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Functional Covering of Point Processes

Nirmal V. Shende and Aaron B. Wagner

Abstract

We introduce a new distortion measure for point processes called functional-covering distortion. It

is inspired by intensity theory and is related to both the covering of point processes and logarithmic-

loss distortion. We obtain the distortion-rate function with feedforward under this distortion measure

for a large class of point processes. For Poisson processes, the rate-distortion function is obtained

under a general condition called constrained functional-covering distortion, of which both covering and

functional-covering are special cases. Also for Poisson processes, we characterize the rate-distortion

region for a two-encoder CEO problem and show that feedforward does not enlarge this region.

I. INTRODUCTION

The classical theory of compression [2] focuses on discrete-time, sequential sources. The

theory is thus well-suited to text, audio, speech, genomic data, and the like. Continuous-time

signals are typically handled by reducing to discrete-time via projection onto a countable basis.

Multi-dimensional extensions enable application to images and video.

Point processes model a distinct data type that appears in diverse domains such as neuro-

science [3]–[8], communication networks [9]–[11], imaging [12], [13], blockchains [14]–[17],

and photonics [18]–[22]. Formally, a point process can be viewed as a random counting measure

on some space of interest [23], or if the space is a real line, a random counting function; we

shall adopt the latter view. Informally, it may be viewed as simply a random collection of points

representing epochs in time or points in space.
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Compression of point processes emerges naturally in several of the above domains. Sub-

cranial implants need to communicate the timing of neural firings to a monitoring station over

a wireless link that is low-rate because it must traverse the skull [24], [25]. In network flow

correlation analysis, one cross-correlates packet timings from different links in the network [11];

this requires communication of the packet timings from one place to another. Compressing point

process realizations in 2-D (also known as point clouds) arises in computer vision [26]–[28],

and so on.

Various specialized approaches have been developed for compressing point processes, and in

particular for measuring distortion. One natural approach is for the compressed representation

to be itself a point-process realization. In this case, the distortion can be the sum of the absolute

value of the differences between the actual and reconstructed epochs, with the constraint that the

two processes must have the same number of points. For the Poisson point process, Gallager [29]

obtained a lower bound on the rate-distortion function by insisting on the causal reconstruction

of the points but allowing for their reorder. Bedekar [30] determined the rate-distortion function

with the additional constraint of exact orders of epochs in reconstruction. Verdú [31] allowed the

reconstruction to be non-causal. Coleman et al. [32] introduced the queueing distortion function,

where the reproduced epochs lead the actual epochs. Rubin [33] used the L1 distance between

the counting functions as a distortion measure. In a more general setting, Koliander et al. [34]

gave upper and lower bounds on the rate-distortion function under a more generic distortion

defined between pair of point processes.

Most relevant to the present paper, Lapidoth et al. [35] introduced a covering distortion

measure, where the reconstruction of a point process on [0, T ] is a subset Y of [0, T ] that

must contain all the points, and the distortion is the Lebesgue measure of the covering set (see

also Shen et al. [36]).

If we encode the subset Y as an indicator function

Yt =

1 if t ∈ Y

0 otherwise,

then Yt = 0 guarantees that no point occurred at time t, while Yt = 1 indicates that a point may

occur at t. More generally, Yt could encode the relative belief that there is a point at t. Inspired

by this observation, and the notion of logarithmic-loss distortion [37], [38], we consider the
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following formulation. For a realization of a counting (or point) process yT0 = (yt : t ∈ [0, T ])

(i.e., yt is integer-valued, non-decreasing, and has unit jumps) and a non-negative reconstruction

ŷT0 , we define the functional-covering distortion as

d(ŷT0 , y
T
0 ) ,

∫ T

0

ŷt dt− log(ŷt) dyt. (1)

This is related to the covering distortion measure in the following sense. If we impose that

ŷt ∈ {0, 1}, then (1) reduces to the covering distortion measure. Yet it is natural to consider the

distortion in (1) without such a restriction, or with a more general set of allowable values for

ŷt. In fact, there are advantages to not restricting ŷT0 to the set {0, 1}. Consider a remote source

setting where the encoder cannot access the point-process source directly, but instead observes

a thinned version where some of the points in the source point process are deleted randomly.

Then, in case of the covering distortion the reconstruction can only be the entire interval [0, T ]

(i.e. ŷt = 1, t ∈ [0, T ]). On the other hand, under functional covering distortion the problem has

a nontrivial solution.

The relation functional covering distortion measure to logarithmic-loss is as follows. If we

constrain ŷT0 to be bounded, then we can use a Girsanov-type transformation [39, Chapter VI,

Theorems T2-T4] to define a probability measure on the set of all counting processes using ŷT0 ,

and the distortion can be defined as the expectation of the negative logarithm of the Radon-

Nikodym derivative between this probability measure and an appropriately chosen reference

measure, evaluated at the source realization, which is equivalent to (1). However, we will allow

ŷT0 to be unbounded but integrable E[
∫ T

0
Ŷt dt] <∞.

The relation to intensity theory is as follows. Heuristically, given a random variable M , the

intensity of a point process represented by a counting function Y T
0 is a non-negative process ΓT0

such that P (Yt+∆−Yt = 1|M,Y t
0 ) ≈ Γt∆ (see Definition 2 for the precise statement). From (1),

we expect any optimal Ŷ T
0 (in the rate-distortion trade-off sense) to be related to the intensity

of Y T
0 . In fact, we will see in the proof of Theorem 4 that an optimal reconstruction Ŷ T

0 is the

intensity of Y T
0 given the encoder’s output.

Beyond the introduction of the functional covering distortion measure and the accompanying

coding theorems, the paper provides a collection of results for the information-theoretic analysis

of point processes, which may be of independent use. One such contribution is Theorem 1, where

we derive the mutual information between point-processes with intensities and arbitrary random
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variables. This is the most general expression available for mutual informations involving point

process with intensities. Theorem 1 subsumes the existing formulae for mutual informations

involving doubly stochastic Poisson processes [40]–[42] and queuing processes [43] as special

cases. The other theorems proved in this paper are: we obtain the rate-distortion trade-off with

feedforward for the functional-covering distortion measure for point processes which admit

intensities (see Theorem 4). For Poisson processes, we obtain the rate-distortion region when

the reconstruction function ŷT0 is constrained to take value in a subset of reals (Theorem 5). The

covering distortion in [35, Theorem 1] is a special case of this constrained functional-covering

distortion, hence the rate-distortion function in [35] can be obtained as the special case of this

theorem. We characterize the rate-distortion region for a two-encoder Poisson CEO problem (see

Figure 1) under functional-covering distortion in Theorem 6. To prove the converse of the CEO

problem, we derive a strong data processing inequality for Poisson processes under superposition

(see Theorem 2), which complements the strong data processing inequality for Poisson processes

under thinning due to Wang [44]. We also provide a self-contained proof of Wang’s theorem

in Theorem 3. The solution to the CEO problem gives the rate-distortion trade-off for remote

Poisson sources as an immediate corollary.

II. PRELIMINARIES

We will consider a probability space (Ω,F , P ) on which all stochastic processes considered

here are defined. For a finite T > 0, let (Ft : t ∈ [0, T ]) be an increasing family of σ-fields

with FT ∈ F . We will assume that the given filtration (Ft : t ∈ [0, T ]), P , and F satisfy

the “usual conditions” [39, Chapter III, p. 75]: F is complete with respect to P , Ft is right

continuous, and F0 contains all the P -null sets of Ft. Stochastic processes are denoted as

Ŷ T
0 = {Ŷt : 0 ≤ t ≤ T}. The process XT

0 is said to be adapted to the history (Ft : t ∈ [0, T ])

if Xt is Ft measurable for all t ∈ [0, T ]. The internal history recorded by the process XT
0 is

denoted by FXt = (σ(Xs) : s ∈ [0, t]), where σ(A) denotes the σ-field generated by A.

A process XT
0 is called (Ft : t ∈ [0, T ])-predictable if X0 is F0 measurable and the mapping

(t, ω) → Xt(ω) defined from (0, T ) × Ω into R (the set of real numbers) is measurable with

respect to the σ-field over (0, T )× Ω generated by rectangles of the form

(s, t]× A; 0 < s ≤ t ≤ T, A ∈ Fs. (2)
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For two measurable spaces (Ω1,F1) and (Ω2,F2), the product space is denoted by (Ω1×Ω2,F1⊗

F2). We say that A � B � C forms a Markov chain under measure P if A and C are

conditionally independent given B under P . P � Q denotes that the probability measure P is

absolutely continuous with respect to the measure Q. 1{E} denotes the indicator function for

an event E. log(x) is the natural logarithm of x. (x)+ and (x)− denote the positive (max(x, 0))

and the negative part (−min(x, 0)) of x respectively. dxe denotes the ceiling of x. Throughout

this paper we will adopt the convention that 0 log(0) = 0, exp(log(0)) = 0, and 00 = 1.

Definition 1: φ(x) = x log(x) with convention that 0 log(0) = 0.

We note that φ(x) is convex.

We will use the following form of Jensen’s inequality [45, Theorem 7.9, p. 149] and [45,

Theorem 8.20, p. 177].

Lemma 1: If f(x) is a convex function and E|X| <∞ then E[f(X)] exists and for any two

σ-fields A and B,

E[f(X)] ≥ E[f(E[X|A,B])] ≥ E[f(E[X|A])] ≥ f(E[X]).

We now recall the definition of mutual information for general ensembles and its properties.

Let A, B, and C be measurable mappings defined on a given probability space (Ω,F , P ),

taking values in (A,FA), (B,FB), and (C,FC) respectively. Consider partitions of Ω, QA =

{Ai, 1 ≤ i ≤ NA} ⊆ σ(A) and QB = {Bj, 1 ≤ j ≤ NB} ⊆ σ(B). Wyner defined the conditional

mutual information I(A;B|C) as [46]

I(A;B|C) = sup
QA,QB

E

[
NA,NB∑
i,j=1,1

P (Ai, Bj|C) log

(
P (Ai, Bj|C)

P (Ai|C)P (Bj|C)

)]
, (3)

where the supremum is over all such partitions of Ω. Wyner showed that I(A;B|C) ≥ 0 with

equality if and only if A� C � B forms a Markov chain [46, Lemma 3.1], and that (what is

generally referred to as) Kolmogrov’s formula holds [46, Lemma 3.2]

I(A,C;B) = I(A;B) + I(C;B|A). (4)

Hence if I(A;B) <∞, then I(C;B|A) = I(A,C;B)−I(A;B). The data processing inequality

can be obtained from (4) as well: if A� C � B forms a Markov chain, then I(A;B) ≤ I(C;B).

Denote by PA,B, the joint distribution of A and B on the space (A× B,FA ⊗ FB ), i.e.,

PA,B(dA× dB) = P ((A−1(dA), B−1(dB)), dA ∈ FA, dB ∈ FB.
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Similarly, PA and PB denote the marginal distributions. Gelfand and Yaglom [47] proved that

if PA,B � PA × PB, then the mutual information I(A;B) (defined via (3) by taking σ(C) to

be the trivial σ-field) can be computed as:

I(A;B) = E
[
log

(
dPA,B

d(PA × PB)

)]
. (5)

A sufficient condition for PA,B � PA×PB is that I(A;B) <∞ [48, Lemma 5.2.3, p. 92]. We

will also require the following result [46, Lemma 2.1]:

Lemma 2 (Wyner’s Lemma): If M is a finite alphabet random variable, then

I(M ;UT
0 ) = H(M)− E

[
H(M |UT

0 )
]
,

where

H(M |UT
0 ) = −

∑
m

P (M = m|UT
0 ) log

(
P (M = m|UT

0 )
)
,

and H(M) is the entropy of M .

III. POINT PROCESSES, INTENSITIES, AND MUTUAL INFORMATION

Let N T
0 denote the set of counting realizations (or point-process realizations) on [0, T ], i.e.,

if NT
0 ∈ N T

0 , then for t ∈ [0, T ], Nt ∈ N (the set of non-negative integers), is right continuous,

and has unit increasing jumps with N0 = 0. Let FN be the restriction of the σ-field generated

by the Skorohod topology on D[0, 1] to N T
0 .

Definition 2: If NT
0 is a counting process adapted to the history (Ft : t ∈ [0, T ]), then NT

0

is said to have (P,Ft : t ∈ [0, T ])-intensity ΓT0 = (Γt : t ∈ [0, T ]), where ΓT0 is a non-negative

measurable process if

• ΓT0 is (Ft : t ∈ [0, T ])-predictable,

•
∫ T

0
Γt dt <∞, P -a.s.,

• and for all non-negative (Ft : t ∈ [0, T ])-predictable processes CT
0 :1

E
[∫ T

0

Cs dNs

]
= E

[∫ T

0

CsΓs ds

]
.

When it is clear from the context, we will drop the probability measure P from the notation

and say NT
0 has (Ft : t ∈ [0, T ])-intensity ΓT0 .

1The limits of the Lebesgue-Stieltjes integral
∫ b

a
should be interpreted as

∫
(a,b]

.
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Definition 3: A point process Y T
0 is said to be Poisson process with rate λ if its (FYt : t ∈

[0, T ])-intensity is (λ : t ∈ [0, T ]).

The above definition can be shown to imply the usual definition of Poisson process [39, Theorem

T4, Chapter II, p. 25] and vice versa [39, Section 2, Chapter II, p. 23].

Definition 4: P Y T
0

0 denotes the distribution of a point process Y T
0 (on the space (N T

0 ,F
N))

under which Y T
0 is a Poisson process with unit rate.

A point processes with stochastic intensity and a Poisson process with unit rate are linked via

the following result.

Lemma 3: Let P Y T
0 be the distribution of a point process Y T

0 such that P Y T
0 � P

Y T
0

0 . Then

there exists a non-negative predictable process ΛT
0 such that

dP Y T
0

dP
Y T
0

0

= exp

(∫ T

0

log(Λt) dYt − Λt + 1 dt

)
.

Moreover, the (P Y T
0 , (FYt : t ∈ [0, T ]))-intensity of Y T

0 is ΛT
0 . Conversely, if the (P Y T

0 ,FYt :

t ∈ [0, T ])-intensity of Y T
0 is ΓT0 and E

PY T
0

[
∫ T

0
|φ(Γt)| dt] < ∞, then P Y T

0 � P
Y T
0

0 , and the

corresponding Radon-Nikodym derivative is given by the above expression, where

E
PY T

0

[∫ T

0

|Γt − Λt| dt
]

= 0, E
PY T

0

[∫ T

0

1{Γt 6= Λt} dYt
]

= 0.

In the latter case,

E
PY T

0

[
log

(
dP Y T

0

dP
Y T
0

0

)]
= E

PY T
0

[∫ T

0

φ(Γt)− Γt + 1 dt

]
.

Proof: Please see the supplementary material.

The following theorem allows us to express the mutual information involving a point processes

with intensity and other random variables in terms of the intensity functions. The proof of the

theorem is similar to the proof of Theorem 1 in [42].

Theorem 1: Let Y T
0 be a point process with (FYt : t ∈ [0, T ])-intensity ΛT

0 such that

E[

∫ T

0

|φ(Λt)| dt] <∞,

and let M be a measurable mapping on the given probability space satisfying I(M ;Y T
0 ) <∞.

Then there exists a process ΓT0 such that ΓT0 is the (Gt = σ(M,Y t
0 ) : t ∈ [0, T ]) intensity of Y T

0

and

I(M ;Y T
0 ) = E

[∫ T

0

φ(Γt)− φ(Λt) dt

]
.
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Proof: Let PM,Y T
0 denote the joint distribution of M and Y T

0 , and PM and P Y T
0 denote their

marginals, respectively. Since I(M ;Y T
0 ) < ∞, we get that PM,Y T

0 � PM × P Y T
0 [48, Lemma

5.2.3, p. 92]. Lemma 3 says that P Y T
0 � P

Y T
0

0 , which together with [49, Chapter 1, Exercise

19, p. 22] gives PM,Y T
0 � PM × P Y T

0 � PM × P Y T
0

0 .

Let P̃M,Y T
0 , PM × P Y T

0
0 and

L =
dPM,Y T

0

dP̃M,Y T
0

(6)

denote the Radon-Nikodym derivative. Since under P̃M,Y T
0 , M and Y T

0 are independent, we note

that the (P̃M,Y T
0 , (Gt : t ∈ [0, T ]))-intensity of Y T

0 is 1 [39, E5 Exercise, Chapter II, p. 28].

Define the process LT0 as

Lt = EP̃ [L|Gt], t ∈ [0, T ], (7)

where EP̃ denotes that the conditional expectation is taken with respect to the measure P̃M,Y T
0 .

Then LT0 is a (P̃M,Y T
0 ,Gt) non-negative absolutely-integrable martingale.

By the martingale representation theorem, the process LT0 can be written as [39, Chapter III,

Theorem T17, p. 76] (where we have taken σ(M) to be the “germ σ-field”):

Lt = 1 +

∫ t

0

Ks(dYs − ds),

where KT
0 is a (Gt : t ∈ [0, T ])-predictable process which satisfies

∫ T
0
|Kt| dt < ∞ P̃M,Y T

0 -a.s.

Applying [50, Lemma 19.5, p. 315], we can write LT0 as

Lt = exp

(∫ t

0

log(Γs) dYs + (1− Γs) ds

)
, t ∈ [0, T ], (8)

where ΓT0 is a non-negative (Gt : t ∈ [0, T ])-predictable process, and Γt < ∞ P̃M,Y T
0 -a.s. for

t ∈ [0, T ].

Now we can mimic the proof of [39, Chapter VI, Theorems T3, p. 166] to deduce:

Lemma 4: For all non-negative (Gt : t ∈ [0, T ])-predictable processes CT
0

E
[∫ T

0

CtΓt dt

]
= E

[∫ T

0

Ct dYt

]
,

where the expectation is taken with respect to measure P .

Proof: Please see the supplementary material.

Taking Ct = 1 in the above equality yields

E
[∫ T

0

Γt dt

]
= E

[∫ T

0

dYt

]
= E

[∫ T

0

Λt dt

]
<∞. (9)
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Hence
∫ T

0
Γt dt < ∞ P -a.s. and we conclude that the (PM,Y T

0 ,Gt : t ∈ [0, T ])-intensity of Y T
0

is ΓT0 .

Now we will use:

Lemma 5:

E
[∫ T

0

log(Γt) dYt

]
= E

[∫ T

0

φ(Γt) dt

]
. (10)

Proof: Please see the supplementary material.

Since E
[
log
(
dPM,NT

0

dP̃M,NT
0

)]
is well-defined, (6), (7), and (8) yields

E

[
log

(
dPM,NT

0

dP̃M,NT
0

)]
= E [log(LT )]

= E
[∫ T

0

log(Γt) dYt + (1− Γt) dt

]
= E

[∫ T

0

φ(Γt) dt

]
+ E

[∫ T

0

(1− Λt) dt

]
, (11)

where in the last line we have used Lemma 5 and E
[∫ T

0
Γt dt

]
= E

[∫ T
0

Λt dt
]
<∞ from (9).

Also,

E

[
log

(
d(PM × P Y T

0

dP̃M,Y T
0

)]
= E

[
log

(
dP Y T

0

dP
Y T
0

0

)]
(a)
= E

[∫ T

0

φ(Λt) + 1− Λt dt

]
(12)

<∞,

where we have used Lemma 3 for (a). Using the above inequality and the fact that

E

[
log

(
dPM,NT

0

dP̃M,NT
0

)]
is well-defined, we can express the mutual information as

I(M ;Y T
0 ) = E

[
log

(
dPM,Y T

0

d(PM × P Y T
0 )

)]

= E

[
log

(
dPM,NT

0

dP̃M,NT
0

)]
− E

[
log

(
d(PM × PNT

0

dP̃M,NT
0

)]
, (13)
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Now we can compute the mutual information from (11), (12), and (13),

I(M ;Y T
0 ) = E

[∫ T

0

φ(Γt) dt

]
+ E

[∫ T

0

(1− Λt) dt

]
− E

[∫ T

0

φ(Λt) dt

]
− E

[∫ T

0

1− Λt dt

]
= E

[∫ T

0

φ(Γt) dt

]
− E

[∫ T

0

φ(Λt) dt

]
= E

[∫ T

0

φ(Γt)− φ(Λt) dt

]
.

We shall require several strong data processing inequalities, for which purpose we now derive

some ancillary results regarding the intensity of a point process. Combining [39, T8 Theorem,

Chapter II, p. 27] and [39, T9 Theorem, Chapter II, p. 28], we can conclude the following result.

Lemma 6: Let ΓT0 be a (Ft : t ∈ [0, T ])-predictable non-negative process satisfying∫ T

0

Γt dt <∞ a.s.

Let Y T
0 be a point process adapted to (Ft : t ∈ [0, T ]). Then ΓT0 is the (Ft : t ∈ [0, T ])-intensity

of Y T
0 if and only if

Mt , Yt −
∫ t

0

Γs ds t ∈ [0, T ]

is a (Ft : t ∈ [0, T ])-local martingale2.

If we impose the stricter condition of finite expectation E[
∫ T

0
Γt dt] < ∞, the local martingale

condition in the above statement can be replaced by the martingale condition.

Lemma 7: Let ΓT0 be a (Ft : t ∈ [0, T ])-predictable non-negative process satisfying

E
[∫ T

0

Γt dt

]
<∞.

Let Y T
0 be a point process adapted to (Ft : t ∈ [0, T ]). Then ΓT0 is the (Ft : t ∈ [0, T ])-intensity

of Y T
0 if and only if

Mt , Yt −
∫ t

0

Γs ds t ∈ [0, T ]

is a (Ft : t ∈ [0, T ])-martingale.

Proof: Please see the supplementary material.

2A process Y T
0 is called a local martingale with respect to a filtration (Ft : t ≥ 0) if Yt is Ft-measurable for each t ∈ [0, T ]

and there exists an increasing sequence of stopping times Tn, such that Tn → ∞ and the stopped and shifted processes

(Ymin{t,Tn} − Y0 : t ∈ [0, T ]) are (Ft : t ∈ [0, T ])-martingales for each n.
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Lemma 8: If a point process NT
0 has (Ft : t ∈ [0, T ])-intensity ΛT

0 , and (Gt : t ∈ [0, T ]) is

another history for NT
0 such that Gt ⊆ Ft for each t ∈ [0, T ], then there exists a process ΠT

0

such that ΠT
0 is the (Gt : t ∈ [0, T ])-intensity of NT

0 , and for each t ∈ [0, T ], Πt = E[Λt|Gt−]

P -a.s.

Proof: Please see the supplementary material.

Lemma 9: Let Y T
0 be a point process with (Gt , σ(M,Y t

0 ) : t ∈ [0, T ])-intensity ΓT0 for some

M . Let ZT
0 be obtained adding an independent (of both M and Y T

0 ) point process NT
0 with

(FNt : t ∈ [0, T ])-intensity ΠT
0 to Y T

0 . Then ZT
0 has a (Ft , σ(M,Zt

0) : t ∈ [0, T ])-intensity ΘT
0

which satisfies Θt = E[(Γt + Πt)|Ft−] P -a.s. for each t ∈ [0, T ].

Proof: Please see the supplementary material.

Theorem 2: Let Y T
0 be a Poisson process with rate λ, M be such that I(M ;Y T

0 ) <∞, and ΓT0

be the (σ(M ;Y t
0 ) : t ∈ [0, T ])-intensity of Y T

0 . Suppose ZT
0 is obtained by adding an independent

(of Y T
0 and M ) Poisson process with rate µ to Y T

0 . Then,

I(M ;Y T
0 ) = E

[∫ T

0

φ(Γt)− φ(λ) dt

]
,

I(M ;ZT
0 ) ≤ E

[∫ T

0

φ(Γt + µ)− φ(λ+ µ) dt

]
.

Proof: Since M � Y T
0 � ZT

0 forms a Markov chain, the data processing inequality gives

I(M ;ZT
0 ) ≤ I(M ;Y T

0 ) <∞. Applying Theorem 1 and using the uniqueness of intensities,

I(M ;Y T
0 ) = E

[∫ T

0

φ(Γt)− φ(λ) dt

]
, and

I(M ;ZT
0 ) = E

[∫ T

0

φ(Γ̂t)− φ(λ̂t) dt

]
, (14)

where Γ̂T0 and λ̂T0 are the (σ(M ;Zt
0) : t ∈ [0, T ]) and (FZt : t ∈ [0, T ])-intensities of ZT

0 . Due to

the uniqueness of the intensities and Lemma 9, we get for each t ∈ [0, T ], Γ̂t = E[Γt|M,Zt−
0 ]+µ,

and λ̂t = λ+ µ. Substituting this in (14) and applying Jensen’s inequality yields

I(M ;ZT
0 ) = E

[∫ T

0

φ(E[Γt|M,Zt−
0 ] + µ)− φ(λ+ µ) dt

]
,

≤ E
[∫ T

0

φ(Γt + µ)− φ(λ+ µ) dt

]
.

Definition 5: A point process ZT
0 is said to be obtained from p-thinning of a point process Y T

0 ,

if each point in Y T
0 is deleted with probability p, independent of all other points and deletions.
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Lemma 10: Suppose that Y T
0 is a point process with Gt , σ(M,Y t

0 )-intensity ΓT0 such that

E[
∫ T

0
Γt dt] <∞ and ZT

0 is obtained from p-thinning Y T
0 . Then the (Ft , σ(M,Zt

0) : t ∈ [0, T ])-

intensity of ZT
0 is given by ΘT

0 , where P -a.s. Θt = (1− p)E[Γt|Ft−], t ∈ [0, T ].

Proof: Please see the supplementary material.

The following theorem was first proven by Wang in [44] using a property of certain “con-

traction coefficient” used in strong data processing inequalities [51]. Here, we provide a self-

contained proof which uses Theorem 1 and Lemma 10.

Theorem 3: Let Y T
0 be a Poisson process with rate λ, and M be such that I(M ;Y T

0 ) < ∞.

Let ZT
0 obtained from p-thinning of Y T

0 such that the thinning operation is independent of M .

Then

I(M ;ZT
0 ) ≤ (1− p)I(M ;Y T

0 ).

Proof: The data processing inequality gives I(M ;ZT
0 ) ≤ I(M ;Y T

0 ) < ∞. Applying

Theorem 1,

I(M ;Y T
0 ) = E

[∫ T

0

φ(Γt)− φ(λ) dt

]
, (15)

and

I(M ;ZT
0 ) = E

[∫ T

0

φ(Γ̂t)− φ(λ̂t) dt

]
, (16)

where ΓT0 and λT0 (respectively Γ̂T0 and λ̂T0 ) are the (σ(M ;Y t
0 ) : t ∈ [0, T ]) and (σ(Y t

0 ) : t ∈

[0, T ])-intensities (respectively (σ(M ;Zt
0) : t ∈ [0, T ]) and (σ(Zt

0) : t ∈ [0, T ])-intensities) of

Y T
0 (respectively ZT

0 ). Due to the uniqueness of the intensities and Lemma 10, we can take for

each t ∈ [0, T ],

Γ̂t = (1− p)E[Γt|M,Zt−
0 ], λ̂t = (1− p)λ.

Noting that φ((1− p)x) = (1− p)φ(x) + xφ(1− p), (16) yields

I(M ;ZT
0 ) =(1− p)E

[∫ T

0

φ(E[Γt|M,Zt−
0 ])− φ(λ) dt

]
+ φ(1− p)E

[∫ T

0

Γt − λ dt
]

(a)
=(1− p)E

[∫ T

0

φ(E[Γt|M,Zt−
0 ])− φ(λ) dt

]
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(b)

≤(1− p)E
[∫ T

0

φ(Γt)− φ(λ) dt

]
=(1− p)I(M ;Y T

0 ),

where for (a) we have used the fact that E
[∫ T

0
Γt dt

]
= E

[∫ T
0

1 dYt

]
= E

[∫ T
0
λ dt

]
, and

for (b) we have used Jensen’s inequality.

We will require the following result [52, Theorem 2.11, p. 106].

Lemma 11: Suppose that Y T
0 is a Poisson process with rate λ and ZT

0 is obtained from p-

thinning of Y T
0 . Let

Ẑt = Yt − Zt t ∈ [0, T ].

Then ẐT
0 and ZT

0 are independent Poisson processes with rates pλ and (1− p)λ respectively.

The following lemma will be used repeatedly in the converse proofs of the rate-distortion

function.

Lemma 12: Let a point process Y T
0 have an (Ft : t ∈ [0, T ])-intensity ΓT0 such that

E
[∫ T

0

φ(Γt) dt

]
<∞.

Let Ŷ T
0 be an non-negative (Ft : t ∈ [0, T ])-predictable process satisfying E

[∫ T
0
Ŷt dt

]
< ∞.

Then

E
[∫ T

0

log(Ŷt) dYt

]
= E

[∫ T

0

log(Ŷt)Γt dt

]
.

Proof: Please see the supplementary material.

IV. FUNCTIONAL COVERING OF POINT PROCESSES

In this section, we will consider general point processes and obtain the rate-distortion func-

tion under the functional-covering distortion when feedforward is present. Stronger results are

obtained for Poisson processes in the next sections.

Definition 6: Given a point process yT0 ∈ N T
0 , and a non-negative function ŷT0 , the functional-

covering distortion d is

d(ŷT0 , y
T
0 ) ,

(∫ T

0

ŷt dt− log(ŷt) dyt

)
,

whenever the expression on the right is well-defined.
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We will allow the reconstruction function Ŷ T
0 to depend on Y T

0 as well as the message,

constrained via predictability. In particular, we will call Ŷ T
0 an allowable reconstruction with

feedforward if it is non-negative and (σ(Y t
0 ) : t ∈ [0, T ])-predictable. Let ŶT0,FF denote the set of

all ŷT0 processes which are allowable reconstructions with feedforward.

Definition 7: A (T,R,D) code with feedforward consists of an encoder f

f : N T
0 → {1, . . . , . . . , dexp(RT )e}

and a decoder g

g : {1, . . . , dexp(RT )e} × N T
0 → ŶT0,FF

satisfying

E
[∫ T

0

Ŷt dt

]
<∞

and the distortion constraint

E
[

1

T
d(Ŷ T

0 , Y
T

0 )

]
≤ D.

We will call the encoder’s output M = f(Y T
0 ) the message and the decoder’s output Ŷ T

0 the

reconstruction.

Definition 8: The minimum achievable distortion with feedforward at rate R and blocklength

T is

D∗F (R, T ) , inf{D : there exists a (T,R,D) code with feedforward}.

Definition 9: The distortion-rate function with feedforward is

DF (R) , lim sup
T→∞

D∗F (R, T ).

The minimum achievable rate at distortion D and blocklength T with feedforward R∗F (D,T )

and the rate-distortion function with feedforward RF (D) can be defined similarly.

D∗F (R, T ) can be characterized via the following theorem for certain point processes.

Theorem 4: Let Y T
0 be a point process with (FYt : t ∈ [0, T ])-intensity ΛT

0 such that

E
[∫ T

0

|φ(Λt)| dt
]
<∞.
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Let

Ξ(Y T
0 ) ,

1

T
E
[∫ T

0

Λt − φ(Λt) dt

]
,

and

δT , P (YT = 0) < 1.

Then D∗F (R, T ) satisfies

Ξ(Y T
0 )−R− 1

T
≤ D∗F (R, T ) ≤ Ξ(Y T

0 )− (1− δT )R +
1

T
.

Proof:

Achievability:

Recall that since ΛT
0 is the (FYt : t ∈ [0, T ])-intensity of Y T

0 , it is (FYt : t ∈ [0, T ])-predictable,

and E[
∫ T

0
|φ(Λt)| dt] < ∞ implies E[

∫ T
0

Λt dt] < ∞. If the decoder outputs ΛT
0 , this leads to

distortion

1

T
E[d(ΛT

0 , Y
T

0 )] =
1

T
E
[∫ T

0

Λt dt− log(Λt) dYt

]
=

1

T
E
[∫ T

0

Λt − φ(Λt) dt

]
= Ξ(Y T

0 ).

Thus D∗F (0, T ) ≤ Ξ(Y T
0 ), and the upper bound in the statement of the theorem holds at R = 0.

Now consider the case R > 0. Fix T > 0 and let J = dexp(RT )e. If YT = 0, then the

encoder sends index M = 1. Otherwise, let Θ denote the first arrival instant of the observed

point process Y T
0 . From Lemma 3, we have that P Y T

0 � P
Y T
0

0 . Since under P Y T
0

0 , Y T
0 is a

Poisson process with unit rate, it holds that P Y T
0

0 (Θ = t, YT > 0) = 0 for any fixed t ∈ [0, T ].

This gives us P (Θ = t, YT > 0) = 0 for t ∈ [0, T ]. Thus conditioned on the event YT > 0,

Θ has a continuous distribution function FΘ. The encoder computes FΘ(Θ) which is uniformly

distributed over [0, 1], which the encoder suitably quantizes to obtain an M which is uniform in

{2, . . . , J}. From Theorem 1, there exists a (σ(M,Y t
0 ) : t ∈ [0, T ])-predictable process ΓT0 which

is the (σ(M,Y t
0 ) : t ∈ [0, T ])-intensity of Y T

0 . We note that E
[∫ T

0
Γt dt

]
= E

[∫ T
0

Λt dt
]
< ∞,

and from Theorem 1, E
[∫ T

0
log(Γt) dYt

]
<∞. Hence

1

T
E[d(ΛT

0 , Y
T

0 )] =
1

T
E
[∫ T

0

Γt dt− log(Γt) dYt

]
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is well-defined. The decoder outputs ΓT0 as its reconstruction. Then we have
1

T
H(M) = − 1

T
(δT log(δT ) + (1− δT ) log(1− δT )) +

1− δT
T

(log(J − 1))

(a)

≥ 1− δT
T

(log(J − 1))

(b)

≥ 1− δT
T

log(J/ exp(1))

(c)

≥ (1− δT )R− 1

T
, (17)

where for (a), we have used the bound −δT log(δT )− (1− δT ) log(1− δT ) ≥ 0,

for (b), we have used the inequality J − 1 ≥ J/ exp(1) when J ≥ 2, and

for (c), we used the fact that RT ≤ log(J).

H(M) also satisfies
1

T
H(M)

(a)
=

1

T
I(M ;Y T

0 )

(b)
=

1

T
E
[∫ T

0

log(Γt) dYt

]
− 1

T
E
[∫ T

0

φ(Λt) dt

]
, (18)

where, for (a) we have used Lemma 2,

for (b) we have used Theorem 1.

The average distortion can be bounded as follows:

1

T
E[d(ΛT

0 , Y
T

0 )] =
1

T
E
[∫ T

0

Γt dt− log(Γt) dYt

]
(a)
=

1

T
E
[∫ T

0

Γt dt

]
− 1

T
E
[∫ T

0

log(Γt) dYt

]
(b)
=

1

T
E
[∫ T

0

Λt dt

]
− 1

T
E
[∫ T

0

log(Γt) dYt

]
(c)
=

1

T
E
[∫ T

0

Λt dt

]
− 1

T
H(M)− 1

T
E
[∫ T

0

φ(Λt) dt

]
(d)

≤ 1

T
E
[∫ T

0

Λt − φ(Λt) dt

]
− (1− δT )R +

1

T

= Ξ(Y T
0 )− (1− δT )R +

1

T
,

where, for (a), we have used the fact that E
[∫ T

0
log(Γt) dYt

]
<∞ due to Theorem 1,

for (b), we used the equality E
[∫ T

0
Γt dt

]
= E

[∫ T
0

Λt dt
]
,

for (c), we used (18), and

for (d), we used (17).
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Thus we have shown the existence of a (T,R,D) code with feedforward such that D =

Ξ(Y T
0 )− (1− δT )R + 1

T
. This gives the upper bound on D∗F (R, T ).

Converse:

For the given (T,R,D) code with feedforward, let J = dexp(RT )e. Then J ≤ exp(RT )+1 ≤

exp(RT + 1). Thus we have

R +
1

T
≥ 1

T
log(J) ≥ 1

T
H(M)

(a)
=

1

T
I(M ;Y T

0 ), (19)

where (a) follows because of Lemma 2.

Since I(M ;Y T
0 ) <∞, we conclude from Theorem 1 that there exists a process ΓT0 such that

ΓT0 is the (Ft = σ(M,Y t
0 ) : t ∈ [0, T ]) intensity of Y T

0 and

I(M ;Y T
0 ) = E

[∫ T

0

φ(Γt) dt

]
− E

[∫ T

0

φ(Λt) dt

]
.

Hence from (19)

R ≥ 1

T
E
[∫ T

0

φ(Γt) dt

]
− 1

T
E
[∫ T

0

φ(Λt) dt

]
− 1

T
. (20)

Let Ŷ T
0 denote the decoder’s output. The distortion constraint D satisfies

D ≥ 1

T
E
[
d(Ŷ T

0 , Y
T

0 )
]

=
1

T
E
[∫ T

0

Ŷt dt− log(Ŷt) dYt

]
=

1

T
E
[∫ T

0

Ŷt − log(Ŷt)Γt dt

]
(21)

where in the last line we have used Lemma 12.

Using the inequality u log(v) ≤ φ(u)− u+ v, and noting that the individual terms have finite

expectations,

E
[∫ T

0

log(Ŷt)Γt dt

]
≤ E

[∫ T

0

φ(Γt)− Γt + Ŷt dt

]
= E

[∫ T

0

φ(Γt) dt

]
− E

[∫ T

0

Γt dt

]
+ E

[∫ T

0

Ŷt dt

]
. (22)
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From (21) and (20), we deduce

R +D ≥ 1

T
E
[∫ T

0

φ(Γt) dt

]
− 1

T
E
[∫ T

0

φ(Λt) dt

]
+

1

T
E
[∫ T

0

Ŷt dt

]
− 1

T
E
[∫ T

0

log(Ŷt) dYt

]
− 1

T

(a)

≥ 1

T
E
[∫ T

0

Γt dt

]
− 1

T
E
[∫ T

0

φ(Λt) dt

]
− 1

T

(b)

≥ 1

T
E
[∫ T

0

Λt dt

]
− 1

T
E
[∫ T

0

φ(Λt) dt

]
− 1

T

= Ξ(Y T
0 )− 1

T
,

where, for (a) we have used (22), and

for (b) we used the fact that E
[∫ T

0
Γt dt

]
= E

[∫ T
0
dYt

]
= E

[∫ T
0

Λt dt
]
.

Hence we have shown that for any (T,R,D) code with feedforward, D ≥ Ξ(Y T
0 ) − R − 1/T .

This gives us the lower bound on D∗F (R, T )

Corollary 1: Let Y T
0 be a point process with (FYt : t ∈ [0, T ])-intensity ΛT

0 such that

• E[
∫ T

0
|φ(Λt)| dt] <∞,

• Ξ̄(Y ) , lim supT→∞
1
T
E
[∫ T

0
Λt − φ(Λt) dt

]
is finite.

• limT→∞ P (YT = 0) = 0.

Then

DF (R) = Ξ̄(Y )−R.

Proof: The corollary follows from the definition DF (R) = lim supT→∞D
∗
F (R, T ) and from

the bounds on D∗F (R, T ) in the Theorem 4.

Remark 1: The above distortion-rate function is reminiscent of the logarithmic-loss distortion-

rate function for a DMS. Specifically, for a DMS Y on alphabet Y let the reconstruction be a

probability distribution function Q on Y . The logarithmic loss distortion is defined as dLL(y,Q) ,

− log(Q(y)) and the distortion-rate function is then given by D(R) = (H(Y )−R)+ [38].

If the reconstruction ŷT0 is assumed to be bounded then it can be used define a probability

measure on the space of point-processes (N T
0 ,F

N) via following Radon-Nikodym derivative.

dPŷT0
dP0

(yT0 ) = exp

(∫ T

0

log(ŷt) dyt − (ŷt − 1) dt

)
,
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where P0 is the measure under which Y T
0 is a Poisson process with unit rate. Then the intensity

of Y T
0 under this measure is ŷT0 [39, Chapter VI, Theorems T2-T4] and the functional-covering

distortion is related to the above Radon-Nikodym derivative as

d(ŷT0 , y
T
0 ) = − log

(
dPŷT0
dP0

(yT0 )

)
+ T.

♦

Applying the above corollary to a Poisson process with rate λ > 0, we get that DF (R) =

λ−λ log(λ)−R. As we will see in the next section, this distortion-rate function can be achieved

without feedforward.

V. CONSTRAINED FUNCTIONAL-COVERING OF POISSON PROCESSES

In this and the next section we focus on Poisson processes. Let ŶT0 denote the set of all

functions ŷT0 which are non-negative and left-continuous with right-limits. We assume that we

are given a set A ∈ R+ with at least one positive element. We will constrain the reconstruction

function Ŷ T
0 to take value in A, so that for all t ∈ [0, T ], Ŷt ∈ A.

Definition 10: A (T,R,D) code consists of an encoder f

f : N T
0 → {1, . . . , dexp(RT )e}

and a decoder g

g : {1, . . . , dexp(RT )e} → ŶT0

satisfying

Ŷt ∈ A, E
[∫ T

0

Ŷt dt

]
<∞

and the distortion constraint

1

T
E
[
d(Ŷ T

0 , Y
T

0 )
]
≤ D.

As before, we will call the encoder’s output M = f(Y T
0 ) the message and the decoder’s output

Ŷ T
0 = g(M) the reconstruction.

Definition 11: A rate-distortion vector (R,D) is said to be achievable if for any ε > 0, there

exists a sequence of (Tn, R + ε,D + ε) codes such that limn→∞ Tn =∞.
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Definition 12: The rate-distortion region RDPA is the intersection of all achievable rate-

distortion vectors (R,D).

The rate-distortion region RDP,FA with feedforward is defined as in Definitions 11 and 12.

Theorem 5: The rate-distortion region for the constrained functional-covering of a Poisson

process with rate λ > 0 is given by

RDPA = RDP,FA = RD,

where RD is the convex hull of the union of sets of rate-distortion vectors (R,D) such that

R ≥ λ
4∑

k=1

βk log

(
βk
αk

)

D ≥
4∑

k=1

αkΨA

(
λβk
αk

)
,

where

ΨA(u) , inf
v∈A

v − u log(v)

with the convention that 0Ψ(0/0) = 0, and [αk]
4
k=1 and [βk]

4
k=1 are probability vectors over

{1, 2, 3, 4} satisfying αk = 0⇒ βk = 0.

Proof:

Achievability: Let

R , λ
4∑

k=1

βk log

(
βk
αk

)

D ,
4∑

k=1

αkΨA

(
λβk
αk

)
.

We will show achievability using a (T,R + ε,D + ε) code without feedforward. We will use

discretization and results from the rate-distortion theory for discrete memoryless sources (DMS).

Define a binary-valued discrete-time process (Ȳj : j ∈ {1, . . . , n}) as follows. If there are one

or more arrivals in the interval ((j − 1)∆, j∆] of the process Y T
0 , then set Ȳj to 1, otherwise it

equals zero. Since Y T
0 is a Poisson process with rate λ, the components of (Ȳj : j ∈ {1, . . . , n})

are independent and identically distributed with P (Ȳ = 1) = 1 − exp(−λ∆). Consider the

following “test”-channel for k ∈ {1, 2, 3, 4},

P (Ū = k|Ȳ = 1) = βk,

P (Ū = k|Ȳ = 0) = αk.
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Define the discretized distortion function

d̄(ˆ̄y, ȳ) , ˆ̄y − log(ˆ̄y)

∆
1{ȳ = 1} ˆ̄y ∈ A, ȳ ∈ {0, 1}.

The reconstruction ˆ̄Y (k) is taken as a v ∈ A satisfying∣∣∣∣ΨA(λβkαk
)
−
(
v − λβk

αk
log(v)

)∣∣∣∣ ≤ ε

4
, (23)

where such a v exists due to the definition of ΨA. We recall that if αk = 0 then βk = 0, and

hence P (Ū = k) = 0 for such a k. The scaling of the mutual information I(Ū ; Ȳ ) and the

distortion function d̄( ˆ̄Y, Ȳ ) with respect to ∆ is given by the following lemma.

Lemma 13:

lim
∆→0

I(Ū ; Ȳ )

∆
= R

lim
∆→0

E[d̄( ˆ̄Y, Ȳ )] ≤ D +
ε

4

Proof: Please see the supplementary material.

Let

κ , max
k∈{1,2,3,4}

ˆ̄Y (k)>0

∣∣∣log
(

ˆ̄Y (k)
)∣∣∣ . (24)

Due to [53, Theorem 9.3.2, p. 455], for a given ∆ > 0, ε̄ > 0, and all sufficiently large n, there

exists an encoder f̄ and a decoder ḡ such that

f̄ : (Ȳj : j ∈ {1, . . . , n})→ {1, . . . , L}

ḡ : {1, . . . , L} → ( ˆ̄Yj : j ∈ {1, . . . , n})

satisfying
1

n
log(L) ≤ I(Ū ; Ȳ ) + ε̄,

E

[
1

n

n∑
j=1

d̄( ˆ̄Yj, Ȳj)

]
≤ E[d̄( ˆ̄Y, Ȳ )] + ε̄. (25)

Given the above setup, the encoder f upon observing Y T
0 obtains the binary valued discrete

time process (Ȳj : j ∈ {1, . . . , n}), and sends M = f̄(Ȳj : j ∈ {1, . . . , n}) to the decoder. The

decoder outputs the reconstruction Ŷ T
0 as

Ŷt ,
n∑
j=1

ˆ̄Yj1 {t ∈ ((j − 1)∆, j∆]} t ∈ [0, T ].
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Let ¯̄Yj denote the actual number of arrivals of Y T
0 in an interval ((j−1)∆, j∆]. Then d̄ is related

to the original distortion function via the above reconstruction as follows:

1

T
d(Ŷ T

0 ;Y T
0 ) =

1

T

∫ T

0

Ŷt dt−
1

T

∫ T

0

log(Ŷt) dYt

=
1

n

n∑
j=1

ˆ̄Yj −
1

T

n∑
j=1

log( ˆ̄Yj)
¯̄Yj

=
1

n

n∑
j=1

ˆ̄Yj −
1

n∆

n∑
j=1

log( ˆ̄Yj)Ȳj −
1

T

n∑
j=1

log( ˆ̄Yj)(
¯̄Yj − 1)1{ ¯̄Yj > 1}.

=
1

n

n∑
j=1

d̄( ˆ̄Yj, Ȳj)−
1

T

n∑
j=1

log( ˆ̄Yj)(
¯̄Yj − 1)1{ ¯̄Yj > 1}

(a)

≤ 1

n

n∑
j=1

d̄( ˆ̄Yj, Ȳj) +
κ

T

n∑
j=1

( ¯̄Yj − 1)1{ ¯̄Yj > 1}

≤ 1

n

n∑
j=1

d̄( ˆ̄Yj, Ȳj) +
κ

T

n∑
j=1

¯̄Yj1{ ¯̄Yj > 1},

where for (a), we have used the definition of κ in (24), since ¯̄Yj > 1 implies Ȳj = 1 which

implies ˆ̄Yj > 0 in order for d̄( ˆ̄Yj, 1) < ∞, which occurs a.s. since E[d̄( ˆ̄Y, Ȳ )] < ∞ so long as

∆ is sufficiently small.

Hence taking expectations, we get

E
[

1

T
d(Ŷ T

0 , Y
T

0 )

]
≤ E

[
1

n

n∑
j=1

d̄( ˆ̄Yj, Ȳj)

]
+ κE

[
1

T

n∑
j=1

¯̄Yj1{ ¯̄Yj > 1}

]
(a)

≤ E[d̄( ˆ̄Y, Ȳ )] + κE

[
1

T

n∑
j=1

¯̄Yj1{ ¯̄Yj > 1}

]
+ ε̄

(b)
= E[d̄( ˆ̄Y, Ȳ )] + κ(λ− λ exp(−λ∆)) + ε̄

(c)

≤ E[d̄( ˆ̄Y, Ȳ )] + κλ2∆ + ε̄, (26)

where, for (a), we have used (25),

for (b) we note that E[ ¯̄Yj1{ ¯̄Yj > 1}] = λ∆− λ∆ exp(−λ∆), and

for (c), we have used the inequality 1− u ≤ exp(−u) .

Moreover using (25),

1

T
log(L) =

1

n∆
log(L) ≤ I(Ū ; Ȳ )

∆
+

ε̄

∆
. (27)
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Now given the rate-distortion vector (R,D) and ε > 0, first choose ∆ < 1 sufficiently small

so that

I(Ū ; Ȳ )

∆
≤ R +

ε

4

E[d̄( ˆ̄Y, Ȳ )] ≤ D +
ε

2
,

κλ2∆ ≤ ε/2.

Then let ε̄ = ∆ε/4, and choose a sufficiently large n so that (25) is satisfied. From (26) and

(27) we conclude that a sequence of (Tn, R+ ε,D+ ε) code exists with Tn = n∆ and Tn →∞

as n→∞.

Converse: We will prove the converse when feedforward is present. For the given (T,R+

ε,D + ε) code with feedforward, let M denote the encoder’s output. Since I(M ;Y T
0 ) <∞, we

conclude from Theorem 1 that there exists a process ΓT0 such that ΓT0 is the (Ft = σ(M,Y t
0 ) :

t ∈ [0, T ]) intensity of Y T
0 and

I(M ;Y T
0 ) = E

[∫ T

0

φ(Γt) dt

]
− Tφ(λ). (28)

We also have

1

T
I(M ;Y T

0 ) =
1

T
H(M) ≤ 1

T
log (dexp((R + ε)T )e) ≤ R + ε+

1

T
.

This gives

R ≥ 1

T
E
[∫ T

0

φ(Γt) dt

]
− φ(λ)− ε− 1

T
.

Let Ŷ T
0 denote the decoder’s output. The distortion constraint D satisfies

D ≥ 1

T
E
[
d(Ŷ T

0 , Y
T

0 )
]
− ε

=
1

T
E
[∫ T

0

Ŷt dt− log(Ŷt) dYt

]
− ε

(a)
=

1

T
E
[∫ T

0

Ŷt − Γt log(Ŷt) dt

]
− ε

≥ 1

T
E
[∫ T

0

inf
v∈A

v − Γt log(v) dt

]
− ε

(b)
=

1

T
E
[∫ T

0

ΨA(Γt) dt

]
− ε, (29)



24

where, for (a) we have used Lemma 12, and

for (b), we have used the definition of ΨA. Defining S to be uniformly distributed on [0, T ], and

independent of all other random variables we have

R ≥ E [φ(ΓS)]− φ(λ)− ε− 1

T
(30)

D ≥ E [ΨA(ΓS)]− ε, (31)

Now we use Carathéodory’s theorem [54, Theorem 17.1]. There exist non-negative [ηk]
4
k=1

and [αk]
4
k=1, such that

∑4
k=1 αk = 1 and

E [φ(ΓS)] =
4∑

k=1

αkφ(ηk), (32)

E [ΨA(ΓS)] =
4∑

k=1

αkΨA(ηk), (33)

E [ΓS] =
4∑

k=1

αkηk = λ, (34)

where in the last line we have used the fact that since ΓT0 is the (σ(M,Y T
0 ) : t ∈ [0, T ])-intensity

of Y T
0 , E

[∫ T
0

Γt dt
]

= E[YT ] = Tλ. Now define

βk ,
αkηk
λ

.

We note that βk = 0 if αk = 0, and
∑4

k=1 βk = 1. Substituting the above definitions in (30)-(31),

we obtain

R ≥

(
4∑

k=1

αkηk log(ηk)− λ log(λ)

)
− ε− 1

T

= λ

(
4∑

k=1

βk log

(
βkλ

αk

)
1{αk > 0} − log(λ)

)
− ε− 1

T

= λ

4∑
k=1

βk log

(
βk
αk

)
− ε− 1

T
. (35)

Likewise,

D ≥
4∑

k=1

αkΨA

(
λβk
αk

)
− ε.

Since ε is arbitrary and T can be made arbitrarily large, we obtain the rate-distortion region

in the statement of the theorem.
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If we do not place any restrictions on A, i.e., if A is the set of all non-negative reals, then

we obtain the functional-covering distortion.

Corollary 2 (Functional Covering of Poisson Processes): The rate-distortion function for functional-

covering distortion is given by RFC(D) = (λ− λ log(λ)−D)+.

Proof: For the functional-covering distortion, A is the set of non-negative reals. Hence

ΨA(u) = inf
v≥0

v − u log(v) = u− u log(u).

For any achievable (R,D) we have

R ≥ λ

4∑
k=1

βk log

(
βk
αk

)
, (36)

and

D ≥
4∑

k=1

αkΨA

(
λβk
αk

)

=
4∑

k=1

αk

(
λβk
αk
− λβk

αk
log

(
λβk
αk

))

= λ− λ log(λ)− λ
4∑

k=1

βk log

(
βk
αk

)
.

Hence

R +D ≥ λ− λ log(λ),

and this is achieved by [αk]
4
k=1 and [βk]

4
k=1 that yield equality in (36).

If take A = {0, 1}, then we recover the covering distortion in [35, Theorem 1].

Corollary 3 (Covering Distortion [35]): The rate-distortion function for the covering distor-

tion is given by RC(D) = (−λ log(D))+.

Proof: For the covering distortion, A = {0, 1}. Hence

ΨA(u) = inf
v∈{0,1}

v − u log(v) = 1{u > 0}.
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Suppose (R,D) is in RD. Then

D ≥
4∑

k=1

αkΨA

(
λβk
αk

)

=
4∑

k=1

αk1{βk > 0}

=
∑
k∈B

αk,

where we have defined B = {k : βk > 0}. Similarly,

R ≥ λ

4∑
k=1

βk log

(
βk
αk

)
= λ

∑
k∈B

βk log

(
βk
αk

)
(a)

≥ λ

(∑
k∈B

βk

)
log

(∑
k∈B βk∑
k∈B αk

)
= λ log

(
1∑

k∈B αk

)
≥ (−λ log(D))+ ,

where, (a) is due to the log-sum inequality, which can be achieved by setting α1 = min(1, D),

α2 = 1− α1, β1 = 1, β2 = 0.

Remark 2: As in the general case in Theorem 4 (see Remark 1), the reconstruction ŷT0

(assuming it is bounded) can be used to define a probability measure on the input space (N T
0 ,F

N)

via
dPŷT0
dP0

(yT0 ) = exp

(∫ T

0

log(ŷt) dyt − (ŷt − 1) dt

)
,

where P0 is the measure under which Y T
0 is a Poisson process with unit rate. Moreover, in

absence of feedforward, ŷT0 is deterministic (it depends only on the encoder’s output). Thus the

input point-process Y T
0 is a non-homogeneous Poisson processes with rate ŷT0 under PŷT0 . As

in the general case, the functional-covering distortion is related to the above Radon-Nikodym

derivative via

d(ŷT0 , y
T
0 ) = − log

(
dPŷT0
dP0

(yT0 )

)
+ T

♦
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Fig. 1. Poisson CEO Problem.

VI. THE POISSON CEO PROBLEM

We now consider the distributed problem shown Figure 1. Our goal is to compress Y T
0 , which

is a Poisson process with rate λ > 0. Each of the two encoders observes a degraded version

of Y T
0 , denoted by Y

(i),T
0 , i ∈ {1, 2}. Y T

0 is first p(i)-thinned to obtain Ỹ
(i),T

0 , and then an

independent Poisson process N (i),T
0 with rate µ(i) is added to Ỹ (i),T

0 to obtain Y (i),T
0 .

Recall that ŶT0 is the set of all non-negative functions ŷT0 which are left-continuous with

right-limits, and

d(ŷT0 , y
T
0 ) =

∫ T

0

ŷt dt− log(ŷt) dyt.

Definition 13: A (T,R(1), R(2), D) code for the Poisson CEO problem consists of encoders

f (1) and f (2),

f (1) : N T
0 → {1, . . . , dexp(R(1)T )e}

f (2) : N T
0 → {1, . . . , dexp(R(2)T )e},



28

and a decoder g,

g : {1, . . . , dexp(R(1)T )e} × {1, . . . , dexp(R(2)T )e} → ŶT0 ,

satisfying

E
[∫ T

0

Ŷt dt

]
<∞,

and the distortion constraint

1

T
E
[
d(Ŷ T

0 , Y
T

0 )
]
≤ D.

Definition 14: A rate-distortion vector (R(1), R(2), D) is said to be achievable for the Poisson

CEO problem if for any ε > 0, there exists a sequence (Tn, R
(1) + ε, R(2) + ε,D + ε) codes

Tn →∞ .

Definition 15: The rate-distortion region for the Poisson CEO problem RDP is the intersec-

tion of all achievable rate-distortion vectors (R(1), R(2), D).

The rate-distortion region for the Poisson CEO problem with feedforward, denoted by RDPF ,

is defined analogously.

Theorem 6: The rate-distortion region for the Poisson CEO problem is given by

RDP = RDPF = RD,

where RD is the convex hull of union of sets of rate-distortion vectors (R(1), R(2), D) such that

R(1) ≥
(
(1− p(1))λ+ µ(1)

) 4∑
k=1

β
(1)
k log

(
β

(1)
k

α
(1)
k

)
,

R(2) ≥
(
(1− p(2))λ+ µ(2)

) 4∑
k=1

β
(2)
k log

(
β

(2)
k

α
(2)
k

)
,

D ≥ λ− φ(λ)− λ

(
4∑

k=1

γ
(1)
k log

(
γ

(1)
k

α
(1)
k

)
+

4∑
k=1

γ
(2)
k log

(
γ

(2)
k

α
(2)
k

))
for some probability vectors [α

(i)
k ]4k=1, [β

(i)
k ]4k=1, and [γ

(i)
k ]4k=1, where for k ∈ {1, 2, 3, 4} and

i ∈ {1, 2}

γ
(i)
k = p(i)α

(i)
k + (1− p(i))β

(i)
k

α
(i)
k = 0⇒ β

(i)
k = 0

 if p(i) < 1,

α
(i)
k = β

(i)
k = γ

(i)
k if p(i) = 1.
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Proof: Please see the supplementary material.

Remark 3: Note that there is no sum-rate constraint in the rate-distortion region of the above

theorem. This occurs due to the sparsity of points in a Poisson process. After discretizing a

Poisson process with rate λ, the expected number of ones in the resulting binary process is

roughly λT , and the remaining T/∆− λT bits are zeroes. When such a sparse binary process

is sent via two independent parallel channels as in (46)-(47), the resulting output processes are

almost independent. This implies that the encoders do not need to bin their messages in the

achievability argument.

Corollary 4 (Poisson CEO Problem without Thinning): If p(1) = p(2) = 0, then the rate-

distortion region in Theorem 6 takes a simple form

λ

λ+ µ(1)
R(1) +

λ

λ+ µ(2)
R(2) +D ≥ λ− φ(λ).

Corollary 5 (Remote Poisson Source): Consider a scenario where an encoder wishes to com-

press a Poisson process with rate λ > 0, but observes a degraded version of it, where the points

are first erased with independent probability 1−p and then an independent Poisson process with

rate µ is added to it. Then the rate-distortion region (R,D) is the convex hull of the union of

all rate-distortion vectors satisfying

R ≥ ((1− p)λ+ µ)
4∑

k=1

βk log

(
βk
αk

)
,

D ≥ λ− φ(λ)− λ ·
4∑

k=1

γk log

(
γk
αk

)
,

for some probability vectors [αk]
4
k=1, [βk]

4
k=1, and [γk]

4
k=1, where for k ∈ {1, 2, 3, 4}

γk = pαk + (1− p)βk, αk = 0⇒ βk = 0.
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[43] R. Sundaresan and S. Verdú, “Capacity of queues via point-process channels,” IEEE Trans. Info. Theory, vol. 52, no. 6,

pp. 2697–2709, June 2006.

[44] L. Wang, “A strong data processing inequality for thinning Poisson processes and some applications,” in IEEE Int. Symp.

Info. Theory, June 2017, pp. 3180–3184.

[45] A. Klenke, Probability Theory: A Comprehensive Course, 2nd ed. Springer London, 2013.

[46] A. Wyner, “A definition of conditional mutual information for arbitrary ensembles,” Information and Control, vol. 38,

no. 1, pp. 51 – 59, 1978.

https://arxiv.org/abs/2202.13684


32

[47] I. M. Gel’fand and A. M. Yaglom, “Computation of the amount of information about a stochastic function contained in

another such function,” Uspekhi Mat. Nauk, vol. 12, no. 1, pp. 3–52, 1957.

[48] R. M. Gray, Entropy and Information Theory. Springer-Verlag, 1990.

[49] O. Kallenberg, Foundations of Modern Probability, 2nd ed. Springer-Verlag, New York, 2002.

[50] R. S. Liptser and A. N. Shiryaev, Statistics of Random Processes II, 2nd ed. Springer-Verlag Berlin Heidelberg, 2001.

[51] Y. Polyanskiy and Y. Wu, “Strong data-processing inequalities for channels and Bayesian networks,” in Convexity and

Concentration. New York, NY: Springer New York, 2017, pp. 211–249.

[52] R. Durrett, Essentials of Stochastic Processes, ser. Springer Texts in Statistics. Springer International Publishing, 2016.

[53] R. G. Gallager, Information Theory and Reliable Communication. New York, NY, USA: John Wiley & Sons, Inc., 1968.

[54] R. Rockafellar, Convex Analysis. Princeton University Press, 1997.

[55] C. Dellacherie and P. A. Meyer, Probabilities and Potential B: Theory of Martingales, ser. North-Holland Mathematics

Studies. North-Holland, 1982, vol. 72.

[56] A. E. Gamal and Y.-H. Kim, Network Information Theory. Cambridge University Press, 2011.



33

APPENDIX

Proof of Lemma 3: The first part of the lemma is due to [39, T12 Theorem, Chapter VI, p.

187]. To prove the second part we note that E
PY T

0
[
∫ T

0
|φ(Γt)| dt] <∞ implies E

PY T
0

[
∫ T

0
Γt dt] <

∞, which in turn gives ∫ T

0

(1−
√

Γt))
2 ≤

∫ T

0

(Γt + 1) <∞,

P Y T
0 -a.s. Thus applying [50, Theorem 19.7, p. 343], we conclude that P Y T

0 � P
Y T
0

0 . Hence,

from the first part of the lemma

dP Y T
0

dP
Y T
0

0

= exp

(∫ T

0

log(Λt) dYt − Λt + 1 dt

)
,

where the uniqueness of intensity [39, T12 Theorem, Chapter II, p. 31] gives us

E
PY T

0

[∫ T

0

|Γt − Λt| dt
]

= 0, E
PY T

0

[∫ T

0

1{Γt 6= Λt} dYt
]

= 0.

Since

E
PY T

0

[∫ T

0

|φ(Γt)| dt
]
<∞,

we have

E
PY T

0

[∫ T

0

(log(Γt))
+ dYt

]
= E

PY T
0

[∫ T

0

(log(Γt))
+Γt dt

]
= E

PY T
0

[∫ T

0

(φ(Γt))
+ dt

]
<∞,

and

E
PY T

0

[∫ T

0

(log(Γt))
− dYt

]
= E

PY T
0

[∫ T

0

(log(Γt))
−Γt dt

]
= E

PY T
0

[∫ T

0

(φ(Γt))
− dt

]
<∞.

Hence

E
PY T

0

[∫ T

0

log(Γt) dYt

]
= E

PY T
0

[∫ T

0

φ(Γt) dt

]
<∞.

Finally,

E
PY T

0

[
log

(
dP Y T

0

dP
Y T
0

0

)]
= E

PY T
0

[∫ T

0

log(Λt) dYt + Λt − 1 dt

]
(a)
=E

PY T
0

[∫ T

0

log(Γt) dYt + Γt − 1 dt

]
= E

PY T
0

[∫ T

0

log(Γt) dYt

]
− E

[∫ T

0

Γt − 1 dt

]
= E

PY T
0

[∫ T

0

φ(Γt) dt

]
− E

[∫ T

0

Γt − 1 dt

]
= E

PY T
0

[∫ T

0

φ(Γt)− Γt + 1 dt

]
.



34

Here, for (a) we have used the uniqueness of the intensity and in the remaining equalities, we

have used the finiteness of the expectations
[∫ T

0
φ(Γt) dt

]
, E
[∫ T

0
Γt dt

]
.

Proof of Lemma 4: Recall that LT0 can be written as

Lt = exp

(∫ t

0

log(Γs) dYs + (1− Γs) ds

)
, t ∈ [0, T ].

We note that for t ∈ [0, T ] Lt satisfies

Lt =

Lt− if Yt − Yt− = 0,

ΓtLt− if Yt − Yt− = 1.
(37)

Let CT
0 be a non-negative (Gt : t ∈ [0, T ])-predictable process. Then

E
[∫ T

0

Ct dYt

]
(a)
= E

P̃M,Y T
0

[
LT

∫ T

0

Ct dYt

]
(b)
= E

P̃M,Y T
0

[∫ T

0

LtCt dYt

]
(c)
= E

P̃M,Y T
0

[∫ T

0

ΓtLt−Ct dYt

]
(d)
= E

P̃M,Y T
0

[∫ T

0

ΓtLt−Ct dt

]
(e)
= E

P̃M,Y T
0

[∫ T

0

ΓtLtCt dt

]
(f)
= E

P̃M,Y T
0

[
LT

∫ T

0

ΓtCt dt

]
(g)
= E

[∫ T

0

ΓtCt dt

]
,

where, (a) follows since LT is the Radon-Nikodym derivative dPM,Y T
0

dP̃M,Y T
0

,

(b) follows due to [39, T19 Theorem, Appendix A2, p. 302],

(c) follows due to (37),

(d) follows since the (P̃M,Y T
0 ,Gt : t ∈ [0, T ])-intensity of Y T

0 is 1, and Lt− being a left-continuous

adapted process is (Gt : t ∈ [0, T ])-predictable,

(e) follows since the Lebesgue measure of the set {t : t ∈ [0, T ], Lt− 6= Lt} is zero due to (37),

(f) again follows again due to [39, T19 Theorem, Appendix A2, p. 302], and

(g) again follows since LT is the Radon-Nikodym derivative dPM,Y T
0

dP̃M,Y T
0

.
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Proof of Lemma 5: We will first show that

E
[∫ T

0

(log(Γt))
− dYt

]
= E

[∫ T

0

(log(Γt))
− Γt dt

]
<∞.

Define Γ1+
t , max(Γt, 1) and Γ1−

t , min(Γt, 1). We note that Γt ≤ Γ1+
t ≤ Γt + 1 and Γt =

Γ1+
t Γ1−

t . Define the process µT0 as

µt ,
Γ1+
t

Γt
1{Γt > 0}, t ∈ [0, T ].

Then µT0 is a non-negative (Gt : t ∈ [0, T ])-predictable process and∫ T

0

µtΓt dt =

∫ T

0

Γ1+
t 1{Γt > 0} dt ≤

∫ T

0

(Γt + 1) dt <∞

P -a.s. since E[
∫ T

0
Γt dt] <∞. Hence the process L̂T0 defined as

L̂t , exp

(∫ T

0

log(µt) dYt + (1− µt)Γt dt
)
, t ∈ [0, T ]

is a (P,Gt : t ∈ [0, T ]) non-negative super-martingale [39, T2 Theorem, Chapter VI, p. 165].

Hence the following chain of inequalities hold

E
[
log(L̂T )

] (a)

≤ log
(
E[L̂T ]

)
(b)

≤ log
(
E[L̂0]

)
= 0. (38)

Here, for (a) we have used the fact that since LT0 is a super-martingale, LT is integrable, and

then Jensen’s inequality and

for (b), we have used the fact that L̂T0 is a super-martingale, hence E[L̂T ] ≤ E[L̂0].

Let τk denote the kth arrival instant of the process Y T
0 , i.e.,

τk = inf{t ∈ [0, T ] : Yt = k},

where the infimum of the null set is taken as ∞. Then if τk ≤ T , Γτk > 0 P -a.s. [39, T12

Theorem, Chapter II, p. 31]. Hence for τk ≤ T ,

log(µτk) = log(Γ1+
τk

)− log(Γτk) = − log(Γ1−
τk

) =
(
log(Γτk)

)−
P − a.s.,

Thus we can write

log(L̂T ) =

∫ T

0

(log(Γt))
− dYt +

∫ T

0

(Γt − Γ1+
t )1{Γt > 0} dt.
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Using (38) we obtain

E
[∫ T

0

(log(Γt))
− dYt +

∫ T

0

(Γt − Γ1+
t )1{Γt > 0} dt

]
= E[log(L̂T )] ≤ 0.

We note that
∫ T

0
(log(Γt))

− dYt is a non-negative random variable, and∣∣∣∣E [∫ T

0

(Γt − Γ1+
t )1{Γt > 0} dt

]∣∣∣∣ ≤ E
[∫ T

0

(Γt + Γ1+
t ) dt

]
≤ E

[∫ T

0

(2Γt + 1) dt

]
<∞.

Hence we can split the expectation to get

E
[∫ T

0

(log(Γt))
− dYt

]
+ E

[∫ T

0

(Γt − Γ1+
t )1{Γt > 0} dt

]
≤ 0,

which gives

E
[∫ T

0

(log(Γt))
− dYt

]
≤ −E

[∫ T

0

(Γt − Γ1+
t )1{Γt > 0} dt

]
<∞. (39)

Hence

E
[∫ T

0

log(Γt) dYt

]
= E

[∫ T

0

(log(Γt))
+ dYt

]
− E

[∫ T

0

(log(Γt))
− dYt

]
= E

[∫ T

0

(log(Γt))
+Γt dt

]
− E

[∫ T

0

(log(Γt))
− Γt dt

]
= E

[∫ T

0

φ(Γt) dt

]
. (40)

Proof of Lemma 7: Suppose that ΓT0 is the (Ft : t ∈ [0, T ])-intensity of Y T
0 . Then apply-

ing [39, T8 Theorem, Chapter II, p. 27] with Xs = 1 proves MT
0 is a (Ft : t ∈ [0, T ])-martingale.

Now suppose that MT
0 is a (Ft : t ∈ [0, T ])-martingale. Consider a simple (Ft : t ∈ [0, T ])-

predictable process CT
0 of the form

Ct = 1{E}1{u < t ≤ v ≤ T} E ∈ Fu.

Then

E
[∫ T

0

Cs dYs

]
= E [1{E}(Yv − Yu)]

= E [1{E}E[(Yv − Yu)|Fu]]

(a)
= E

[
1{E}E

[∫ v

u

Γs ds

∣∣∣∣Fu]]
= E

[∫ T

0

CsΓs ds

]
, (41)
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where for (a) we have used the martingale property of MT
0 . Thus by the monotone class theorem,

for all bounded (Ft : t ∈ [0, T ])-predictable processes CT
0 , (41) holds (see [39, App. A1,

Theorem T5, p. 264]). Then by applying the monotone convergence theorem, we can show that

(41) holds for all non-negative (Ft : t ∈ [0, T ])-predictable processes as well, so that ΓT0 is the

(Ft : t ∈ [0, T ])-intensity of Y T
0 .

Proof of Lemma 8: There exists a (Gt : t ∈ [0, T ])-predictable process ΠT
0 such that P -a.s.

Πt = E[Λt|Gt−], t ∈ [0, T ] [55, Chapter 6, Theorem 43, p. 103]. We will show that ΠT
0 is the

(Gt : t ∈ [0, T ])-intensity of NT
0 . Let DT

0 be a non-negative (Gt : t ∈ [0, T ])-predictable process.

As Gt ⊆ Ft, it is also (Ft : t ∈ [0, T ])-predictable. Thus

E
[∫ T

0

Ds dNs

]
= E

[∫ T

0

DsΛs ds

]
. (42)

Hence

E
[∫ T

0

DsΠs ds

]
= E

[∫ T

0

DsE[Λs|Gs−] ds

]
(a)
= E

[∫ T

0

E[DsΛs|Gs−] ds

]
= E

[∫ T

0

DsΛs ds

]
(b)
= E

[∫ T

0

Ds dNs

]
.

Here, (a) is due to the fact that Ds is Gs− measurable [39, Exercise E10, Chapter I, p. 9], and

(b) is due to (42).

Hence the (Gt : t ∈ [0, T ])-intensity of NT
0 is ΠT

0 .

Proof of Lemma 9: We first note that since Y T
0 and NT

0 are independent, trajectories of

ZT
0 are a.s. in N T

0 . The (F̃t , σ(M,Y t
0 , N

t
0) : t ∈ [0, T ])-intensities of Y T

0 and NT
0 are ΓT0 and

ΠT
0 respectively [39, E5 Exercise, Chapter II, p. 28]. Then for a non-negative (F̃t : t ∈ [0, T ])-

predictable process CT
0 :

E
[∫ T

0

Cs dZs

]
= E

[∫ T

0

Cs dYs

]
+ E

[∫ T

0

Cs dNs

]
= E

[∫ T

0

CsΓs ds

]
+ E

[∫ T

0

CsΠs ds

]
= E

[∫ T

0

Cs(Γs + Πs) ds

]
.
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Hence the (F̃t : t ∈ [0, T ])-intensity of ZT
0 is (Γt + Πt : t ∈ [0, T ]). Since Ft ⊆ F̃t the statement

of the lemma follows from an application of Lemma 8.

Proof of Lemma 10: Let Ht , σ(M,Y t
0 , Z

t
0). We note that the (Ht : t ∈ [0, T ])-intensity

of Y T
0 is ΓT0 . Now we will compute the (Ht : t ∈ [0, T ])-intensity of ZT

0 . Let (χi : i ∈ {1, . . . })

denote the sequence of independent and identically distributed Bernoulli random variables which

indicate if a particular point in point process Y T
0 is erased or not. In particular, if χj = 1, then

the jth point in Y T
0 is retained, so that E[χj] = 1− p. Then for 0 ≤ u < v ≤ T

Zv − Zu =
Yv∑

k=Yu+1

χk =
∞∑
k=1

χk1{Yu < k ≤ Yv}.

Using the monotone convergence theorem for the conditional expectation,

E [(Zv − Zu)|Hu] =
∞∑
k=1

E[χk1{Yu < k ≤ Yv}|Hu]

(a)
=

∞∑
k=1

E[χk|Hu]E[1{Yu < k ≤ Yv}|Hu]

(b)
= (1− p)E[(Yv − Yu)|Hu]

(c)
= (1− p)E

[∫ v

u

Γs ds

∣∣∣∣Hu

]
,

where, for (a) we have used the fact that given Hu, χk is independent of Y T
0 ,

for (b), we use note that E[χk|Hu] = χk1{k ≤ Yu}+ (1− p)1{k > Yu}, and

for (c), we have used the martingale property of MT
0 .

Then

M̃t , Zt −
∫ t

0

(1− p)Γs ds t ∈ [0, T ]

is a (Ht : t ∈ [0, T ])-martingale. Hence from Lemma 7, the (Ht : t ∈ [0, T ])-intensity of ZT
0 is

((1− p)Γt : t ∈ [0, T ]). An application of Lemma 8 the proves the statement of the lemma.

Proof of Lemma 12: We will require the following inequality

u log(v) ≤ φ(u)− u+ v, 0 ≤ u, v <∞. (43)

The inequality can be verified to be true if either or both u, v are zero. If u, v > 0, the inequality

follows from log(u/v) ≥ (1− v/u).
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Defining Ŷ 1+
t , max(1, Ŷt), we note that Ŷ 1+

t ≤ Ŷt + 1. Consider

E
[∫ T

0

(log(Ŷt))
+ dYt

]
= E

[∫ T

0

log(Ŷ 1+
t ) dYt

]
(a)
= E

[∫ T

0

log(Ŷ 1+
t )Γt dt

]
(b)

≤ E
[∫ T

0

φ(Γt)− Γt + Ŷ 1+
t dt

]
(c)
= E

[∫ T

0

φ(Γt) dt

]
− E

[∫ T

0

Γt dt

]
+ E

[∫ T

0

Ŷ 1+
t dt

]
<∞, (44)

where, for (a), we have used the facts that (Ŷ 1+
t : t ∈ [0, T ]) is (Ft : t ∈ [0, T ])-predictable,

log(Ŷ 1+
t ) is non-negative, and ΓT0 is the (Ft : t ∈ [0, T ])-intensity of Y T

0 ,

for (b), we note that Ŷ 1+
t and Γt are P -a.s finite, and then use the inequality in (43), and

for (c), we have used the facts that E
[∫ T

0
φ(Γt) dt

]
< ∞ (via Theorem 1), E

[∫ T
0

Γt dt
]
< ∞,

and E
[∫ T

0
Ŷ 1+
t dt

]
≤ E

[∫ T
0
Ŷt + 1 dt

]
<∞.

Hence we can write

E
[∫ T

0

log(Ŷt) dYt

]
= E

[∫ T

0

(log(Ŷt))
+ dYt

]
− E

[∫ T

0

(log(Ŷt))
− dYt

]
= E

[∫ T

0

(log(Ŷt))
+Γt dt

]
− E

[∫ T

0

(log(Ŷt))
−Γt dt

]
= E

[∫ T

0

log(Ŷt)Γt dt

]
. (45)

Proof of Lemma 13: The first part of the lemma follows directly from L’Hôpital’s rule.

For the second part

lim
∆→0

E[d̄( ˆ̄Y, Ȳ )] = lim
∆→0

4∑
k=1

ˆ̄Y (k) exp(−λ∆)αk +

(
ˆ̄Y (k)− log( ˆ̄Y (k))

∆

)
(1− exp(−λ∆)βk

=
4∑

k=1

ˆ̄Y (k)αk − λ log( ˆ̄Y (k))βk

=
4∑

k=1

αk

(
ˆ̄Y (k)− λβk

αk
log( ˆ̄Y (k))

)
1{αk > 0}

(a)

≤
4∑

k=1

αk

(
ΨA

(
λβk
αk

)
+
ε

4

)
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= D +
ε

4
,

where for (a), we have used the definition in (23).

Proof of Lemma 14: The first limit can be evaluated using L’Hôpital’s rule. To compute

the second limit, consider

lim
∆→0

P (Ū (i) = k|Ȳ = 1) = lim
∆→0

1∑
l=0

P (Ū (i) = k, Ȳ (i) = l|Ȳ = 1)

= lim
∆→0

1∑
l=0

P (Ȳ (i) = l|Ȳ = 1)(Ū (i) = k|Ȳ (i) = l)

= p(i)α
(i)
k + (1− p(i))β

(i)
k

= γ
(i)
k .

Then we have

lim
∆→0

P (Ū
(1)
1 = k1, Ū

(2)
1 = k2|Ȳ = 1)) = lim

∆→0
P (Ū

(1)
1 = k1|Ȳ = 1)P (Ū

(2)
1 = k2|Ȳ = 1)

= γ
(1)
k1
γ

(2)
k2
.

Recalling that α(i)
k = 0 implies β(i)

k = γ
(i)
k = 0, we have

lim
∆→0

E[log( ˆ̄Y )1{Ȳ = 1}]
∆

= lim
∆→0

P (Ȳ = 1)

∆
lim
∆→0

E[log( ˆ̄Y )|Ȳ = 1]

= λ
∑
k1,k2

lim
∆→0

P (Ū = k1, Ū2 = k2|Ȳ = 1)) log
(

ˆ̄Y (k1, k2)
)

= λ
∑
k1,k2

γ
(1)
k1
γ

(2)
k2

log

(
λ
γ

(1)
k1
γ

(2)
k2

α
(1)
k1
α

(2)
k2

)
1{γ(1)

k1
γ

(2)
k2

> 0}

= λ

4∑
k1=1

γ
(1)
k1

log

(
γ

(1)
k1

α
(1)
k1

)
+ λ

4∑
k2=1

γ
(1)
k2

log

(
γ

(2)
k2

α
(2)
k2

)
+ φ(λ).

Now to compute lim∆→0 E[ ˆ̄Y ], we first calculate

lim
∆→0

P (Ū
(1)
1 = k1, Ū

(2)
1 = k2) = lim

∆→0
P (Ū

(1)
1 = k1, Ū

(2)
1 = k2|Ȳ = 0)P (Ȳ = 0)

+ lim
∆→0

P (Ū
(1)
1 = k1, Ū

(2)
1 = k2|Ȳ = 1)P (Ȳ = 1)

= lim
∆→0

P (Ū
(1)
1 = k1, Ū

(2)
1 = k2|Ȳ = 0)
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= lim
∆→0

P (Ū
(1)
1 = k1|Ȳ = 0)P (Ū

(2)
1 = k2|Ȳ = 0)

= α
(1)
k1
α

(2)
k2
.

This gives

lim
∆→0

E[ ˆ̄Y ] =
∑
k1,k2

lim
∆→0

P (Ū = k1, Ū2 = k2) ˆ̄Y (k1, k2)

= λ
∑
k1,k2

α
(1)
k1
α

(2)
k2

γ
(1)
k1
γ

(2)
k2

α
(1)
k1
α

(2)
k2

1{α(1)
k1
α

(2)
k2
> 0}

= λ.

Thus

lim
∆→0

E[d̄( ˆ̄Y, Ȳ )] = λ− φ(λ)− λ

(
4∑

k1=1

γ
(1)
k1

log

(
γ

(1)
k1

α
(1)
k1

)
+

4∑
k2=1

γ
(2)
k2

log

(
γ

(2)
k2

α
(2)
k2

))

= D.

Proof of Theorem 6:

Achievability:

Let

R(1) ,
(
(1− p(1))λ+ µ(1)

) 4∑
k=1

β
(1)
k log

(
β

(1)
k

α
(1)
k

)

R(2) ,
(
(1− p(2))λ+ µ(2)

) 4∑
k=1

β
(2)
k log

(
β

(2)
k

α
(2)
k

)

D , λ− φ(λ)− λ ·

(
4∑

k=1

γ
(1)
k log

(
γ

(1)
k

α
(1)
k

)
+ γ

(2)
k log

(
γ

(2)
k

α
(2)
k

))
.

We will show achievability using a (T,R(1) + ε, R(2) + ε,D + ε) code without feedforward. We

will use discretization and results from the rate-distortion theory for discrete memoryless sources

(DMS).

First consider the case when for each i ∈ {1, 2}, at least one of the following conditions is

satisfied

C.1 β
(i)
k > 0 for all k,
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C.2 p(i) > 0.

Fix ∆ > 0, and let T , n∆ for an integer n. For each i ∈ {1, 2}, define a binary valued discrete

time process (Ȳ
(i)
j : j ∈ {1, . . . , n}) as follows. If there are one or more arrivals in the interval

((j−1)∆, j∆] of the process Y (i),T
0 , then set Ȳ (i)

j to 1, otherwise set it equal to zero. Since Y (i),T
0

is a Poisson process with rate λ(i) , (1−p(i))λ+µ(i), the components of (Ȳ
(i)
j : j ∈ {1, . . . , n})

are independent and identically distributed with P (Ȳ (i) = 1) = 1 − exp(−λ(i)∆). Similarly, if

(Ȳj : j ∈ {1, . . . , n}) denotes the discretized process Y T
0 , then we have

P
(
Ȳ

(i)
j : j ∈ {1, . . . , n}

∣∣∣Ȳj : j ∈ {1, . . . , n}
)

=
n∏
j=1

P (Ȳ
(i)
j |Ȳj)

due to the memoryless property of Poisson processes and independent thinning. Consider the

following “test”-channel for k ∈ {1, 2, 3, 4},

P (Ū (i) = k|Ȳ (i) = 1) = β
(i)
k , (46)

P (Ū (i) = k|Ȳ (i) = 0) = α
(i)
k . (47)

Define the discretized distortion function

d̄(ˆ̄y, ȳ) , ˆ̄y − log(ˆ̄y)

∆
1{ȳ = 1} ˆ̄y ≥ 0, ȳ ∈ {0, 1}. (48)

The reconstruction ˆ̄Y is taken as

ˆ̄Y (Ū (1), Ū (2)) = λ ˆ̄Y (1)(Ū (1)) ˆ̄Y (2)(Ū (2)),

where

ˆ̄Y (i)(k) =


γ
(i)
k

α
(i)
k

ifα(i)
k > 0,

1 otherwise.

We note that since γ
(i)
k = p(i)α

(i)
k + (1 − p(i))β

(i)
k , and at least one of C.1-C.2 is satisfied,

ˆ̄Y (i)(k) > 0, and hence ˆ̄Y > 0. Thus the distortion function d̄( ˆ̄Y, Ȳ ) in (48) is bounded. Let

κ , max
k1,k2

∣∣∣log
(

ˆ̄Y (k1, k2)
)∣∣∣ . (49)

Due to the Berger-Tung inner bound [56, Theorem 12.1, p. 295], for a given ∆ > 0, ε̄ > 0,

and all sufficiently large n, there exists encoders f̄ (1) and f̄ (2), and a decoder ḡ such that for



43

i ∈ {1, 2}

f̄ (i) : (Ȳ
(i)
j : j ∈ {1, . . . , n})→ {1, . . . , L(i)}

ḡ : {1, . . . , L(1)} × {1, . . . , L(2)} → ( ˆ̄Yj : j ∈ {1, . . . , n}),

satisfying

1

n
log(L(i)) ≤ I(Ū (i); Ȳ (i)) + ε̄, (50)

E

[
1

n

n∑
j=1

d̄( ˆ̄Yj, Ȳj)

]
≤ E[d̄( ˆ̄Y, Ȳ )] + ε̄. (51)

It is noteworthy that the Berger-Tung inner bound has a conditioning term in the mutual-

information expression, which in general is a stronger bound than that presented here. However,

in our setting we can drop this conditioning as explained in Remark 3 in the main paper.

Given the above setup, each encoder f (i) upon observing Y
(i),T

0 obtains the binary valued

discrete-time process (Ȳ
(i)
j : j ∈ {1, . . . , n}), and sends M (i) = f̄ (i)(Ȳ

(i)
j : j ∈ {1, . . . , n}) to

the decoder. The decoder outputs the reconstruction Ŷ T
0 as

Ŷt ,
n∑
j=1

ˆ̄Yj1 {t ∈ ((j − 1)∆, j∆]} t ∈ [0, T ].

Let ¯̄Yj denote the actual number of arrivals of Y T
0 in an interval ((j−1)∆, j∆]. Then d̄ is related

to the original distortion function via the above reconstruction as follows:

1

T
d(Ŷ T

0 ;Y T
0 ) =

1

T

∫ T

0

Ŷt dt−
1

T

∫ T

0

log(Ŷt) dYt

=
1

n

n∑
j=1

ˆ̄Yj −
1

T

n∑
j=1

log( ˆ̄Yj)
¯̄Yj

=
1

n

n∑
j=1

ˆ̄Yj −
1

n∆

n∑
j=1

log( ˆ̄Yj)Ȳj −
1

T

n∑
j=1

log( ˆ̄Yj)(
¯̄Yj − 1)1{ ¯̄Yj > 1}.

=
1

n

n∑
j=1

d̄( ˆ̄Yj, Ȳj)−
1

T

n∑
j=1

log( ˆ̄Yj)(
¯̄Yj − 1)1{ ¯̄Yj > 1}

(a)

≤ 1

n

n∑
j=1

d̄( ˆ̄Yj, Ȳj) +
κ

T

n∑
j=1

( ¯̄Yj − 1)1{ ¯̄Yj > 1}

≤ 1

n

n∑
j=1

d̄( ˆ̄Yj, Ȳj) +
κ

T

n∑
j=1

¯̄Yj1{ ¯̄Yj > 1},
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where for (a), we have used the definition of κ in (49).

Hence taking the expectation, we get

E
[

1

T
d(Ŷ T

0 ;Y T
0 )

]
≤ E

[
1

n

n∑
j=1

d̄( ˆ̄Yj, Ȳj)

]
+ κE

[
1

T

n∑
j=1

¯̄Yj1{ ¯̄Yj > 1}

]
(a)

≤ E[d̄( ˆ̄Y, Ȳ )] + κE

[
1

T

n∑
j=1

¯̄Yj1{ ¯̄Yj > 1}

]
+ ε̄

(b)
= E[d̄( ˆ̄Y, Ȳ )] + κ(λ− λ exp(−λ∆)) + ε̄

(c)

≤ E[d̄( ˆ̄Y, Ȳ )] + κλ2∆ + ε̄, (52)

where, for (a), we have used (51),

for (b) we note that E[ ¯̄Yj1{ ¯̄Yj > 1}] = λ∆− λ∆ exp(−λ∆), and

for (c), we have used the inequality 1− u ≤ exp(−u).

Moreover using (50), for i ∈ {1, 2}

1

T
log(L(i)) =

1

n∆
log(L(i)) ≤ I(Ū (i); Ȳ (i))

∆
+

ε̄

∆
. (53)

The scaling of the mutual information I(Ū (i); Ȳ (i)) and the distortion function d̄( ˆ̄Y, Ȳ ) with

respect to ∆ is given by the following lemma.

Lemma 14: For i ∈ {1, 2}

lim
∆→0

I(Ū (i); Ȳ (i))

∆
= R(i),

lim
∆→0

E[d̄( ˆ̄Y, Ȳ )] = D.

Proof: Please see the supplementary material.

Now given the rate-distortion vector (R(1), R(2), D) and ε > 0, first choose ∆ sufficiently

small so that

I(Ū (i); Ȳ (i))

∆
≤ R(i) +

ε

4
,

E[d̄( ˆ̄Y, Ȳ )] ≤ D +
ε

4
,

κλ2∆ ≤ ε/4.



45

Then let ε̄ = ∆ε/4, and choose a sufficiently large n so that (50) and (51) are satisfied. From (52)

and (53) we conclude that a sequence of (Tn, R
(1) + ε, R(2) + ε,D+ ε) code exists with Tn = n∆

when at least one of the conditions C.1 or C.2 is satisfied.

Now consider the case when p(i) = 0 some i ∈ {1, 2}, and for that i, β(i)
k = 0 for some k’s.

Say p(1) = 0 and p(2) > 0. This gives us γ(1)
k = β

(1)
k for k ∈ {1, 2, 3, 4}. Then we need to show

that the rate-distortion vector

R(1) =
(
λ+ µ(1)

) 4∑
k=1

β
(1)
k log

(
β

(1)
k

α
(1)
k

)

R(2) =
(
(1− p(2))λ+ µ(2)

) 4∑
k=1

β
(2)
k log

(
β

(2)
k

α
(2)
k

)

D = λ− φ(λ)− λ

(
4∑

k=1

β
(1)
k log

(
β

(1)
k

α
(1)
k

)
+

4∑
k=1

γ
(2)
k log

(
γ

(2)
k

α
(2)
k

))
(54)

is achievable. Let [β̂
(1)
k ]4k=1 = [1/4, 1/4, 1/4] and [α̂

(1)
k ]4k=1 = [1/4, 1/4, 1/4 − ν, 1/4 + ν] for

some ν ∈ [0, 1/3). Then the term
4∑

k=1

β̂
(1)
k log

(
β̂

(1)
k

α̂
(1)
k

)
is continuous in ν and goes from zero to infinity as ν is increased from zero to 1/4, hence there

exists some ν̂ ∈ [0, 1/4) such that with [α̂
(1)
k ]4k=1 = [1/4, 1/4, 1/4− ν̂, 1/4 + ν̂],

4∑
k=1

β̂
(1)
k log

(
β̂

(1)
k

α̂
(1)
k

)
=

4∑
k=1

β
(1)
k log

(
β

(1)
k

α
(1)
k

)
. (55)

We note that this [β̂
(1)
k ]4k=1 satisfies condition C.1. Hence the rate-distortion vector in (54) is

achievable by using [α̂
(1)
k ]4k=1 that satisfies (55). The case when p(2) = 0 or both p(1) = p(2) = 0

can be handled similarly.

Converse:

We will prove the converse when feedforward is present. For the given (T,R(1) + ε, R(2) +

ε,D+ ε) code with feedforward, let M (1) and M (2) denote the first and second encoder’s output

respectively. We essentially repeat the steps in the converse proof of Theorem 4 to show that

1

T
I(M (1),M (2);Y T

0 ) +D ≥ λ− φ(λ)− ε.
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Since I(M (1),M (2);Y T
0 ) <∞, we conclude from Theorem 1 that there exists a process ΓT0 such

that ΓT0 is the (Ft = σ(M (1),M (2), Y t
0 ) : t ∈ [0, T ]) intensity of Y T

0 and

I(M (1),M (2);Y T
0 ) = E

[∫ T

0

φ(Γt) dt

]
− Tφ(λ), (56)

Let Ŷ T
0 denote the decoder’s output. The distortion constraint D satisfies

D ≥ 1

T
E
[
d(Ŷ T

0 , Y
T

0 )
]
− ε =

1

T
E
[∫ T

0

Ŷt dt− log(Ŷt) dYt

]
− ε

=
1

T
E
[∫ T

0

Ŷt − log(Ŷt)Γt dt

]
− ε, (57)

where for the last equality we have used Lemma 12. Once again using the inequality u log(v) ≤

φ(u)− u+ v, 0 ≤ u, v <∞, and noting that the individual terms have finite expectations,

E
[∫ T

0

log(Ŷt)Γt dt

]
≤ E

[∫ T

0

φ(Γt)− Γt + Ŷt dt

]
= E

[∫ T

0

φ(Γt) dt

]
− E

[∫ T

0

Γt dt

]
+ E

[∫ T

0

Ŷt dt

]
. (58)

Combining these inequalities, we obtain

1

T
I(M (1),M (2);Y T

0 ) +D ≥ 1

T
E
[∫ T

0

φ(Γt) dt

]
− φ(λ)

+
1

T
E
[∫ T

0

Ŷt dt

]
− 1

T
E
[∫ T

0

log(Ŷt) dYt

]
− ε

(a)

≥ 1

T
E
[∫ T

0

Γt dt

]
− φ(λ)− ε

(b)
= λ− φ(λ)− ε, (59)

where, for (a) we have used (57) and (58) and

for (b) we use the fact that E
[∫ T

0
Γt dt

]
= E

[∫ T
0
dYt

]
= λT .

We can upper bound the term I(M (1),M (2);Y T
0 ) as

I(M (1),M (2);Y T
0 )

(a)
= H(M (1),M (2))− E

[
H(M (1),M (2)|Y T

0 )
]

(b)
= H(M (1),M (2))− E

[
H(M (1)|Y T

0 )
]
− E

[
H(M (2)|Y T

0 )
]

≤ H(M (1)) +H(M (2))− E
[
H(M (1)|Y T

0 )
]
− E

[
H(M (2)|Y T

0 )
]

= I(M (1);Y T
0 ) + I(M (2);Y T

0 ), (60)
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Fig. 2. Thinning and superposition operations defined in the proof for the first encoder. Note that the joint distribution of

(Y
(1),T
0 , Ỹ

(1),T
0 , Y T

0 ) is same as that of (Y (1),T
0 , Z̃

(1),T
0 , ZT

0 ).

where, for (a) we have used Lemma 2 and

for (b), we used the Markov chain M (1) � Y T
0 �M (2).

Combining (59) and (60) we get

D ≥ λ− φ(λ)− 1

T
I(M (1);Y T

0 )− 1

T
I(M (2);Y T

0 )− ε. (61)

For i ∈ {1, 2}, using Lemma 2

1

T
I(M (i);Y

(i),T
0 ) =

1

T
H(M (i)) ≤ 1

T
log
(
dexp((R(i) + ε)T )e

)
≤ R(i) + ε+

1

T
. (62)

We will first consider the case when p(i) < 1 for i ∈ {1, 2}. We shall proceed by defining

certain auxiliary processes (see Figure 2). Let Z̃(i),T
0 be obtained from p̃(i)-thinning of Y (i),T

0 ,

where

p̃(i) =
µ(i)

((1− p(i))λ+ µ(i))
.

Then using Lemma 11 we can write

Y
(i)
t = Z̃

(i)
t + Ẑ

(i)
t t ∈ [0, T ],
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where Z̃
(i),T
0 and Ẑ

(i),T
0 are independent Poisson processes with rates (1 − p(i))λ and µ(i)

respectively. Whereas, by definition

Y
(i)
t = Ỹ

(i)
t +N

(i)
t t ∈ [0, T ],

where Ỹ (i)
t and N (i)

t are independent Poisson processes with rates (1−p(i))λ and µ(i) respectively.

Hence we conclude that the joint distribution of (Y
(i),T

0 , Z̃
(i),T
0 ) is identical to the joint distribution

of (Y
(i),T

0 , Ỹ
(i),T

0 ). Let Z(i),T
0 be obtained by adding an independent Poisson process N̂ (i),T

0 with

rate p(i)λ to Z̃(i),T
0 ,

Z
(i)
t = Z̃

(i)
t + N̂

(i)
t t ∈ [0, T ].

Also using Lemma 11 we have

Yt = Ỹ
(i)
t + ˜̃Y

(i)
t t ∈ [0, T ],

where Ỹ
(i),T

0 and ˜̃Y
(i),T

0 are independent Poisson processes with rates (1 − p(i))λ and p(i)λ.

Hence the joint distribution of (Z
(i),T
0 , Z̃

(i),T
0 ) and (Y T

0 , Ỹ
(i),T

0 ) are identical. Moreover, M (i) �

Y
(i),T

0 � Ỹ
(i),T

0 � Y T
0 forms a Markov chain and M (i) � Y

(i),T
0 � Z̃

(i),T
0 � Z

(i),T
0 forms a

Markov chain. This allows us to write

I
(
M (i); Z̃

(i),T
0

)
= I

(
M (i); Ỹ

(i),T
0

)
,

I
(
M (i);Z

(i),T
0

)
= I(M (i);Y T

0 ). (63)

Since Z̃(i),T
0 is a µ(i)

((1−p(i))λ+µ(i))
-thinning of Y (i),T

0 , Theorem 3 gives

I(M (i); Z̃
(i),T
0 ) ≤

(
1− µ(i)

(1− p(i))λ+ µ(i)

)
I(M (i);Y

(i),T
0 ). (64)

Also Z
(i),T
0 is obtained by adding an independent Poisson process with rate p(i)λ to Z̃

(i),T
0 ,

Theorem 2 yields

I(M (i); Z̃
(i),T
0 ) = E

[∫ T

0

φ(Γ̃
(i)
t )− φ((1− p(i))λ) dt

]
,

I(M (i);Z
(i),T
0 ) ≤ E

[∫ T

0

φ(Γ̃
(i)
t + p(i)λ)− φ(λ) dt

]
, (65)
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where, Γ̃
(i),T
0 is the (σ(M (i), Z̃

(i),T
0 ) : t ∈ [0, T ])-intensity of Z̃(i),T

0 . Then we can further lower

bound D in (61) as

D ≥ λ− φ(λ)− 1

T
I(M (1);Y T

0 )− 1

T
I(M (2);Y T

0 )− ε

(a)
= λ− φ(λ)− 1

T
I(M (1);Z

(1),T
0 )− 1

T
I(M (2);Z

(2),T
0 )− ε

(b)

≥ λ− φ(λ)− 1

T

(
E
[∫ T

0

φ(Γ̃
(1)
t + p(1)λ)− φ(λ) dt

])
− 1

T

(
E
[∫ T

0

φ(Γ̃
(2)
t + p(2)λ)− φ(λ) dt

])
− ε

(c)
= λ+ φ(λ)− E

[
φ(Γ̃

(1)
S1

+ p(1)λ)
]
− E

[
φ(Γ̃

(2)
S2

+ p(2)λ)
]
− ε,

where for (a), we have used (63),

for (b), we have used (65), and

for (c), we define S1 and S2 to be uniformly distributed on [0, T ], independent of all other

random variables and independent of each other as well.

For each i ∈ {1, 2}, R(i) in (62) can be lower bounded as

R(i) ≥ 1

T
I(M (i);Y

(i),T
0 )− ε− 1

T
(a)

≥ (1− p(i))λ+ µ(i)

(1− p(i))λ

1

T
I(M (i); Z̃

(i),T
0 )− ε− 1

T

(b)
=

(1− p(i))λ+ µ(i)

(1− p(i))λ

1

T
E
[∫ T

0

φ(Γ̃
(i)
t )− φ((1− p(i))λ) dt

]
− ε− 1

T

(c)
=

(1− p(i))λ+ µ(i)

(1− p(i))λ
E
[
φ(Γ̃

(i)
Si

)− φ((1− p(i))λ)
]
− ε− 1

T
,

where for (a), we have used (64),

for (b), we have used (65), and

for (c), recall that S1 and S2 are uniformly distributed on [0, T ], independent of all other random

variables and independent of each other.

Now we use Carathéodory’s theorem [54, Theorem 17.1]. For each i ∈ {1, 2}, there exist non-

negative [η
(i)
k ]4k=1 and [α

(i)
k ]4k=1, such that

∑4
k=1 α

(i)
k = 1 and

E
[
φ(Γ̃

(i)
Si

)
]

=
4∑

k=1

α
(i)
k φ(η

(i)
k ),

E
[
φ(Γ̃

(i)
Si

+ p(i)λ)
]

=
4∑

k=1

α
(i)
k φ(η

(i)
k + p(i)λ),
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E
[
Γ̃

(i)
Si

]
=

4∑
k=1

α
(i)
k η

(i)
k = (1− p(i))λ,

where in the last line we have used the fact that since Γ̃
(i),T
0 is the (σ(M (i), Z̃

(i),T
0 ) : t ∈ [0, T ])-

intensity of Z̃(i),T
0 , E

[∫ T
0

Γ̃
(i)
t dt

]
= E[Z̃

(i)
T ] = T (1− p(i))λ. Hence we have

R(i) ≥ (1− p(i))λ+ µ(i)

(1− p(i))λ

(
4∑

k=1

α
(i)
k φ(η

(i)
k )− φ((1− p(i))λ)

)
− ε− 1

T
, (66)

D ≥ λ+ φ(λ)−
4∑

k=1

α
(1)
k φ(η

(1)
k + p(1)λ)−

4∑
k=1

α
(2)
k φ(η

(2)
k + p(2)λ)− ε. (67)

Now define

β
(i)
k ,

α
(i)
k η

(i)
k

(1− p(i))λ
, γ

(i)
k , p(i)α

(i)
k + (1− p(i))β

(i)
k .

We note that β(i)
k = 0 if α(i)

k = 0, and
∑4

k=1 β
(i)
k = 1. Substituting the above definitions in (66)

R(i) ≥ (1− p(i))λ+ µ(i)

(1− p(i))λ

(
4∑

k=1

α
(i)
k η

(i)
k log(η

(i)
k )− φ((1− p(i))λ)

)
− ε− 1

T

= ((1− p(i))λ+ µ(i))

(
4∑

k=1

β
(i)
k log

(
β

(i)
k (1− p(i))λ

α
(i)
k

)
1{α(i)

k > 0} − log((1− p(i))λ)

)
(68)

− ε− 1

T

= ((1− p(i))λ+ µ(i))
4∑

k=1

β
(i)
k log

(
β

(i)
k

α
(i)
k

)
− ε− 1

T
. (69)

Likewise,
4∑

k=1

α
(i)
k φ(η

(i)
k + p(i)λ) =

4∑
k=1

α
(i)
k φ

(
β

(i)
k (1− p(i))λ

α
(i)
k

+ p(i)λ

)
1{α(i)

k > 0}

=
4∑

k=1

α
(i)
k φ

(
γ

(i)
k

α
(i)
k

λ

)
1{α(i)

k > 0}

= λ
4∑

k=1

γ
(i)
k log

(
γ

(i)
k

α
(i)
k

)
+ φ(λ).

Substituting the above in (67), we get

D ≥ λ− φ(λ)− λ
4∑

k=1

γ
(1)
k log

(
γ

(1)
k

α
(1)
k

)
− λ

4∑
k=1

γ
(2)
k log

(
γ

(2)
k

α
(2)
k

)
− ε. (70)
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If either p(i), say p(1), equals 1, then M (1) and Y T
0 are independent so that I(M (1);Y T

0 ) = 0,

and we can repeat the above steps to show that

R(2) ≥ ((1− p(2))λ+ µ(2))
4∑

k=1

β
(2)
k log

(
β(2)

α
(2)
k

)
− ε− 1

T
,

D ≥ λ− φ(λ)− λ
4∑

k=1

γ
(2)
k log

(
γ

(2)
k

α
(2)
k

)
− ε,

which is the region in (69)-(70) with α(1)
k = β

(1)
k = γ

(1)
k for k ∈ {1, 2, 3, 4}.

Since ε is arbitrary, taking ε→ 0 and T →∞ gives us the rate region in the statement of the

theorem.
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