100) 45+ 111),45) (00] g5 + (111,15).

Since 74 = Trp pAP and 78 = Try pAP, Alice and Bob would perceive each of their particles in maximally mixed

states 4 = % and 78 = %, respectively. Upon receiving the quantum state, the two parties wish to independently

1 1 1 1
measure their states, using identical POVMs My and Mp, given by {2 |0X0], 3 11X1], 3 |+ X+, 3 |—><—|} Alice

8



and Bob together with Eve are trying to simulate the action of M4 ® Mp using the classical communication and
common randomness as the resources available to them (as described earlier).

We compute the constraints given in Theorem 2. Considering the first constraint from (5a), we evaluate o7 a

o'P = (’0><0|U®’0><0|B+‘1><1|U®‘1><1|B+‘2><2|U®‘+><+|B+‘3><3|U®‘_><_|B)’

where the vectors {|0);;,|1);,12);,13)} denote a set of orthogonal states on the space Hy. Based on this state,

we get
S(cfVB) = 5(6UBYy =2, S(cfB)y=S(cP)=1 and S(V)=2.

This gives I(U; RB),, to be equal to 1 bit. Similarly, from the symmetry of the example, we also get I(V; RA),,

to be equal to 1 bit. Similarly, we can evaluate O'UV

3 i+4
( Z\ZXZ\U@)MXZ\WfZ D iXily ® [mod (4,4)Xmod (4, )\V>

1=0j=i+2

which gives
S(U,V)e, =35 and I(U;V),, =0.5.
Therefore, we can write the constraints given in Theorem 2 as
R =205, Ry>05, Ri+Ry>15 R +C>15 Ry+C=>=15 and R+ Ry+C =35

Consider the case when C > 2 is available. By approximating M4 and Mp individually, we receive a gain of
1 bit, decreasing the rate from S(U),, = 2 bits to I(U; RB),, = 1 bit and similarly from S(V'),, = 2 bits to
I(V;RA),, = 1 bit. Binning of these approximating POVMs (as discussed in Section (IV-B)), gives an additional
gain of half a bit, which is characterized by I(U;V),, = 0.5, thus giving us the achievable sum-rate of 1.5 bits.

In the next section we provide the proof for this inner bound.

IV. PROOF OF THEOREM 2

Assume that the operators of the original POVM M 4p are decomposed as

= Z Liguv)y—n) Mg @ AL, Vz e Z, (7
u,v

for some POVMs M, and Mp with operators denoted by {A},c; and {AP},cy, respectively, and for some
function g : U x V — Z where U,V and Z are three finite sets. The proof follows by constructing a protocol
for faithful simulation of Mf?” ® Mg”. We start by generating the canonical ensembles corresponding to M4 and
Mp, as given in (6). With this notation, corresponding to each of the probability distributions, we can associate
a é-typical set. Let us denote ﬂ(n)(U )s 7:5(n)(V) and %(n)(UV) as the d-typical sets defined for {\:}, {\F} and

{MAB1 | respectively.
Let II,, and II,, denote the d-typical projectors (as in [13]) for marginal density operators ps and pp,
respectively. Also, for any «” € U™ and v" € V", let HAL and I3, denote the conditional typical projectors

(as in [13]) for the canonical ensembles {\*, 52} and {\Z, 5}, respectively. For each u™ € U™ and v™ € V" define
AY ST, A A TAT,,, AB 41, B pBnbn,,, (8)

PA u"u

where pA, & &), it and pb, & ® p5 1.

’ ’
'Note that A% and AZ. are not tensor products operators.



With the notation above, define c" and o2 as

A A )\A

’ A /LL’VL

’ DI
U"E'T(;(") (U)

A2 and o 2 Z i AB, 9)

I
uneT<">(V)( )

where & =}, .+ ) M, and ¢ = Zwe7_<n>(v) AB.. Note that ¢4 and 0P defined above are expectations
s

with respect to the pruned distribution [16]. Let I14 and 117 be the projectors onto the subspaces spanned by the

eigen-states of 04" and o?" corresponding to eigenvalues that are larger than e2~"(5(P4)+01) apnd 2—"(S(p5)+02)

for some 81, 9y > 0. Lastly, define’.

AL BTIAAATIA, and AB 2 TIPABTIE. (10)

un

A. Construction of Random POVMs

In what follows, we construct two random POVMs one for each encoder. Fix a positive integer /N and positive
real numbers R; and Ry satisfying R; < S(U)s, and Ry < S(V),,, where o3 is defined as

RUV A (ldR®MA ®MB)(\IJ€£ABB)

with \I'%‘jfB being any purification of pap°>. Let y1 € [1, N1] denote the common randomness shared between the
first encoder and the decoder, and let uo € [1, Na2| denote the common randomness shared between the second
encoder and the decoder, with log(/V7) + log(N2) < log(XN). For each p; € [1, N1] and ug € [1, N2], randomly and
independently select onfti and gnk sequences (U™ (1) (1), V™) (k)) according to the pruned distributions, i.e.,

AdAB ) )
P (@™ 0)(0), V) (k) = (u",0") =4 (T—2) (1-2) for e 77 (U)v" e T (V) (11)
0 otherwise
Construct Operators
Aiﬁ‘f’—vﬁﬁl)(M‘lAﬁn\ﬁpA*) and Bﬁﬁ”écé%”(\ﬁpg‘%fl pB-1>, (12)

where

1-— 1-—

2 & LSy pn ) = )| ana () 2 A E g gy ) 0y, (13)
1+n 1+7n

where 7 € (0,1) is a parameter to be determined. Then, for each ;1 € [1, N1] and us € [1, N2], construct Ml(”"“)

and MQ(n’” 2) as in the following
M) A AR e T, Myt A (BYR) L om e TV (V). (14)

We show in the later part of the proof (Lemma 2) that Ml(”’“ V) and Mén’“ 2) form sub-POVMs, with high
probability, for all 4 € [1, N1] and ps € [1, Na], respectively. These collections Ml("’“ ") and MQ("’“ 2) are completed
using the operators [ — >} .+ ) A(nl) and [ — ZU”GT(")(V) Béﬁm), and these operators are associated with

s s

sequences v and vfj, which are chosen arbitrarily from Z/{”\’E(n)(U ) and V"\’KS(”)(V), respectively.

*Note that A2 and AP, are not tensor products operators.
RUV

3The information theoretic quantities calculated with respect to o2 remain independent of the purification used in its definition.
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B. Binning of POVMs

We introduce the quantum counterpart of the so-called binning technique which has been widely used in the
context of classical distributed source coding. Fix binning rates (R;, R2) and choose a (u1,p2) pair. For each
sequence u'* € %(n)(U) assign an index from [1,2"f%] randomly and uniformly, such that the assignments for
different sequences are done independently. Perform a similar random and independent assignment for all v" €
7:5(n)(V) with indices chosen from [1,2"%2]. Repeat this assignment for every u1 € [1,2"¢1] and ps € [1,27C2].
For each i € [1,2"%] and j € [1,2"%], let B(“ 1)(') and B(“ 2)( ) denote the i** and the ;" bins, respectively. More

(2

precisely, B( )( /) is the set of all u™ sequences with assigned index equal to i, and similar is By )( ). Define the

following operators:

F?v(#l) A Z Aq(ﬁf), and FJ-B’(H) A 2 Bq(}[:z),

uneBYD () vneBY? (4)

for all 4 € [1,2"%1] and j € [1,2"%]. Using these operators, we form the following collection:
M1 A7 1 b B7 2
MY 2O g, MG AATTOD ). (1)

Note that if M; (1) and M, (12) are sub- POVMs, then so are M, (m11) and My (12) This is due to the relations

Srp = S Al and Y2 = N U,

‘ uneT™ (U) j wneT M (V)
To make M(”’“) and MY’ mi2) complete, we define Tj"#*) and TH(#2) as TM0M) — 1 — 52 p0m) gpg T2 ke)
I—%,T" (“ 2), respectively*. Now, we intend to use the completions [Mf(ln o 1)] and [MJ(BTL ) ] as the POVMs for
each encoder. Also, note that the effect of the binning is in reducing the communication rates from (Rj, Rg) to
(R1, R2).

C. Decoder mapping

Note that the operators Al(fi,l) ® Bfff) are used to simulate M4 ® Mp. Binning can be viewed as partitioning
of the set of classical outcomes into bins. Suppose an outcome (U™, V™) occurred after the measurement. Then,
if the bins are small enough, one might be able to recover the outcomes by knowing the bin numbers. For that we
create a decoder that takes as an input a pair of bin numbers and produces a pair of sequences (U™, V™). More
precisely, we define a mapping F'*), for 1 = (uu1, i2), acting on the outputs of [Mf(ln’“ Ne[M 1(3"’“ 2)] as follows.
Let C(#) denote the codebook containing all pairs of codewords (U™ (1) (1), V™#2)(E)). On observing x and the
classical indices (i,7) € [1 : 2"%] x [1 : 2"F2] communicated by the encoder, the decoder first deduces (p1, ui2)

from p and then populates,

Dt & f(um vty e €0 (", 0" € T(UV) and (u”,0") € BE () x BY ()} (16)

2¥}

For every € [1: NJ, i€ [1:2"4] and j € [1,2"%] define the function F(")(i,5) = (u",v™) if (u™,v") is the
); otherwise FW (i, 5) = (ug,vy) Further, F®) (i, 5) = (uff,vy) for i = 0 or j = 0. Finally,

the decoder produces 2™ € Z" according to the map ¢"(F(* (4, )). With this mapping, we form the following

only element of Dl(’“jl’“ :

collection of operators, denoted by MIS@,

AB  a A, (p1) B,(n2) n ,n n n
AgB,. 2 N1N2 Z Z > @y vt o) eU™ x V.
p1=1p2=1 (5 5):F (i,5)=(u™v™)

*Note that Tg" ") = 1 = ¥, T = T =3 gy A and T§ 0 = T =35, 1702 =T =35 ) B
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Note that for A%E,. = 0 for (u",v") ¢ (E(")(U) X 7:;(")(1/)) U{(u,v)}. We show that MXQ is a POVM that
is e-faithful to the intermediate POVM M{" ® ME", with respect to p%'%. For faithful simulation of the original
POVM M 4, we apply the deterministic mapping g"(u™,v™) to the classical outputs of Mgg. More precisely, we

construct the POVM Mﬁ(g with the following operators:

AAB = Z Affvn:[I.{gn(un’vn):zn}, VZn € Z?’L'

Zn
u"™,u"

D. Analysis of POVM and Trace Distance

In what follows, we show that MXB) is a POVM, and is e-faithful with respect to p4p (according to Definition
2) to M 4p, where ¢ > 0 can be made arbitrarily small for sufficiently large n. More precisely, we show that, with
probability sufficiently close to 1,

DI/ oS (ALF = ALF) /oSl < (17)
Z7Z

According to the decomposition of A, given in (7), the above inequality is equivalent to

2 2 Mgt amy=zn) (\/@(Af}n ® Ay — Afﬂﬁ@)

zZ™ ||lum™, o™

< €.

1
From triangle inequality, the left-hand side of the above inequality does not exceed the following

DU Lgumwomy—emy [V PSR (A @ AL — AE 00 P55|| = D) W ASE A @ AL — ASE, 00 035

Zn unun 1 ynpn
Hence, it is sufficient to show that the above quantity is no greater than ¢, with probability sufficiently close to

1

1. This is equivalent to showing that J\ZXE is e-faithful to ]\_45?" ® Mg” with respect to p%%. Alternatively, using
Lemma 1, we prove the following inequality

G & H (i@ ME" @ ME™) (U0, 40 ) — (A @ MTD (V0 40 0)

< e (18)
1

We characterize the conditions on (n, N, Ry, R2) under which the inequality given in (18) holds, using the following
steps.

Step 1: Ml(n’“ ") and MQ(n’” 2) are sub-POVMs and individually approximating

As a first step, one can show that with probability sufficiently close to one, Ml("’” ") and MQ(n’“ 2) form sub-POVMs
for all p; € [1, N1] and po € [1, N3], and also individually approximate the corresponding tensor product POVMs.

More precisely the following Lemma holds.

Lemma 2. For any two positive integers N1 and N, and €,e,&',n € (0,1), as in (13), and any ¢ € (0,1), there
exists n(e,e,e',n,C) such that for all n = n(e,e,e’',n, (), the collection of operators Ml(n”“) and Mz(n”“) form
sub-POVMs for all py € [1, N1]| and po € [1, No| with probability at least (1 — (), provided that

R, > I(U;RB),,, and Ry > I(V;RA),,,
where 01,09 are defined as in the statement of the theorem. In addition, if

1 ~ 1 -
- logy N1 + Ry > S(U)y,, - logy No + Ry > S(V)o,, 19)

then with probability at least (1 — () the collection of average operators Mi(") a Ni D [Mi(n’“i)],i = 1,2 are
e-faithful to MSD" with respect to p%” and Mg" with respect to p%”, respectively.

Proof. The proof uses a similar argument as in that of Theorem 2 in [1]. Hence it is omitted. O

12



As a result of the lemma, MXB and MX}; are valid POVMs with high probability.
Step 2: Isolating the effect of un-binned approximating measurements
In this step, we separate out the effect of un-binned approximating measurements from G in (18). This is done by
adding and subtracting an appropriate term within the trace norm and applying triangle inequality, which bounds
G as G < 51 + 59, where

. T n TN 1 T TH2
S1 2 |([d®@ M§" @ MZ") (V. 4 p) — NNy ) (id @ [M{™] @ [ME"™"]) (W o )|
H1,M42 1
1 . T,y T, 2 1 VA
S22 |5 2 (MO @) (B g ) = (4@ M) (Vo gepn)| 20)
1,2 1

where the 57 captures the effect of using approximating POVMs M 1(n’“ V) and MZ(n’“ 2) instead of the actual POVMs
M%)” and Mgn, while Sy captures the error introduced by binning these approximating POVMs. Before we proceed

further, we provide the following lemma which will be useful in the rest of the paper.

Lemma 3. Given a density operator pap € D(Hap), a sub-POVM My a {Af (Y € y} acting on ‘Hp, for some

set Y, and any Hermitian operator r4 acting on ‘H , we have

D Iveas (T4 @A) voas|, < |veal*Vpal, @1
yey
. . B _ .
with equality if Z Ay =1, where ps = Trp{pan}
yey
Proof. The proof is provided in Appendix A-A. 0

Next, we show S is sufficiently small using the following Mutual Covering Lemma.

Lemma 4 (Mutual Covering Lemma). Suppose the sub-POVM My is e-faithful to Mx with respect to px, and
the sub-POVM My is e-faithful to My with respect to py, where px = Try {pxy} and py = Trx {pxy}. Then
the sub-POVM M x ® My is 2e-faithful to the POVM Mx ® My with respect to pxy .

Proof. The proof is provided in the Appendix A-B. O

Using Lemma 4 with pxy = p%é, Mx = N%Zm [Ml(n”“)], My = N%ZW[Mén’m’)], Mx = ]\_4%” and
My = ME", and Lemma 2, with probability at least (1 — ¢), we have S; < 2.
Step 3: Analyzing the effect of Binning
In this step, we provide an upper bound on Ss. For (u",v™) € BY“)(Z') X Bg”)(j), define (¥ (u™,v™) & FW (4 j).
For any (u”,v") ¢ CW define e (u™,v™) = (ug, o). Note that e(#) captures the overall effect of the binning
followed by the decoding function F*). For all " € 4" and v" € V", let Dyn yn a [u, o™ Xu™, v"™|. With this

notation, we simplify Sy using the following proposition.

Proposition 1. Sy can be simplified as

1
R 7D D D Y T

H1,2 u"eﬂ(m (U) v’"e’Té(n) (V)

(1) -(12) ()

Yun Gon ™ Elym s

where Qyn o is defined as

—1 —1
Qun oy 2 Tr {\/ P @pF (A @ AT T @ T p%}~

Proof. The proof is provided in Appendix B-A. O
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In the next proposition we provide a bound on So.

Proposition 2 (Mutual Packing). There exist functions €g,(0) and dg,(0), such that for all sufficiently small § and
sufficiently large n, we have P (Sy > €g,(8)) < 05, (0), if Ri+Ro— R1 — Ry < I(U;V),,, where o3 is the auxiliary
state defined in the theorem and €g,,ds, \, 0 as o \, 0.

Proof. The proof is provided in Appendix B-B. O
Using this, and from Step 2, with probability sufficiently close to one, we have

G <S8+ 95 <2 +eg,.

E. Rate Constraints

To sum-up, we showed that the trace distance inequality in (18) holds for sufficiently large n and with probability
sufficiently close to 1, if the following bounds hold:

R, > I(U; RB),, (22a)

Ry = I(V;RA),, (22b)

Ci+ Ry = S(U),,, Co+ Ry=S(V)g,, (22¢)
(Ri — R1) + (Ro — Ro) < I(U; V), (22d)
Ri>Ri >0, Ry>Ry>0, (22¢)
Ci1+Cy<C, €120, Cy=0, (22f)

where C; & % logy N;; for ¢ = 1, 2. This implies that Mgg is e-faithful to M%"@Mg" with probability sufficiently
close to one, and hence, MXg is also e-faithful to Mf?g with respect to p%ré, i.e, (17) is satisfied. Therefore, there
exists a distributed protocol with parameters (n, onky gnha 2”0) such that its overall POVM Mgg is e-faithful to
M2 with respect to p%7. Lastly, we complete the proof of the theorem using the following lemma.

Lemma 5. Let Ry denote the set of all (Ry, Ro,C) for which there exists (Rl, RQ) such that the sextuple (R,
Ry, Cy,Cs, Ry, Rg) satisfies the inequalities in (22). Let, Ry denote the set of all triples (R1, Ro, C) that satisfies
the inequalities in (5) given in the statement of the theorem. Then, R1 = Ro.

Proof. The prove follows by Fourier-Motzkin elimination [17]. O

V. Q-C DISTRIBUTED RATE DISTORTION THEORY

As an application of faithful simulation of distributed measurements (Theorem 2), we consider the distributed
extension of g-c rate distortion coding [5]. This problem is a quantum counterpart of the classical distributed source
coding. In this setting, consider a memoryless bipartite quantum source, characterized by pap € D(Ha ® Hp).
Alice and Bob have access to sub-systems A and B, characterized by ps € D(H4) and pa € D(H 4), respectively,
where ps = Trp{pap} and pp = Tra{pap}. They both perform a measurement on n copies of their sub-systems
and send the classical bits to Eve. Upon receiving the classical bits sent by Alice and Bob, a reconstruction state is
produced by Eve. The objective of Eve is to produce a reconstruction of the source p4p within a targeted distortion

threshold which is measured by a given distortion observable.
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A. Problem Formulation

We first formulate this problem as follows. For any quantum information source, characterized by pap € D(HA®
Hp), denote its purification by W77y,

Definition 5. A g-c source coding setup is characterized by a triple (U}/\05, H,A), where U7P, € D(Hr ®
HA®™Hp) is a purified quantum state, H ¢ is a reconstruction Hilbert space, and A € B(Hr®H ¢ ), which satisfies
A > 0, is a distortion observable.

Next, we formulate the action of Alice, Bob and Eve by the following definition.

Definition 6. An (n,©1,03) g-c protocol for a given input and reconstruction Hilbert spaces (Ha ® Hp,H ) is
defined by POVMs MXL) and M ](3") acting on ’H%" and 7—[%” with ©1 and ©2 number of outcomes, respectively,
and a set of reconstruction states S; ; € D(’H?(") forallie[1:01],j€[1:0O3].

The overall action of Alice, Bob and Eve, as a g-c protocol, on a quantum source p4p is given by the following
operation

Nopngnin 1 P55 > Y T{(AL @ AP) R} Sij, (23)
%,

where {A#} and {Af } are the operators of the POVMs MIE‘”) and M 1(3"), respectively. With this notation and given
a g-c source coding setup as in Definition 5, the distortion of a (n = 1,01, 02) g-c protocol is measured as

A .
d(pan, Nyp . x) = Tr{A ((dr @ Ny g, ) (VEiB)) } -
For an n-letter protocol, we use symbol-wise average distortion observable defined as
1& ;
— ®[n]\i
i=1

where A, ¢ is understood as the observable A acting on the ith instance space Hg, ® H ¢ of the n-letter space
’H%" ® ”H?{”. With this notation, the distortion for an (n, ©1,03) g-¢ protocol is given by

7 A : AB
A0 N o) 2 T {ADGA@N ) (W)}
where \I/%‘}an g 18 the n-fold tensor product of \I’%’fB which is the given purification of the source.
The authors in [5] studied the point-to-point version of the above formulation. They considered a special distortion
observable of the form A = > .+ A; ® [Z)X&|, where Az > 0 acts on the reference Hilbert space and X is the
reconstruction alphabet. In this paper, we allow A to be any non-negative and bounded operator acting on the

appropriate Hilbert spaces. Moreover, we allow for the use of any c-q reconstruction mapping as the action of Eve.

Definition 7. For a g-c source coding setup (\II‘}’{;{BB,H ¢»4A), a rate-distortion triplet (R, Ro, D) is said to be

achievable, if for all ¢ > 0 and all sufficiently large n, there exists an (n,©1,©2) g-c protocol satisfying
1
—logy ®; < R; +¢, i=1,2,
n
AR5 N o o) < D+ 6,

where N, pn o 18 defined as in (23). The set of all achievable rate-distortion triplets (R1, Ra, D) is called the

achievable rate-distortion region.

Our objective is to characterize the achievable rate-distortion region using single-letter information quantities.
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B. Inner Bound

We provide an inner bound to the achievable rate-distortion region which is stated in the following theorem. We
employ a g-c protocol based on a randomized faithful simulation strategy involving a time sharing classical random
variable () that is independent of the quantum source. This can be viewed as a conditional version of the faithful

simulation problem considered in Section III.

Theorem 3. For a g-c source coding setup (V3'0n. H, ), any rate-distortion triplet (Ry, Ra, D) satisfying the
following inequalities is achievable
= I(U; RB|Q)o, — I(U; V[Q)ss,
Ry 2 I(V; RA|Q)s, — I(U; V|Q)o,
I(
> d(

Ri+ Ry >

\%

U; RB|Q)s, + 1(V; RAIQ)g, — I(U; V[Q)o,,
paB N g %),

for POVM of the form Map = Yo Po(q)M} ® M, where for every q € Q, M} L (A ey and M} a
{Af’q}vev are POVMs acting on Ha ® Hp, and reconstruction states {S, 4} with each state in D(H ), and
some finite sets U,V and Q. The quantum mutual information quantities are computed according to the auxiliary
states o7 P92 Y, o Po(q)(idr @ M ®idp) (Wi5) ®laXal, 05?2 ¥ o Po(q)(idr ®ida® Mf) ®1gXal ,
and aRUVQ 2 2o Pala )(idr ® MG ® M) (9%05) ® laXal , where (U, V') represents the output of Mg, and
Nipox : PAB = Duwg Pa(@) (AL @ AP pap} Suvg.

Remark 3. Note that for the auxiliary states o;,7 = 1,2, 3, we have I(R; Q) = 0.

Proof. In the interest of brevity, we provide the proof for the special case, when the time sharing random variable
is trivial, i.e., @ is empty. An extension to the more general case is straightforward but tedious. For the special
case, the proof follows from Theorem 2. Fix POVMs (M4, Mp) and reconstruction states Sy, as in the statement
of the theorem. Let N, , ¢ be the mapping corresponding to these POVMs and the reconstruction states. Then,
d(pa, N, 41Box) < D. According to Theorem 2, for any € > 0, there exists an (n, onit onf ) distributed
protocol for e-faithful simulation of M$" ® ME™ with respect to p&% such that (Ry, Rs) satisfies the inequalities
in (5) for Mg = M4 and Mg = Mp. Let MXL),MJ(B“),M €[1: N]and f® be the POVMs and the deterministic
decoding functions of this protocol with Z = U x V. We use these POVM’s and mappings to construct a g-c
protocol for distributed quantum source coding.

For each p € [1, N], consider the q-c protocol with parameters ©; = onki j — 1,2 and POVMs M (4 ), M ]g” ),
Moreover, we use n-length reconstruction states S; ; a ) - ]l{f(“ (i,7) = (u", ™)} Sy yn, Where Syn n =
®;Su, v, - Further, let the corresponding mappings be denoted as N . With this notation, for the average of

AnBrs X
these random protocols, the following bounds hold:

de R ZTr{ A ( ld®foﬁiBlHXn)‘I’%ﬁan}
_ Tr{ RICTCRY L 7 } + Tr{ AP (A (N — Ny Xﬂ))q;g;;w}
< Tr{A ((idr ®N 45, x) (P5R)) } + |A™ (d @ (N®];LHX N o g o))V gl
<D+ A (d® WE_ o~ Ny )
<D+ [AM] o] ([d ® (MS" @ ME™ — Map))VhiE . palln
< D+ €||Alo,
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where N ABx 18 the average of J\f and M 4p is the overall POVM of the underlying distributed protocol as

AB—X’
given in (4). The first inequality holds by the fact that | Tr{A}| < || A||;. The second inequality follows by Lemma
6 given in the sequel. The third inequality is due to the monotonicity of the trace-distance [16] with respect to the

Xn
quantum channel given by id ® L’UV < where

EUV»—»X Z<u v| ‘u U>Suv

The last inequality follows by Theorem 2, and the fact that [A(™)]|, < |Alsw. This completes the proof of the

theorem, since A is a bounded operator. O
Lemma 6. For any operator A and B acting on a Hilbert space H the following inequalities hold.

IBA|1 < |BlwlAl1,  and  [AB|1 < | Bw Al
Proof. See Exercise 12.2.1 in [16]. O

One can observe that the rate region in Theorem 3 matches in form with the classical Berger-Tung region when
pAp is a mixed state of a collection of orthogonal pure states. Note that the rate region is an inner bound for the set
of all achievable rates. The single-letter characterization of the set of achievable rates is still an open problem even
in the classical setting. Some progress has been made recently on this problem which provides an improvement

over Berger-Tung rate region [18].

C. Outer Bound

In this section, we provide an outer bound for the achievable rate-distortion region.

Theorem 4. Given a g-c source coding setup (V3'0p, H ¢, A), if any triplet (Ry, Ry, D) is achievable, then the

following inequalities must be satisfied

= I(W1; R|W2, Q)o, (25a)

Ry = I(Wo; RIW1, Q)0 (25b)

Ry + Ry = I(Wy, Wa; R|Q),, (25¢)
D > Tr{A}o¥Y, (25d)

WiW2RQX

for some state o which can be written as

o WiW2QRX P
e (ld®NABHW1W2QX)(\PRé4BB)
where (Q represents an auxiliary quantum state, and N ABWWaQX is a quantum test channel with I(R; @), = 0.

Proof. Suppose the triplet (R;, Ra, D) is achievable. Then, from Definition 7, for all € > 0, there exists an (n, 91,
©3) g-¢ protocol satisfying the inequalities in the definition. Let My = {Aﬁ}, Mp 2 {AP}and S, , € D(H?(”) be
the corresponding POVMs and reconstruction states. Let L1, Ly denote the outcomes of the measurements. Then,

for Alice’s rate, we obtain
TL(Rl + 6) = H(Ll) = H(Ll‘Lg)
> I(L1; R"|Lo)-

= > I(L1; Rj|Ly, R,
=1

<.
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where the state 7 is defined as

PR AN 1) | @ Tran e { (10 @ A @ AP )W} @ S,
Lo
Note that for each j the corresponding mutual information above is defined for a state in the Hilbert space Hy, ®
Hr, ®7—[<§j . Next, we convert the above summation into a single-letter quantum mutual information term. For that
we proceed with defining a new Hilbert space using direct-sum operation.

Let us recall the direct-sum of Hilbert spaces [19]. Consider a tuple of Hilbert spaces Hy, £k = 1,2,....,n
with inner products {-|-),. Define @), _; Hj, as the collection of tuples of vectors (|);,|x)s,...,|z),). The inner
product of two tuples (|z);,|x)y,...,|x),) and (|y)1,|y)y,-..,|y),) is given by the sum of inner products of
the components, i.e., > ;_; {(Zk|yx ). A linear operator in this space is a tuple of operators given by (A1, Ao, ...,
Ay), where Ay, operates on My, and Tr(A) = >, Tr(4;). A state in @)_, Hy, is denoted conventionally as
@} |z),- Similarly, a linear operator in this space is written in the form A = @}_, Ay.

With this definition, consider the following single-letterization:

I(Ly; Rj| Lo, 7Y, = nI(Ly; R| L2, Q)o,

J

n

—_

where the state o is defined below

% l1,15X1q,1
ohiLaRQX &Y w@)(

n
n
11,12 Jj=1

(Trgs, anpe {(id@Aﬁ@Af)\D%ﬁfAan}®| PGI@Trg_ {510, })), (26)

where Tr ¢, ~j denotes tracing over (X ®j-1 ®Xﬁ"1), and @) a (R7=1,J), and J is an averaging random variable
which is uniformly distributed over [1,]. We elaborate on the Hilbert space associated with @) as follows.
Suppose {|¢;)}iez is an orthonormal basis for H . Then, a basis for H%k is given by

6> & 60 ® i) ® -+ ® i, )

for all i* € Z*. Consider the direct-sum of the Hilbert spaces Pj_, ’H%k. Consider the Hilbert space H; ®
(Dy_, HEF). With this definition, define H, as the Hilbert space which is spanned by |5) ® |¢30-1), for all
je[l,n] and iU~V € ZU~Y, Therefore, H, is isometrically isomorphic to the direct-sum ), H%k . Note that Hg
can be viewed as a multi-particle Hilbert space, which is a truncated version of the so-called Fock space [20].

Similarly, for Bob’s rate we have
Ry + ¢ > I(L2; R|L1,Q),-
For the sum-rate, the following inequalities hold

TL(R1 + Ry + 26) = H(Ll,LQ) = I(Ll,LQ;Rn)T

D UI(Ly, Ly; Rj|R71),
j=1
nI(Lh Lo; R’Q)O’

In addition, the distortion of this g-c protocol satisfies J(p%%,/\f An B X") < D + ¢, where N An is the

BrXn
quantum channel associated with the protocol. Therefore, as the distortion observable is symbol-wise additive, we

obtain

D+e> Zn] Tr { (A rx, @1 ) (d@N g0 g, 0 ) (22, Bn)}

j=1
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M| (A5, ® Tp ® e goy) (0O N4 0) (Vi)

j=1

“ a2 (S, ©) (T e (4O N )W)}
j=1

(a) Tr{(A®IQ)O_RQX}7

where the third equality holds, because of the following argument. From (26), one can show by partially tracing
over (Ly, L2), that

o > 1 N . AB
X =Ty, p,{oP2REYY = P o 17 X7 ® TYR;,HXMJ-{(ICI@N o) (Pl g ) (27)
J
and Ig 2 @?:1 (I}(?(jfl) ® [7XJ] ) Then, I is the identity operator acting on H¢y. Therefore, the right-hand side
of the equality (a) above can be written as

Tr{{A® IQ)GRQX} =Tr {AO’RX} .

Let us identify the single-letter quantum test channel as given in the statement of the theorem. First, due to the

distributive property of tensor product over direct sum operation, we can rewrite =1 L2R@X a5

O_LleRQX' _

| . N
(D= X1 Xl ol @ (Tray, anie { (@ AL @ AD)UR 5 } @I @ Trg_ {S1i}) )

Jj=1 l1,l2

L L.QX

Next, we identify a quantum channel NV, ,, | L.L,QX ' PAB 0 . For that and for any j define the following

intermediate quantum channels:

j A - A
Nzgl]];’r—»LleR(i—l)X(wAB) SN Iy, 12X, o) ® (Trgs, avpe {(ldR"~j A @ AL) (wap ® Ej)}®Tan~j{Slth D,
lils
where F; = \Ilf A By, One can verify that N,E;J;HLlLZRU*l)X is indeed a quantum channel. With these definitions,

let

1 ; Ny
NAB»—»LILQQX(UJAB) é (‘D E <NIE{;»—>L1L2R<J’*1)X(WAB) ® |;7><]‘) .
J

Using the property of direct-sum operation, one can verify that N, , | L L,0X is a valid quantum channel, moreover,

O,L1L2RQX = (id®NAB>—>L1L2QX)(\IJ?€’fB).

A~

Lastly, we show that the condition I(R;Q), = 0 is also satisfied. By taking the partial trace of o over (L1, L2, X)
we obtain the following state

g . . 5 -

Ty ) < 15 (e {00 @A)

J=1""10,

(Terg, aome {555 }) @13

DL
i=1"
n o DS
D —(Tran{¥iis}) - @il
j=1

"1 ®@F-1) .
= Trap{Uhs} ® (@ E(TI"AB{‘I’%'XSBD ® ’J><J|> ,

Jj=1
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where the last equality is due to the distributive property of tensor product over direct sum operation. Hence, o119
is in a tensor product of the form o ® 0%, and therefore, I(R;Q), = 0.

Remark 4. One may question the computability of the outer bound provided in Theorem 4. The computability
of this bound depends on the dimensionality of the auxiliary space H defined in the theorem. Currently, we are
unable to bound the dimension of the Hilbert space H(, but aim to provide one in our future work. As a matter
of fact, the current outer bounds for the equivalent classical distributed rate distortion problem still suffers from
the computability issue. The first outer bound to the classical problem was provided in [9] and a recent substantial
improvement was made by authors in [21]. Both of these bounds suffer from the absence of cardinality bounds on
at least one of the variables used and hence cannot be claimed to be computable using finite resources.

O

VI. SIMULATION OF POVMS WITH STOCHASTIC PROCESSING

We now provide an extension of the Winter’s point-to-point measurement compression scheme [1] (discussed in
Section II) with stochastic processing. We assume that the receiver (Bob) has access to additional private randomness,
and he is allowed to use this additional resource to perform any stochastic mapping of the received classical bits.
In fact, the overall effect on the quantum state can be assumed to be a measurement which is a concatenation of
the POVM Alice performs and the stochastic map Bob implements. Hence, Alice in this case, does not remain
aware of the measurement outcome. It is for this reason that [2] describes this as a non-feedback problem, with
the sender not required to know the outcomes of the measurement. With the availability of additional resources,

such a formulation is expected to help reduce the overall resources needed.

A. Problem Formulation

Definition 8. For a given finite set X', and a Hilbert space H 4, a measurement simulation protocol with stochastic
processing with parameters (n,®, N) is characterized by

1) a collections of Alice’s sub-POVMs M), 1 e [1, N] each acting on ’H%n and with outcomes in a subset £
satisfying |£]| < ©.

2) a Bob’s classical stochastic map P (z"|l) for all [ € £, 2™ € X™ and u € [1, N].

The overall sub-POVM of this distributed protocol, given by M, is characterized by the following operators:

A, A % TP (anfly AP, Wam e xm, (28)
w,l

where Al(“ ) are the operators corresponding to the sub-POVMs MW,

In the above definition, © characterizes the amount of classical bits communicated from Alice to Bob, and the
amount of common randomness is determined by N, with ; being the common randomness bits distributed among
the parties. The classical stochastic mappings induced by P(**) represents the action of Bob on the received classical
bits.

Definition 9. Given a POVM M acting on H 4, and a density operator p € D(H 4), a pair (R, C) is said to be
achievable, if for all ¢ > 0 and for all sufficiently large n, there exists a measurement simulation protocol with
stochastic processing with parameters (n,®, N) such that its overall sub-POVM M is e-faithful to M®" with
respect to p®™ (see Definition 2), and

1 1
—logo® < R+e€, —loggN <C+e
n n
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The set of all achievable pairs is called the achievable rate region.
The following theorem characterizes the achievable rate region.

Theorem 5. For any density operator p € D(H ) and any POVM M a {A;}zex acting on the Hilbert space H 4,
a pair (R,C) is achievable if and only if there exist a POVM M4 a {AAY wew, with W being a finite set, and a
stochastic map Px |y : W — X such that

R=I1(RyW), and R+ C =I(RX;W),,

Ay = Z PX|W(x\w)A£, Vo e X.
weW

where oy x 2 Ywz \/ﬁﬁé\/ﬁQ@way(uﬂw) lwXw| @ |z Xx|.

Remark 5. An alternative characterization of the above rate region can also be obtained in terms of Holevo

information. For this, we define the following ensemble {),, p,} as

= > XaPxw(zlw) and pr = > Pxii,
weW weW

for { 0> pA} being the canonical ensemble associated with the POVM M and the state p as defined in (6). With
this ensemble, we have

I(R; X ({Mo,hn}) and I(RX;W)e = I(X; W) + x ({No i }) — X (e pa})

B. Proof of Achievability of Theorem 5
Suppose there exist a POVM M4 and a stochastic map Pxyw : W — &, such that M can be decomposed as

As = Y Pxyw(zlw)A, Voe X, (29)
w
We begin by defining a canonical ensemble corresponding to M4 as {)\;3, ﬁﬁ}wew, where
M2 Te{A2p}, and po 2 v \FA N (30)
Similarly. for each w™ € W™ , we also define
Af & T yn pi T T,

where p2, a ®); f)ﬁi, and 1T, IT, and IL,» are similar to the ones defined in Section IV. Using the above definitions,
we now construct the approximating POVM.

1) Construction of Random POVMs: In what follows, we construct a collection of random POVMs. Fix R
and C as two positive integers. Let p € [1, 2”0] denote the common randomness shared between the sender and
receiver. For each p € [1,2"C], randomly and independently select 2" sequences W) (1) according to the

pruned distributions, i.e.,

" n (n)
P (@) = @) =4 G-g © T 31)

0 otherwise

For w" € E")(W), let the operators of the POVM Z\Z[ﬁl“ ) be {AY):w" € Wn} for each e [1,27C], where A%
is defined as

125 1-¢
A(“n) é 1(51) <«\/pA_1A£nf\/pA_1> and ’)’I(J()Mn) = 27171%2 El_’_ni]l{wn,(u)(l)—wn}, (32)
=1
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with 1 € (0,1) being a parameter to be determined. Now, for each p € [1,2"C] construct MXL’“) as

(= Al wr e T ()},

Since the construction is very similar to the one used in Section [V, we make a claim similar to the one in Lemma
2. This claim gives us the first constraint on the classical rate of communication R, which ensures that the operators
constructed above for all y € [1,2"C] are valid sub-POVMs (characterized as the event [1) with high probability.
The claim is as follows. If R > I(R; W), then P(E;) > (1 — 01) for some ¢; € (0,1/6); or in other words,
with probability sufficiently close to one, ]\;[1%”’“ ) forms a sub-POVM for all we [1, 2”0]. Note the definition of
orwx follows from the statement of theorem. From this, let [MIE‘”’“ )] denote the completion of the corresponding
sub-POVM MXZ’“ ) for p € [1,27¢]. Let the operators completing these POVMs, given by I — 3 . A,(f) be
denoted by Aq(f)gb) for some wgj ¢ ’7:5”)(W), for all u e [1,27¢], and Aq(,ﬁﬁ? = 0 for w™ ¢ E(n)(W)U{fwg}.
Using this construction, we define the intermediate POVM ]\Zf&”) as Ml(f) = 27% Y MXW ) and the operators of

~ ~ 1
MIE‘”) as A2, = onC > u Az(ff) . Now, we define Bob’s stochastic map as P)’élw, yielding the operators of the final
approximating POVM as
> PHw(w)AL., a"ean.
wrneywn
2) Trace Distance: Now, we compare the action of this approximating POVM on the input state p®" with that of
the given POVM M, using the characterization provided in Definition 2. Specifically, we show using the expressions

for canonical ensemble that, with probability close to one,

G2 Y | Y P w Ve (AL, — AP <e. (33)
anXn wnEWn 1
As a first step, we split and bound G as G < S7 + So, where
A
S = Z ZAw”pw" P (2™ |lw™) — 2nC 2 YA ;{\W(xﬂwn) )
™ wrFEwy p=1 1

20

Sa éz Pyyw (2" |wg) 2nC Z [ p® (1 EA P®"]

Now we bound S; by adding and subtractlng an appropriate term and using triangle inequality as S7 < S11+ 519,

1

where S11 and S7s are given by

2nC
Si £ Z[Zva»pwv x| (2 ”yw")®ym”xx"\—2n—c PRy ;’éw(xnlw”)@lﬂﬁ”Xx”I]

xTn wn wn #:wo u= 1

1

2710 2nC
A A
SEEA DY [ o O ik PRy (2 ) an Z YL, ;|W(x”|wn)] ® |z"Xa"|

" own #’U) ,LL—

1
Note that in the above expressions, we have used an additional triangle inequality for block operators (which is in
fact an equality) to move the summation over X" inside the trace norm. Firstly, we show Sy; is small with high
probability. To simplify the notation, we define oym = ) . X|W( x"|w™) |« Xz™| which gives Si; as

511 = Z)\wnpwn Q oy — 2 (R+O) pr (1 ®0W7L (W) (1)
wn

1
We develop the following lemma to bound this term.
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Lemma 7. Consider an ensemble given by { Py« (w™), Ton }, where Py (w™) is the pruned distribution as defined
in (31) and Ty is any tensor product state of the form Tyn = Q);— Tw. Then, for any €3 > 0, § > 0, there exists
Sunctions 4(0, €2) and §'(0), such that for all sufficiently large n, the inequality

Z M Ton — A lFC) Z Townww| < e (34)
1
holds with probability greater than 1—035(6, €2), if R+C = S(X, MiTop) — D0y MNaS(Tw) +6" = x ({\d, Tw}) +6',
where {W™W (1) : 1 € [1,2"F], u € [1,27C1} are independent random vectors generated according to the pruned
distribution given in (31), and §; \, 0, &' \ 0 as e2 \, 0, 6 N\, 0.

Proof. The proof of the lemma is provided in Appendix A-C O

Therefore, using the lemma above, S1; can be made arbitrarily small, for sufficiently large n, with high probability,
given the constraints R + C > S(3, Mapis ® 0w) — 2 ANaS(pia ® o) + 6" = x ({Ao}, {pip ® ow}) + 6 =
I(RX;W), +¢". Secondly, we bound S by applying expectation and using Gentle Measurement Lemma [16] as

|

follows,

E[Si2] = [

2nC ZZ 2 P)ZL'|W n‘w) I:'Vw"

p=1 ™ wrFwy

onC

2 2 [nchiéiﬁiin S (" ") WZ Yo Al ;W<x”\wn>]®|x"><x"|

" wrFwy
]

(Pl — Aipe)

gnC

0y X

p=1 neT(n) W)

© 1 A
= A
(1+mn) 2, N
wreT{™ (W)

)\A

wn

Hyn — A,
(1 +n) P

w

1

Pk, — T Ty i TH

@ (1 — 5) / n A
X < i+ 77)(2\/2—1— 2\/;) = g3, (35)

where (a) is obtained by using triangle inequality and the linearity of expectation, (b) is obtained by marginalizing

over 2" and using the fact that E[y\%] = (i‘f;),

application of the average gentle measurement lemma, by setting 3 =

(c) is obtained by substitution and finally (d) uses repeated

1+77 (2\F+2ﬁ) with e3 \, 0 as 6 \ 0
and, &’ = ¢ + 24/¢ and &” = 2¢ + 24/¢ (see (35) in [2] for details). Finally, we show that the term corresponding

to S can also be made arbitrarily small. This term can be simplified as follows

2nC
2nC Z ZPX\W n|w0 w”pw" - Z V p®nA1(1/;ﬁ’)\/p@
p=1zm wrEWD .
2"0 2710
2nC Z Z)\wnpwn — Z YA+ 277/* 2 2 +) nly = S21 + Sa2,
p=1 [w™ wrFWY 1 p=1wr#wy
where
2"0 8 1 n nR 2nC
S0 2 i 3 | SN TrnzR e md S & o O O A~ AL,
p=1flw" 1 p=1w"#wg
(36)

Now, for the first term in (36) we use Lemma 7 and claim that for given any €, ,d,, € (0,1), if

wo )

R>S ( 2 )\wpw> + Z NS (pw) = I(R;W),,

weW weWw
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then the probability of this term being greater than ¢, is bounded by d,, for sufficiently large n, where o is as
defined in the statement of the theorem . Note that the requirements we obtain on R were already imposed when
claiming the collection of operators A,Ef) forms a sub-POVM. As for the second term in (36) we again use the

gentle measurement Lemma and bound its expected value as

277,0
Awr
2nC Z 27 [P = A 1| = Z (1+ )”pw" — Ay <es,
p=1wm ’LU"E'Td(n)( )

where €3 is defined in (35).

In summary, we have performed the following sequence of steps. Firstly, we argued that MXZ’“ ) forms a valid
sub-POVM for all p e [1,2"C], with high probability, when the rate R satisfies R > I(R;W),. Secondly, we
moved onto bounding the trace norm between the states obtained after the action for these approximating POVMs
when compared with those obtained from the action of actual POVM M, characterized as GG using Definition 2. As
a first step in establishing this bound, we showed that G < S7 + S2. Considering S7, we used triangle inequality
and divided it into two terms: S1; and Si2. Then, using Lemma 7 we showed that for any given ;1 € (0,1), Si1
can be made smaller than £, with high probability if R + C' > I(RX;W),. As for Si2, we showed that it goes
to zero in the expected sense using (35). Finally, for the term given by S5, we bounded this as a sum of two trace
norms So1 and Sz given in (36). We showed that its first term can be made smaller than €, with high probability
if R > I(R;W) for sufficiently large n, and the second term was shown to approach zero in expected sense.

Now, using Markov inequality we argue the existence of at least one collection of POVMs that satisfies the
statement of the Theorem 5 as follows. Note that Sio is same as Ss5. Let Eq be the event defined earlier in
the proof. Let us define Fs, E5 and F, as the random variables corresponding to the terms Si1,S12 and Seoi,
respectively. Firstly, if R > I(R;W),. then P(E;) > (1 — d1). Secondly, from Lemma 7, for all 0 < e3 < 1, and
for all sufficiently large n, if

R+C>I(RX;W),+6&, and R>I(W;R),+ 0,

then we have P(Ey < €3) = 1 — d4(€2), P(Ey < €y,) = 1 — 8y, Thirdly, from (35) we have E[E3] < e3. This
implies, from the Markov inequality, that
E[E3]

P(E3 > 2¢e3) <
(3 83) 283

<

N

Using these bounds, we get

P((El) ﬂ(EQ < 82) ﬂ(Eg < 283) ﬂ(E4 < Gwo)) = ]P)(El) + ]P)(Eg < 52) + P(E3 < 283) + ]P)(E4 < ewo) -3
1 1
23_(51+58+5w°)+§_3>1’ (37)
given that we choose 0 < d1,ds, 0y, < % Note that G < F3 + (2E3) + E4, and the inequality in (37) ensures
that there exists a valid collection of sub-POVMs satistying G < €3 + 4¢3 + €,, with non-vanishing probability.
Therefore, using random coding arguments, there exists at least one collection of sub-POVMs with the above

construction satisfying the statement of Theorem 5.

VII. SIMULATION OF DISTRIBUTED POVMS WITH STOCHASTIC PROCESSING

In this section, we develop a stochastic processing variant of the distributed POVM simulation problem described
in Section III. Let psp be a density operator acting on a composite Hilbert Space H4 ® Hp. Consider two
measurements M4 and Mp on sub-systems A and B, respectively. Imagine again that we have three parties,
named Alice, Bob and Eve, that are trying to collectively simulate a given measurement M 4p acting on the state
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Fig. 3. The diagram depicting the distributed POVM simulation problem with stochastic processing. In this setting, Eve additionally has
access to unlimited private randomness.

pAB, as shown in Fig. 3. In this version of distributed simulation, Eve additionally has access to unlimited private

randomness. The problem is defined in the following.

Definition 10. For a given finite set Z, and a Hilbert space H4 ® Hp, a distributed protocol with stochastic
processing with parameters (n, ©1, 02, N) is characterized by

1) a collections of Alice’s sub-POVMs MX’“ ), w € [1, N] each acting on HCE” and with outcomes in a subset £
satisfying |£;| < ©;.

2) a collections of Bob’s sub-POVMs M ](3“ ), u € [1, N] each acting on ’H%n and with outcomes in a subset Lo,
satisfying |La| < Os.

3) Eve’s classical stochastic map P(“)(z"|l1, lg) for all Iy € Lq,lo € Lo,2" € Z™ and p € [1, N].

The overall sub-POVM of this distributed protocol, given by Map, is characterized by the following operators:

Al
R 2= 30 PO L) AW @A, vare 2m,
Holi,l2

where Af’(“ ) and Ai’(“ ) are the operators corresponding to the sub-POVMs ]\;IIE‘“ ) and M é“ ), respectively.

In the above definition, (©1,©2) determines the amount of classical bits communicated from Alice and Bob
to Eve. The amount of common randomness is determined by N. The classical stochastic maps P (2|11, 1)

represent the action of Eve on the received classical bits.

Definition 11. Given a POVM M 4p acting on H4 ® Hp, and a density operator pap € D(HA ® Hp), a triple
(R1, R, C) is said to be achievable, if for all € > 0 and for all sufficiently large n, there exists a distributed protocol
with stochastic processing with parameters (n,©1,©2, N) such that its overall sub-POVM M yp is e-faithful to
M2 with respect to p%7 (see Definition 2), and

1 1
—logy ®; < Rij+¢, i=1,2, and —loggN <C +e.
n n
The set of all achievable triples (R;, Ro,C) is called the achievable rate region.

The following theorem provides an inner bound to the achievable rate region, which is proved in Section VIII.

Theorem 6. Given a density operator pap € D(HA® Hp), and a POVM M ap = {AfB}Zeg acting on HAQHp
having a separable decomposition with stochastic integration (as in Definition 1), a triple (R1, Ra, C) is achievable

if the following inequalities are satisfied:

Rl = I(Uv RB)m - I(U7 V)osa (38&)
R2 = I(V; RA)O’2 - [(U» v)aga (38b)
Ri+ Ry > I(U;RB)y, + I(V; RA)o, — I(U; V)., (38¢)
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Ri+C = I(U;RZV )y, — I({U; V), (384)
Ry +C=>I1(V;RZ)y, — I(U;V),,, (38e)
Ri+ Ry + C = I(UV; RZ)s,, (38f)

for some decomposition with POVMs My = {A}}uey and Mp = {ABl,ey and a stochastic map Priuyv :
UxYVY — Z, where \Ilf{jfB is a purification of pap, and the above information quantities are computed for
the auxiliary states oUB 2 (idp @ My ® idp) (Vhieg), oftAV 2 (idp @ id4 ® Mp)(V5eg), and o§VVZ a

Y, VPAB (A @A) /pap ® Pruy (2[u,v) [uXu| @ \va! ® |2z

Remark 6. An alternative characterization of the above rate region can be obtained in terms of Holevo information.

For this, we define the following ensemble {\., p.} as

A= 2 Y N Py (el e) and p = BN Py vl2)pt,

ueld veV ueld veV

with {7, pd}, {5, 58} and {A3F, p;iB} being the canonical ensembles defined in (6), and Pyviz(u,v]z) =
Mol - Pripv (2lu, v)/A; for all (u,v,2) €U x V x Z. With this ensemble, we have I(U; RB),, = x ({\i, 5 }).
(V RA),, = x ({78, pP}), and I(UV;RZ)0, = LUV Z) + x ({MLB, p2B}) — x ({2, p2}) -

VIII. PROOF OF THEOREM 6
A. Construction of POVMs

Suppose there exist POVMs M4 a {AM 4y and Mp a {AB},ey and a stochastic map Pripy :U XV — Z,

such that M 4p can be decomposed as

AP =N Py (zlu,v)AL @AY, Vz, (39)

u,v

Note that the proof technique here is very different to the one used in Section IV for proving Theorem 2. Recall that
in Theorem 2 we initiated the proof by constructing a protocol to faithfully simulate M%"@Mg". However, here we
are not interested in faithfully simulating M%”@Mg)”. Instead, by carefully exploiting the private randomness Eve
possesses, manifested in terms of the stochastic processing applied by her on the classical bits received, i.e., Pzy,v,
we aim to strictly reduce the sum rate constraints compared to the ones obtained in (5f) of Theorem 2. This requires
a considerably different methodology. More specifically, Lemma 1 was employed in Theorem 2, which guaranteed
that any two point-to-point POVMs that can individually approximate their corresponding original POVMs, can also
faithfully approximate a measurement formed by the tensor product of the original POVMs performed on any state
in the tensor product Hilbert space. Such a lemma cannot be developed in the setting involving a stochastic decoder.
This is due to the fact that bits received from Alice and Bob are jointly perturbed by the stochastic decoder which
doesn’t allow a straightforward segmentation into two point-to-point problems. However, the analysis performed in
the Section VIII actually modularizes the problem, using an asymmetric partitioning.

Nevertheless, we use the same POVM construction and binning operation as in the proof of Theorem 2, and
hence we appeal to Section IV-A and IV-B for constructing the POVMs based on the codebook ™ and binning
them, resulting in the sub-POVMs Ml(n’“ V) and Mg(n’” 2) (see (14)), and MXW Y and M gl’” 2) (see (15)), and their
completions. All the notations used subsequently can be found in these sections. Therefore, the main focus of the
proof hereon is to describe the decoder which is distinct from the one with deterministic mapping, in the sense
that it employs the additional stochastic map, and a thorough analysis of the achievability result.

To start with, one can show by using a result similar to Lemma 2 that with probability sufficiently close to
one, M"™") and M{™"*) form sub-POVMs for all uy € [1,N1] and py € [1,N] if R > I(U; RB),, and
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Ry >1 (V; RA),,. where o1, 09 are defined as in the statement of the theorem. Further, from D(H1:12) i (16) and
F®) | as defined subsequently, we obtain the sub-POVM M 45 with the following operators.

N; N;

~ 1 1 2

AB A A, (p1) B,(u2) n .n n n

AMM—JWsz > > D @y ) e U x V.
=1 p2=1 (i,5): 00 (i,§) = (ur 0m)

Now, we use the stochastic mapping to define the approximating sub-POVM MXE) = {f\z} as

AAB — Z AAP Py W, o), V2" e Z".

Zn U, on
ur,u"

B. Trace Distance
In what follows, we show that Mgg is e-faithful to Mf?g with respect to p%% (according to Definition 2), where
€ > 0 can be made arbitrarily small. More precisely, using (39), we show that, with probability sufficiently close

to 1, the following inequality holds

G= Z Z V P3R5 <l_\3" ®AﬁP5\U,V(Zn’Un7Un) - AﬁwB,vnPg‘U,V(u”, v")) \/@

Zn U,

< €. (40)

1
Step 1: Isolating the effect of error induced by not covering

Consider the second term within GG, which can be written as
1 AB
2 V PRBN p%%P%U,V(unaun)
uron

- N11N2 Z 2\/@ (I‘?’UJ’I) ®FJB7(M2)> \/@PE|U,V(ZW‘|F(“)(LJ)) Z H{F(H')(i,j):(un’vn)}

M1,z 1, un,v"
o

~~
=1

—T+T,

where

~
>

1 n A, (1 B, (2 n pn n 1L, 02) (5 4
NN, Z Z \ P35 (Fi v )®Fj v )> e Zov (2 | Fnor2) (4, 5)),
k2 (504 ({5>0}

T 1 Av 1 B7 2
Tapy X X Vel (T er ) b P (g ).

Hokz (i=o0y (=0}

>

Hence, we have
G<S+S, 41)

where

; (42)
1

3 ot (A © A2 Py (7l o) oot~ 7

umr,un

say

Zn

and § £ 3 |T|:. Note that S captures the error induced by not covering the state p%7%. For the term corresponding

to S, we prove the following result.

Proposition 3. There exist functions eg(0), and 65(6), such that for all sufficiently small § and sufficiently large
n, we have P <§ > €§(5)> < 63(0), if Ry > I(U; RB)y, and Ry > I(V; RA),,, where o and oy are auxiliary
states defined in the theorem and €g,05 ™\, 0 as 0\ 0.

Proof. The proof is provided in Appendix B-C. 0
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Remark 7. The terms corresponding to the operators that complete the sub-POVMs MXW Y and M gl’“ 2 e,
I— ZuneT‘")(U) Ai “) and T — > v T (V) (‘fz) are taken care in T". The expression 7" excludes the completing
s

(p2)

operators. Therefore, we use AEL’i,l) and B;.”’ to denote the operators corresponding to u" € 7:5(n) (U) and v™ €

7:;(71) (V), respectively.

Step 2: Isolating the effect of error induced by binning
Recall the definition of e(¥)(u™ v™) as e (u™ v™) & FW(i, 4), for each (u",v™) € Bg“l)(i) X Bé“”(j) and
(u™, v™) € CW. For any (u”,v™) ¢ Ct let e (u™, ") = (ug, vy ). This simplifies 7' as

S Ale N BU )Py M EE )

N1N2 Haspi2 i>0, ure B () vmeB?)(5)
]>
/ ® (1 /| ®
N1N2 H§2 unZvL pA% ( B 2 ) pA% Z :ﬂ'{u"EB(”)(l neB(I2) }PZ\UV( |€ (’LL v ))

N1N2 Z Z \/@( (M)\/@PZ\U\/ |€“)(U v"™)),

1,2 un,un
where we have used the fact that ] wneBE (i = > Aun (1) {uneBmﬁ(i)} and ), ]l{u“eB(“l)(i)} =1 for all
u" € 7:5(”) (U), and similar holds for the POVM {Bffi2 }. Note that the (u",v™) that appear in the above summation

is confined to (7:5(”)(U ) X 7:5(n)(V)), however for ease of notation, we do not make this explicit. We substitute the

above expression into S as in (42) to obtain

s- 3| 2 Vo (M eat - 8 a0 i e )

2" H1,pb2

1
We add and subtract an appropriate term within S and apply triangle inequality to isolate the effect of binning as

S < 51+ .5, where

5 23| % Vil (5 a2 - e S A o8 ) iy
1

Zn flum,on P2

512 3| 3 3V (A2 05 Vs (P~ P (0.7)

Mo, wU™

and

1
(43)

Note that the term S characterizes the error introduced by approximation of the original POVM with the collection
of approximating sub-POVMs Ml(n’” ") and MQ(n’“ 2), and the term Sy characterizes the error caused by binning of
these approximating sub-POVMs. In this step, we analyze So and prove the following proposition.

Proposition 4 (Mutual Packing). There exist functions €g,(0) and dg,(0), such that for all sufficiently small § and
sufficiently large n, we have P (Sy > €g,(8)) < 05, (0), if Ri+Ro— R1 — Ry < I(U;V),,, where o3 is the auxiliary
state defined in the theorem and €g,,ds, \, 0 as d \, 0.

Proof. The proof is provided in Appendix B-D O

Step 3: Isolating the effect of Alice’s approximating measurement
In this step, we separately analyze the effect of approximating measurements at the two distributed parties in the
term S7. For that, we split S as S; < Q1 + Q2, where

N
n oA A 1 ) 1 n pn n,n o,n
Z \/@ (Aﬁl@Af’l N Z Agfij@/\v") p(?XBPZ\U,V(Z u”,v")

ur,un 1 =1

)

Zn

1
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Qz—

o 35 (A @R 5 3 a0 B ) R
1

ul—lu , po=1

With this partition, the terms within the trace norm of )y differ only in the action of Alice’s measurement. And
similarly, the terms within the norm of ()2 differ only in the action of Bob’s measurement. Showing that these two
terms are small forms a major portion of the achievability proof.

Analysis of (Q1: To show () is small, we compute rate constraints which ensure that an upper bound to )1 can be
made to vanish in an expected sense. Furthermore, this upper bound becomes convenient in obtaining a single-letter

characterization for the rate needed to make the term corresponding to (2 vanish. For this, we define J as

Z«/;%( 4 @A N1 Z A & ) PRE Py (2" ™, o)

un Hl—l

(44)

AR 1
By defining J and using triangle inequality for block operators (which holds with equality), we add the sub-system
V to RZ, resulting in the joint system RZV, corresponding to the state o3 as defined in the theorem. Then we
approximate the joint system RZV using an approximating sub-POVM MIEX") producing outputs on the alphabet
U". To make J small for sufficiently large n, we expect the sum of the rate of the approximating sub-POVM and
common randomness, i.€., Rl + C1, to be larger than I(U; RZV),,. We seek to prove this in the following.

Note that from triangle inequality, we have ()1 < J. Further, we add and subtract an appropriate term within .J

and use triangle inequality obtain J < J; + Jo, where

PRV (M‘w@ - = Z 7“" M AB> APy (", 0™ and
2™ on jfu” Ml—l u 1
A ® 1 M "yq(w ) A B
mn 77/ n n
J2 = Z Z\/@ N O A - Z Al PRe Py (2" " 0")
2o || o P | W X

Now with the intention of employing Lemma 7, we express J; as

Z )‘u" U"pAS"BU” ® Pg|U,V(Zn‘un7 Un) |Un><,un‘ ® |zn><zn|

zZmun,um

(1—8 )\AB X
) e 20 2 Lunew@=un T Pl ® Py (2" o) "X [ @12

pal 27U .

(p1)

where the equality above is obtained by using the definitions of ~,%"’ and p2B, ., followed by using the triangle

NoAe
inequality for the block diagonal operators, which in fact becomes an equality.
Let us define 7,» as

)\AB
Tur = 25 A Putor ® Py (27", o) o0 @12"X="
Zmun u™

Note that the above definition of 7,~ contains all the elements in product form, and thus it can be written as
Tur = Qi Tu,- This simplifies .J; as

- ;Auﬂ;n (1 + 1) on(Ri+C1) 2, Ty

77) pa,l 1

Now, using Lemma 7 we get the following bound. For any €, ,0,, € (0,1), if

Ri+Ci>8 (Z Af’ru) + > MS(Ta) = I(U; RZV ), (45)

uelU ueld
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then P(J1 > ¢,,) <6, for sufficiently large n, where o3 = >, o, a7 ® [u)ul.
Now, we consider the term corresponding to .JJ; and prove that its expectation with respect to the Alice’s codebook

(k1)
n Tur 1A AB (p1) AB n
& ( A @A - A @Avn> \ 05
n A n n n
P15 ((Au —05 m/ﬂ? ) ) \PRE

where the inequality is obtained by using triangle and the next equality follows from the fact that ., Z|U v (&Mum,

is small. Recalling Jo, we get

N1 Z ZZPZWV ", o™)

p,l—l um,un 2™

ZZ'Y

Ml 1 u™,on

9

1

)

1

v™) =1 for all " € Y™ and v™ € V" and using the definition of Ag’il). By applying expectation of Jo over the

BV (- ) o)

where we have used the fact that E[%(L )] = (i\in)

Section IV-D that completely discards the effect of Bob’s measurement. Since Y., AD, = I, from Lemma 3 we

5 vt ( (i - o sy ) eaz ) o
- (e v )

Alice’s codebook, we get

1
(1+mn)

E[Js] <

9

u" ET(n) 1

To simplify the above equation, we employ Lemma 3 from

have for every u" € T(n)(A),

1

This simplifies E[.J2] as

-1
E[Js] < g Z Ak (AA /pcﬁn A/ )
u ET(W
2 M, ’( AA)‘ (1- 2 €'y +24/€%) = €,,,
u neT{M(U) (1

where the last inequality is obtained by the repeated usage of the average gentle measurement lemma by setting
€, = q;?) (24/2, + 2¢/€7) with €,, \, 0 as 6 \, 0 and &/, = ¢ + 2\/€ and &’y = 2¢ + 24/ ( see (35) in [2] for
details). Since Q1 < J < J; + Jo, hence J, and consequently ()1, can be made arbitrarily small for sufficiently
large n, if R+ 0Oy > I(U;RZV),,. Now we move on to bounding Qo.

Step 4: Analyzing the effect of Bob’s approximating measurement

Step 3 ensured that the sub-system RZV is close to a tensor product state in trace-norm. In this step, we approximate

(n)

the state corresponding to the sub-system R.Z using the approximating POVM M, producing outputs on the

alphabet V™. We proceed with the following proposition.

Proposition 5. There exist functions €q,(0) and dq,(9), such that for all sufficiently small 6 and sufficiently large
n, we have P(Qa > €q,(6)) < 3g,(03), if Ro + Cy > I(V; RZ),,, where o3 is the auxiliary state defined in the
theorem and €q,,0q, \, 0 as 0 \, 0.

Proof. The proof is provided in Appendix B-E. O
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C. Rate Constraints

To sum-up, we showed that the trace distance inequality in (40) holds for sufficiently large n and with probability
sufficiently close to 1, if the following bounds hold:

Ry > I(U; RB),,, (46a)

Ry > I(V; RA),,, (46b)

R+ Cy = I(U;RZV),,, (46¢)

Ro+Cy = I(V;RZ),,, (46d)

(Ri — R1) + (Ry — Ry) < I(U;V)o,, (46¢)
Ri=R >0, Ry>Ry=>0, (46f)
Ci+Cy<C, C=0, (46g)

where C' 2 %logQ N. Therefore, there exists a distributed protocol with parameters (n, 2%, 278z 2nCy guch that
its overall POVM M 4p is e-faithful to M%g with respect to pcﬁ%. Lastly, we complete the proof of the theorem

using the following lemma.

Lemma 8. Let R denote the set of all (R1, Ra, C) for which there exists (Rl, ]:22) such that the septuple (R1, Ro,
C,R1,Rs,Ch, C’g) satisfies the inequalities in (46). Let, Ry denote the set of all triples (R1, Ro,C) that satisfies
the inequalities in (38) given in the statement of the theorem. Then, R1 = Rao.

Proof. This follows from Fourier-Motzkin elimination [17]. J

IX. CONCLUSION

We have developed a distributed measurement compression protocol where we introduced the technique of mutual
covering and random binning of distributed measurements. Using these techniques, a set of communication rate-
pairs and common randomness rate is characterized for faithful simulation of distributed measurements. We further
developed an approach for a distributed quantum-to-classical rate-distortion theory, and provided single-letter inner
and outer bounds. As a part of future work, we intend to improve the outer bound by providing a dimensionality
bound on the auxiliary Hilbert space involved in the expression. Further, we also desire to improve the achievable

rate region by using structured POVMs based on algebraic codes.

Acknowledgement: We thank Mark Wilde for his valuable inputs on techniques needed to prove Theorem
5 and for referring us to the additional work performed in [12] and [22]. We are also grateful to Arun Padakandla
for his inputs on the classical analogue of the current work [23], which was very helpful in developing the proof
techniques here.

APPENDIX A
PROOF OF LEMMAS

A. Proof of Lemma 3

Consider the LHS of (21). We define an operator A,, which completes the sub-POVM {A,},cy as Ay, a
I — Zyey A,. Further, let the set Yt a Y| JH{yo}. Since trace norm is invariant to transposition with respect to

pPAB, We can write for any y € YT,

[voas (0 @ A7) voasl, = [[veoas (M @ A7) vias]' || = |veas (04 @ A))") vous
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One can easily prove for any I' 4 (not necessarily positive) that

(vous (O © A)") voas) = Trap {(d@ T4 ©AF) Uras) )

where Wrap is the canonical purification of psp defined as Vrap a me VA |2 Xx| g ® |2"Xa! | for
the spectral decomposition of pap given as pap = >, Ay |xXx|,5. Now, using (47) we perform the following

simplification
2 veas (T @ A7) Voasl, < 3, |Weas (T ® AF) Voas],
yey yey+
= 3 | Tras {(dr @ T4 @ AF) Wras} H1
yey+
= | X Tras {(idrs ®T*) (idra @ AY) Wran ® lyXyl} |,
yey+

Tra { (idgry ®T?) Z Xyl ® Trp {(idra ® A)) Vrap} }
yey+ 1

|Tra {(idry ®T*) orav }|,
= |Traz {(idry ©@ T ®idz) D7, }]

L (48)

where the second equality uses the triangle inequality for block diagonal operators, the third equality first uses

the property that Trxy{} = Trx{Try{}}, followed by the definition of partial trace and its linearity, the fourth
equality uses opay defined as

ORAY = 2 lyXy| @ Trp {(idrpa ® A)) Yrap},
yey+
and finally, the last one uses®7%y’, defined as the canonical purification of oy . Note that the above inequality

becomes an equality when Zyey Ay = I. Using similar sequence of arguments as used in (47), we have

|Traz {(idry @74 ®@idz) 25534}, = ]W Teny 2 { @50 Travz Q5 = Ivoahivoalh.

1
This completes the proof.

B. Proof of Lemma 4

Let the operators of M x and My be denoted by {f\l)( }iez and {/A\f }jes, respectively, and let the operators of
Mx and My be denoted by {AX} and {A}/}, respectively, for some finite sets Z and 7. With this notation, we
need to show the following inequality

GAY H\/M(Aff @AY —A¥ ®A}”)\/p7yH1 + Tr{ (1-2Ax @A;/)pxy} <9
b i
where U, is a purification of pxy. Next, by adding and subtracting appropriate terms, we get

G < Z HN/PXY(AZX ®A}/ — Azx ®A}/)\/prH1 + Tr { (I — ZAZX)PX}
%,J i
+ 2 H\/PXY(&X ®A}/ — A ®/A\}/)\/,0XYH1 + Tr{(f —Z[\}/)PY}
.3 J
T (1= LAX @& )y | 1 (1= Ba¥) o} - 1 (1 - B4¥) o
1,J i J
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< 3 [Vorad ~ANvoa, ¢ Tr{(I—ZiAff)px}

e Svaray - 8 vevl, e (1 S o

s (i ZAX®AY)pXY} o (1 ZAX)pX} (1S4 )}
<26+Tr{(§z&gf®<f—;z&y>)pxy}_Tr{(z_;fq)py}<ze

where the second inequality follows by applying Lemma 3 twice, the third inequality follows from the hypotheses
of the lemma, and the final inequality uses the fact that M~ and MY are sub-POVMs. This completes the proof
of the lemma.

C. Proof of Lemma 7

Proof. Consider the trace norm expression given in (34). This expression can be upper bounded using triangle

inequality as

1 (1-
Z)\wn wn — on n(R+C) (1 + ZTW" W ()
7/’1’ 1
(1—¢) - 1
w” Jwnr — T Z PWn (’u}n)%n Z PW ’LU” —_— WE TWn,(,,L)(l) (49)
(L+n) & ) are 2 ~ .
(n) )(W) ’
The first term in the right-hand side is bounded from above as
£) .
Srore 58 5 A, <] 3 (-l | S e
wn o wreT{™ (W) wreT" wrg T (W
Ui
< <1+77> Z Awn [Ty + 2 A H7;u"\|
wreTWW) 2w W)
< )ve<nte=a, (50)
1+m7

where €1 can be made arbitrarily small for all sufficiently large n. Now consider the second term in (49). Using
covering lemma from [16], this can be bounded as follows. For w" € E(")(W), let IT and II,. denote the
projectors onto the typical subspace of 7®" and T, respectively, where T = Do Awn Ty . From the definition

of typical projectors, for any €; € (0,1) we have for sufficiently large n, the following inequalities satisfied for all
w' e T(W)
TI‘{H’];UTL} =>1-— €1,
Tr{Ilyn Turn} =1 — €1,
Tr{Il} < D,

N

Hw"ﬁu" Hw"

A
-

ym, 61y

where D = 27(5(T)+8) and ¢ = 27[(Z., )‘“’S(Tw))*é?], and 61 N\, 0,62 N\, 0 as €1 \, 0. From the statement of the
covering lemma, we know that for an ensemble {Pwn (w™), Toyn bmewn, if there exists projectors I and IL,,» such
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that they satisfy the set of inequalities in (51), then for any e; > 0, sufficiently large n and n(R + C) > log, %,

the obfuscation error, defined as

)

- 1
D P (@) Tom — 2372 T (1)

Ly
can be made smaller than £ with high probability. This gives us the the following rate constraints R + C' >
S A Tw) = 2 AwS(Tw) + 8" = x ({Aw}, {puw ® 0w}) + ¢'. Using this constraint and the bound from (50), the

result follows. O

1

APPENDIX B
PROOF OF PROPOSITIONS

A. Proof of Proposition 1
The second term in the trace distance in Sy can be expressed as

o 1 . A, B, (uz
(DM ) (Vi gepe) = 3 20 23 Pr(i) ® Tran {<ld®n " ery ’ws;nAan}

M2 1,

1 : , .
- >y D ® o (ur o) @ Tr A {(ld ® A% @ BUwh, o }

N1 N &
14V2 P12 1,5=1 (u",vn)EBgul)(i)XBé“Q)(j)

T DI ‘I’(ua,vs)@TfAB{(id@(I— > Ai’il))®B£52))ﬁ’%n,Aan,}

NNy &
2 g 21 nepy () weT " ()

1 : ) )
+ N1N2 2 Z 2 (I)(ug,vg) ®TI'AB {(ld®A7(/«li ® (‘[ - Z B’L()/i )))\Iﬂ;{nAan}
Hoz 2L yneByt (i) vreT{ (V)

3 q>(ug,vg,)®TrAB{(id®(1— Nooalheu- Y] Bg*:ﬂ))%mm}. (52)
Fspiz ureT{™ (U) vneT (V)

Similarly, for the first term in the trace distance in S5, we have

1 1 n, 1 2y %)
v, 2 (4@ M@ M) (W)

H1,M2
1 : 1 2

N A X Y S ®Tras {(ld® Al @ Bl ))‘I’pRnAnB”}
142 M, 2 u’"e'Té(n)(U) ’U”ET;M(V)
1 1 1 2

T NN > 2 P ®Tias {(ld®(f - > Ao B ))‘I’%nmsw}
2 gtz et (v) wreT{ " (V)
1 . 1 2

Pw o L P ®Tas {(@AL © (1~ Y BV, p.
2 iz e ) oreT{M (V)
1 ‘ 1 2

i) (I)(ugwg)@TrAB{(ld@(I— M Alhea- Y BY )))w;nAan}. (53)
14¥2 M1, 2 un,E']:S(")(U) U"ET;”)(V)

By replacing the terms in Sy using the corresponding expansions from (52) and (53), we observe that the second,
third and fourth terms on the right hand side of (52) get canceled with the corresponding terms on the right hand
side of (53). This simplifies S5 as

1 : 1 2
N1N2 Z Z 2 H ((I)(un,wn) - (I)e(m(unwn)) ® TI'AB {(ld ® A,l(ﬁl ) ® Bq()li ))\I/pRnAan } H
H1sk2 e T (U) vreT ™ (V)

1
B N1 Ny Z Z Z ”q)(“"v”") - (I)e(“)(u"vv")H1 x ‘

1,2 U"GT;(") (U) on 67—5(") (V)

1

Trap {(id ® ALY @ BU ) Wh 4o g } H

1
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3 By~ e,
,ul,,uz uneT(")( U) U"ETS("’)(V)

NlN Z 2 Z “(I)un,v" - ‘I’e<u>(un7vn

Histiz yne T (U) vneT ™ (V)

x Tr{(id® AL @ B )W 4. |

17un )Cvliz ) Qyn om,

where the first two equalities are obtained by using the definition of trace norm and the last equality follows from

-1 —1
the definition of Aq(jff) and Bf}’f) as in (12), with Qyn 4n STy {4 / pfff" ® p%" (AL, @ AL,/ p%" ® p%” pgg}.

This completes the proof.

B. Proof of Proposition 2

(w 1

From Proposition 1, and using the definitions .~ and (;x» (ys2) , S9 can be simplified as

1—¢e)(1-¢)
SQ = ( Z Z 2 ]]_{Un ,LL1 Un,vn’(#2)(k) :’Un}QunwnH(pun’fun — (I)e(“)(u",v") 1-

(1+ ,,7)22n R1+R2)N No, & o s TR

For any (u",v™), the 1-norm above can be bounded from above by the following quantity
2 x 1{3(&”,17",1',3') {(u”, 0™ € BY (i) x BY2)(j),
(@, ") e W O\ T WV, (@7, ") € BY (i) x BY2 (), (i, &™) + (u”,v")}.
Denoting such an indicator function by ]l“‘““”(u" v™), Sy can be bounded from above as Sy < S3, where

A (1 1*8 (p1,p2) (om0 n,(p1) _ on oy, (p2) N
S (1+7722N(R1+R2 Zk(nzn Qunvn]\[l]\blu,zu ]lu : (U 7U )II‘{U K (l)_u 7V a (k)—'U }

Next, we use the Markov inequality to show that S3 < € with probability sufficiently close to 1. We first show
that the expectation of S5 can be made arbitrary small by taking n large enough. For that we take the expectation
of the indicator functions with respect to random variables U™ and V™ which are independent of each other and

distributed according to the pruned distribution, defined in (11). This gives us, for u™ € 7:5(”) (U) and v" € 7:;(") V),
B[ 10 (o)1 {Um) (1) = u, vl (k) = " |
< Z Z Z [ { )EB(M)()XB(”Z)( )} {( )EB(M)()XB(/&)( )}

(@, 5™)eT MUV 63 (LE)#
(u ™) #(u o)

1{Tm @) =, v (k) = o b1 {omen (@) = an, v k) = o} |

)\A )\B - -
< ur —n(I(U;V)=6y) [Qn(Rl—Rl)zn(Rz—Rg)
(1—¢e)2(1—¢)?

5 A AD, o-n(I(UV)~26,) gn(Rs—Ry) gn(Ra—Rs) (54)
(1—¢)2(1—¢&)? ’
where 01 \, 0 as 6 \, O . The first inequality follows from the union bound. The second inequality follows by
evaluating the expectation of the indicator functions and the last inequality follows from the inequalities Ry <S (U)
and Ry < S(V). This implies
9—n(I(U;V)=261)gn(Ri—R1)gn(R2—Ra)

(1 +n)?*(1-e)(1-¢)

E[S3] < 10

> D1 Quen AR AEL

ure ™ (U) vreT{™ (V)
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We proceed using the following lemma.

Lemma 9. For )\fn and /\fﬂ, as defined in (6) and Qy» ,» defined above, we have
> DU Queen A AD < 27005,
ureT™ (U) vreT™ (V)
for some dap \, 0 as § \ 0.

Proof. Firstly, note that

N Qun o NEAE = Tr{ [\/m@_1< A AA )W \/@ < \B Agﬂ,)\/@_l]p%}. (55)

uneT ™ (U) ureT ™ (U oneT™ (V)
’U"E'T(;(n) (V)

Consider,

DU ALAL =TI, > )\A 1, pa e, |, T
unef]:s(")(U) U"ET(")

< 110, (Z A4, pun> I, 14
_ HAHpApAnH HA <2 n(S(pA 5A)ﬁAHpAﬂA _ 2—n(S(pA)—6A)HpAﬁAHpA

where the first 1nequa11ty 1s obtained by using Hunpunl'[fn < ﬁfn for all u™ € 7:;n)(U ) and then by adding
terms belonging to L{”\fs ( ) into the summation. The subsequent inequality and the equality, follows from the
properties of a typical projector with §4 N\, 0 as § N\, 0, and the commutativity of 14 and II,,, respectively. This

implies,

1 —1 —1 R —1 R
/p%n Z )‘éﬂAfﬂ P%n < 2771(5(,0,4)7514) /p%n HpAHAHpA /pcz)n < 22n5AHA, (56)
ureT™ (U)

where the last inequality again appeals to the fact that 1I,,, and 14 commute. Similarly, using the same arguments

above for the operators acting on Hp, we have

-1 -1 ~
N DUOADAL B <2 TrP, (57)

e (V)
where dp N\, 0 as § \, 0. Using (56) and (57) in (55), gives

Z Qun o )\A )\B 22n(5A+5B) TI'{ (ﬂB ® ﬂB) p%%} < 22n(5A+53) Tr{p%% _ 22”(5A+§B)’
u",on
substituting 45 = 2(04 + dp) gives the result.
O

As a result, given any € € (0, 1), the above expectation can be made less than % for large enough n

provided that (R — Ry)+ (Ry — Ro) < I(U; V) —28; — 0 45 — 8. From Markov-inequality this implies that S5 < /e

with probability at least 1 — %,
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C. Proof of Proposition 3
We bound S as S < §2 + §3 + §4, where

~ A 1
Sz = NN Z Z\/@( H)®F s ) p(ﬁ%P%U’V(zn‘ug’vg) )
1 2u 2 >0
1,42 1
~ A 1 ]
S3 = NN Z Z@( ) ®F H)> p%f’%av(znlug,v{f) ,
1 2,LL1 w2 >0
’ 1
g, A \/@( “1®F M)FP ul v
N1N2 M;;Z PAB PapPziuv (2" lug o)

Analysis of §2: We have

A: 1 B: 2
Sz < NN Z ZPZWV |U0’Uo)'\/9%% (Zrz (# )®Fo (# )> PCEE
14V2 m ;
Hi,i2 2 >0 1
ZZ /\/pAB( )®F e ))\//?(?%
N1N2 L1 U 1
< ®nr (2 Xn
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2 H2 || V™ 1
1 20
<3 2L = Qn& Z Py ZZ@ - (58)
p2 (o™ k=1 1 p2 vm ,
S22

(1)
i~ol = Doun Agn ) The
next inequality follows by using Lemma 3 where we use the result that with high probablhty (letting E; denote

where the first inequality uses triangle inequality, the second uses the fact that )|

this event) we have } . Aq(ﬁf) < I, given that Ry > I(U; RB).,,. Finally, the last inequality follows again from
triangle inequality.

Regarding the first term in (58) using Lemma 7 we claim that for all sufficiently large n, the term can be made
arbitrarily small with high probability (letting E> denote this event), given the rate Ry satisfies Ry > I (Vi RA),,
where o3 is as defined in the statement of the theorem. Note that the requirements we obtain on Rl and ]:22 here
were already imposed earlier in Section VIII-A. And as for the second term we use the gentle measurement lemma

(as in (61)) and bound its expected value as

PN AN By

Mo V™ 'U"EIT(;(”)(V)

A\B,
(1+mn)

B AL <

where the inequality is based on the repeated usage of the average gentle measurement lemma by setting €3, =

((11;]) 24/€’5 +24/€7) with €5, \(0as 6 \, 0 and e’y =&’ + 2V/e! and e =2+ 2V’ (see (35) in [2] for more

details ). Now, by using Markov inequality P(FE3) < /€5, Where E3 = 2 (S > NGA }. Hence, using union bound

on the three events F1, 5 and Ejs, S, can be made arbitrarily small, for sufficiently large n, with high probability.
Analysis of §3: Due to the symmetry in §2 and §3, the analysis of 53 follows very similar arguments as that of
§2 and hence we skip it.
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Analysis of §4: We have

S < P u ,Q} ®n A (Hl ® FB (M2)> Xn
4 N1N2 M;@; Z\UV 2" g, vg '\/PAB \ PAB )
Au 1 / mn 3 A1 1 2 mn
pAB " ®I> p%B 1 " N1N2 Z Z ‘ ' p%B (FO " ®B£li )> v p%B
H1,p2 V™

, (59

< xom 3 Vo

where the inequalities above are obtained by a straight forward substitution and use of triangle inequality. With the

1

above constraints on ]:21 and Rg, we have 0 < FS"(“ ) <lTand 0 < FOB’(“ 2) < I. This simplifies the first term in
(59) as
1
®n< “1)®I) _ H/@n ) /®n
N1N2 Lo Pap Z Pa 1

Similarly, the second term in (59) simplifies using Lemma 3 as

MMZZW%MW@Wﬂ<%5£§w@MMM@1

L1 54 un
Using these simplifications, we have
o 2 A7( 1)
s B[V () Vi

The above expression is similar to the one obtained in the simplification of §2 and hence we can bound §4 using

1

1
the same constraints as S, for sufficiently large n.

D. Proof of Proposition 4

Recalling S5, we have

52 < ZZZ‘PZIUV 0" = Z|UV< el (un, v ‘\/@ un vn))\/@
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ulp,gzuv
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where n ,» and 1(“1’“2)(u”, v™) are defined as

—1 —1
Qun éT&"{\/p?”@p%” (A @ AP/ PR @ o5 pi?’é}
1 (oi2) (7 ) & ﬂ{awn,@",i,j) (o) € BY (i) x BY(j),
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We know from the simplification in (54) that
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Substituting this in the expression for Si2 gives
2—n(I(U;V)—251)2n(R1—R1)2n(R2—R2)

E[S2] < 10 (1+n)2(1—e)2(1—¢')2?

A \B
D1 Qun o A AL

ur,un
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9—n(I(U;V) =26, ~845) gn(Ri—R1)9n(Ra— Ra)
(T+n)2(1—-e)?(1-¢)? ’

where the second inequality above uses Lemma 9. Therefore, if Ry + Ro — Ry — Ry < I(U; V)es —201 —0ap — 9,

then we have E[S2] < 1OWM)(1—5/)' The proposition follows from Markov Inequality.

<10

E. Proof of Proposition 5
We start by adding and subtracting the following terms in ()2

i) Z vV Pi5 (AZ‘" ® Ay PABPZ\UV( 2" u, ")
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This gives us Q2 < Qo1 + Q22 + Q23 + 24, Where

N
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We start by analyzing (J21. Note that ()21 is exactly same as ()1 and hence using the same rate constraints as
()1, this term can be bounded. Next, consider (Q95. Substitution of g}(frfz) gives

Q22 = Z Aﬁfv”ﬁﬁfv” &® Pg\U7V(z"|u",v”) ’anzn’
u’ll,v”ﬂr,z"ﬂ
(1 —¢&’) Xty ~AB
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where the equality uses the triangle inequality for block operators. From here on, we use Lemma 7 to bound ()9s.
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Note that 7,» can be written in tensor product form as T,n = ®;‘:1 Ty,. This simplifies Q22 as
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Lemma 7 gives us, for any given €,,,,do,, € (0,1), if
Ry+Cy> 8 (2 AfTv) — Y AS(T) = I(RZ;V )o,, (60)
vey vey
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then P(Q22 = €,,,) < d,,, for sufficiently large n.

Now, we move on to consider (Qo3. Taking expectation with respect to the codebook C(*) = (C%“ 1),C§“ 2)) gives

£ [Qxs] < [Z i
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un
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where the inequality above is obtained by using the triangle inequality, and the first equality follows as C§” V) and
Cé“ 2) are generated independently. The last equality follows from the definition of J as in (44). Hence, we use the
result obtained in bounding E[.J].

Finally, we consider QQ24.
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where the inequalities above are obtained by substituting in the definition of B,.”’ and using multiple triangle

inequalities. Taking expectation of (Jo4 with respect to the second codebook generation, we get

B
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2B,
= 2 (1+7)

vn€7'5(") (V)

~B AB (175,) / "y _
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where the second inequality above follows by using Lemma 3 and the fact that . N% >, " Agﬁf) < I, with high

probability, and the last inequality uses the result based on the average gentle measurement lemma by setting

6Qz4

— %(24 [l + 24/€%) with €,,, \, 0 as § \, 0 and e}y = ¢’ + 2v/<’ and € = 2¢’ + 2+/&/ (see (35) in [2]

for more details ). This completes the proof for ()24 and hence for all the terms corresponding to s.
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