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Abstract—A new family of codes, called clustering-correcting
codes, is presented in this paper. This family of codes is motivated
by the special structure of data that is stored in DNA-based stor-
age systems. The data stored in these systems has the form of
unordered sequences, also called strands, and every strand is syn-
thesized thousands to millions of times, where some of these copies
are read back during sequencing. Due to the unordered structure
of the strands, an important task in the decoding process is to
place them in their correct order. This is usually accomplished by
allocating a part of the strand for an index. However, in the pres-
ence of errors in the index field, important information on the
order of the strands may be lost.

Clustering-correcting codes ensure that if the distance between
the index fields of two strands is small, then there will be a large
distance between their data fields. It is shown how this property
enables to place the strands together in their correct clusters even
in the presence of errors. We present lower and upper bounds on
the size of clustering-correcting codes and an explicit construction
of these codes which uses only a single bit of redundancy.

I. INTRODUCTION

Progress in synthesis and sequencing technologies have
paved the way for the development of a non-volatile data stor-
age based on DNA molecules. The first large-scale experiments
that demonstrated the potential of in vitro DNA storage were
reported by Church et al. who recovered 643 KB of data [4]
and Goldman et al. who accomplished the same task for a 739
KB message [8]. However, in both of these works the data was
not recovered successfully due to the lack of using the appro-
priate coding solutions to correct errors. Since then, several
more groups have demonstrated the ability to successfully store
data of large scale using DNA molecules; see e.g. [1], [2], [5],
[13], [18]. Other works developed coding solutions which are
specifically targeted to correct the special types of errors inside
DNA-based storage systems [10]–[12], [14], [16]–[18].

A DNA storage system consists of three steps. First, the
strands containing the encoded data are synthesized. They are
then stored inside a storage container, and finally a DNA se-
quencer reads back the strands. The encoding and decoding are
two external processes to the system that convert the data to
DNA strands and back. The structure of a DNA storage system
is different from all other existing storage systems. Since the
strands are stored unordered, it is unclear what part of the data
each strand represents, even if no error occurred. For more
details we refer the reader to [9], [11] and referencers therein.

Storing DNA strands in a way that will allow to reconstruct
them back in the right order is an important task. The com-
mon solution to address this problem is to use indices, that are
stored as part of the strand. Each strand is prefixed with some
nucleotides that indicate the strand’s location, with respect to
all other strands. Although using indices is a simple solution it
has several drawbacks. One of them is that in case of an error
within the index, important information on the strand’s location
is lost as well as the ability to place it in the correct position
between the other strands. In this paper a new coding scheme,

called clustering-correcting codes, is presented which enables
to combat errors with minimal redundancy.

In DNA storage systems, every strand is synthesized thou-
sands of times (or even millions) and thus more than a single
copy of each strand is read back upon sequencing. Thus, the
first task based upon the sequencer’s input is to partition all the
reads into clusters such that all read strands at each cluster are
copies of the same information strand. A possible solution is to
use the indices in order to identify the strands and cluster them
together, but in the presence of errors, this may result with mis-
clustered strands which can cause errors in the recovered data.
Hence, finding codes and algorithms for the clustering process
is an important challenge. A naive solution is to add redun-
dancy to the index part in order to correct potential errors in
the index [3]. However, this will incur an unavoidable reduction
in the storage rate of the DNA storage system. We will show
in this paper how clustering-correcting codes can enable one to
cluster all strands in the right clusters even with the presence of
errors in the indices (see Fig. 1), while the redundancy is mini-
mized. In fact, for a large range of parameters this can be done
with only a single bit of redundancy for all the strands together.

The rest of the paper is organized as follows. In Section II,
the family of clustering-correcting codes is presented as well
as other useful definitions that will be used throughout the pa-
per. In Section III, we present explicit and asymptotic lower
and upper bounds on the size of clustering-correcting codes. In
Section IV, we present an explicit construction of these codes
which uses only a single bit of redundancy. Due to the lack of
space, some of the proofs are omitted in the paper.

II. DEFINITIONS AND PRELIMINARIES

For a positive integer n, the set {0, 1, . . . , n− 1} is denoted
by [n]. For two vectors x,y ∈ {0, 1}n of the same length, we
denote the i-th symbol of x by xi. The subvector of x starting
at the i-th index of length ` is denoted by x[i,`]. The Ham-
ming distance between x and y is denoted by dH(x,y) and
the Hamming weight of x is wH(x). The radius-r ball of a
vector x ∈ {0, 1}n is Br(x) = {y |dH(x,y) 6 r} and its
size is denoted by Bn(r) ,

∑r
i=0

(
n
i

)
. The function H(x) for

0 6 x 6 1 denotes the binary entropy function, and the inverse
function H−1(x) for 0 6 x 6 1 is defined to return values be-
tween 0 and 1/2. We study here the binary case while extensions
to the non-binary case are straightforward.

Assume M strands are stored in a DNA-based storage sys-
tem where the size of every strand is L. We will assume that
M = 2βL for some 0 < β < 1 and for simplicity, it is as-
sumed that M is a power of 2. For any integer i ∈ [M ], its
binary representation of length log(M) is denoted by indi. Ev-
ery length-L strand s that will be stored in the system is of
the form s = (ind,u), where ind is the length-log(M) index
field of the strand (the binary representation of a number be-
tween 0 and M − 1) and u is the data field of L − log(M)
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Fig. 1: Exemplary realization of the DNA channel model. A set S of M = 4 strands is stored and N = 6 strands are drawn
with errors (highlighted in bold). The strands are clustered according to their indices. The outlier can be identified as it has large
distance w.r.t. all other strands in the cluster and be put into the correct cluster.

bits that are used to store the information or the redundancy
of an error-correcting code. Every stored message will have M
strands of this form and the space of all possible messages that
can be stored in the DNA storage system is

XM,L={{(ind0,u0), . . . , (indM−1,uM−1)}|uj∈{0, 1}L−log(M)}.

Clearly, |XM,L| = 2M(L−log(M)). Under this setup, a code C
will be a subset of XM,L, where each codeword S of C is a
subset of the form S = {(ind0,u0), . . . , (indM−1,uM−1)}. For
shorthand, the term L− log(M) will be abbreviated by LM .

When a set S = {(ind0,u0), . . . , (indM−1,uM−1)} is syn-
thesized, each of its strands (indi,ui), which are called the input
strands, has thousands to millions of copies and during the se-
quencing process a subset of these copies is read. Hence, the
sequencer’s output is another set G of some N strands, called
the output strands, where N is significantly larger than M . Each
output strand in the set G is a copy of one of the input strands
in S, however with some potential errors. A DNA-based storage
system is called a (τ, ρ)-DNA system if it satisfies the follow-
ing property: If the output strand (ind′,u′) ∈ G is a noisy copy
of the input strand (ind,u) ∈ S, then dH(ind, ind′) 6 τ and
dH(u,u′) 6 ρ. That is, the index field has at most τ Hamming
errors while the data field has at most ρ Hamming errors. We
consider in this work only substitution errors while extensions
for deletions, insertions, and more generally the edit distance
will be analyzed in the full version of the paper.

Since the set G contains several noisy copies of each input
strand in S, the first task in the decoding process is to partition
the set of all N output strands into M cluster sets, such that
the output strands in every cluster are noisy copies of the same
input strand. Since every strand contains an index, the simplest
way to operate this task is by partitioning the output strands into
M sets based upon the index field in every output strand. This
process will indeed be successful if there are no errors in the
index field of every output strand, however other solutions are
necessary since the error rates in DNA storage systems are not
negligible [9]. Another approach to cluster the strands is based
upon the distances between every pair of output strands, as was
studied in [14]. However, this approach suffers extremely high
computational complexity.

In this work, we take a hybrid solution of these two ap-
proaches. First, we cluster the output strands based on the in-
dices in the output strands. Then, we scan for output strands
which were mis-clustered, that is, were placed in the wrong

cluster. This is accomplished by checking the distances between
the output strands in every cluster in order to either remove out-
put strands that were incorrectly placed in a cluster due to errors
in their index or move them to their correct cluster set. Since
we compute the distances only between pairs of strands that
were placed in the same cluster (and not between all pairs of
strands), this step will result in a significantly lower complex-
ity compared to the solution from [14]. However, in order to
succeed in this new approach we need the strands stored in the
set S to satisfy several constraints. These constraints will be
met by the family of clustering-correcting codes which are pre-
sented in this paper. Another assumption taken in this model,
which will be referred to as the majority assumption, assumes
that in every cluster the majority of the strands have the correct
index. Since the number of strands is very large this assumption
holds with high probably if not in all cases.

The main idea to move strands which were misplaced in a
cluster due to errors in their index field works as follows. As-
sume the strand si = (indi,ui) has a noisy copy of the form
s′i = (ind′i,u

′
i), and let j be such that sj = (indj ,uj) and

indj = ind′i. We need to make sure that the distance between
u′i and uj is large enough as this will allow to identify that the
output strand s′i is erroneous and therefore does not belong to
the cluster of index indj ; see Fig. 1. We will be interested in
either identifying that the output strand s′i does not belong to
this cluster or more than that, place it in its correct cluster. This
motivates us to study the following family of codes.

Definition 1. A word S = {(ind0,u0), . . . , (indM−1,uM−1)} ∈
XM,L is said to satisfy the (e, t)-clustering constraint
if for all (indi,ui), (indj ,uj) ∈ S in which i 6= j and
dH(indi, indj) 6 e, it holds that dH(ui,uj) > t.

A code C ⊆ XM,L will be called an (e, t)-clustering-
correcting code (CCC) if every S ∈ C satisfies the (e, t)-
clustering constraint.
The redundancy of a code C ⊆ XM,L will be defined by

r = MLM − log |C|.
Our goal in this work is to find (e, t)-CCCs for all e and t.
We denote by AM,L(e, t) the size of the largest (e, t)-CCC in
XM,L, and by rM,L(e, t) the optimal redundancy of an (e, t)-
CCC, so rM,L(e, t) = MLM − log(AM,L(e, t)).

The clustering-correcting capabilities of CCCs are proved in
the next theorem. We note that as a result of this theorem, if
the number of errors is not too large, it is already possible to
place every output strand in its correct cluster.



Theorem 2. For fixed integers M,L, e, t, let C be an (e, t)-CCC.
Assume that a set S ∈ C is stored in a (τ, ρ)-DNA system. The
following properties hold:

1) If τ 6 e and 4ρ < t then every output strand can be detected
to be placed in a wrong cluster.

2) If τ 6 e/2 and 4ρ < t then every output strand can be
placed in its correct cluster.

Proof: We prove only the first statement while the
proof of second one is similar. Let (ind′i,u

′
i) be a noisy

copy of the strand (indi,ui). Since the data is stored in a
(τ, ρ)-DNA system, it holds that dH(indi, ind

′
i) 6 τ , and

therefore dH(indi, ind
′
i) 6 e. Also dH(ui,u

′
i) 6 ρ. Let

j ∈ [M ] be such that indj = ind′i. From the fact that
S ∈ C we derive that dH(ui,uj) > t > 4ρ, and thus
dH(uj ,u

′
i) > dH(ui,uj) − dH(ui,u

′
i) > 3ρ. Let (indj ,u

′
j)

be a noisy copy strand of (indj ,uj), that is, errors might occur
in the data field but not in the index field. So, dH(uj ,u

′
j) 6 ρ

which yields that dH(u′i,u
′
j) > 2ρ. On the other hand, the dis-

tance between the data fields of the two strands that belong to
the same cluster is at most 2ρ. That is, under the majority as-
sumption, a mis-clustered strand will have a distance of more
than 2ρ from the majority of the strands in the cluster, and so
it can be dropped instead of being mis-clustered.

III. BOUNDS

Upper and lower bounds on AM,L(e, t) are presented. Let
Dn(d) be the size of the largest length-n error-correcting code
C ⊆ {0, 1}n and minimum Hamming distance d. For the rest
of the paper, let B1 = Blog(M)(e)− 1, B2 = BLM

(t− 1), le =
log(exp(1)) ≈ 1.44, and it is also assumed that β < 1/2.

Theorem 3. For all M,L, e, and t it holds that

AM,L(e, t) > 2MLM

(
1− B1B2

2LM

)M−D
and hence

rM,L(e, t) 6
le · (M −D)B1B2

2LM −B1B2
,

where D = Dlog(M)(e+ 1).

Proof: In order to verify the lower bound, we construct
an (e, t)-CCC C that will yield a lower bound on AM,L(e, t).
Let C1 ⊆ {0, 1}log(M) be a length-log(M) code with mini-
mum Hamming distance e+ 1 of size D. Each codeword S =
{(ind0,u0), . . . , (indM−1,uM−1)} ∈ C is constructed in two
steps. First, we choose the data field of strands with indices that
belong to the code C1, that is, all strands of the form (ind,u)
such that ind ∈ C1. There are 2LM options for each strand and
thus (2LM )D options for the first step. Since the Hamming dis-
tance between all pairs of indices of these strands is at least
e+ 1, their data fields can be chosen independently.

For the rest of the strands we assume the worst case. That
is, for each strand left, all of its neighbors are chosen and their
radius-(t−1) balls are mutually disjoint. Thus, there are at least

2LM − (Blog(M)(e)− 1) ·BLM
(t− 1) = 2LM −B1B2

options to choose the data field of each remaining strand. In
conclusion, there are 2LMD

(
2LM −B1B2

)M−D
options for

choosing a valid set S ∈ C, and hence

AM,L(e, t) > 2MLM

(
1− B1B2

2LM

)M−D
.

We can also deduce an upper bound on the redundancy

rM,L(e, t) 6
le · (M −D)B1B2

2LM −B1B2
,

where here the inequality − log(1 − x) 6 le · x
1−x for all 0 <

x < 1 is used.
The next corollary follows directly from Theorem 3.

Corollary 4. If t6LMH−1
(

1−2β
1−β −

log(βL)
(1−β)L

)
then rM,L(1, t)61.

Proof: For e = 1, Dlog(M)(2) = M/2. This is achieved by
selecting all indices indi such that wH(indi) is even (or odd).
Hence, from Theorem 3 it holds that

rM,L(1, t) 6
le ·M log(M)B2

2LM+1 − 2 log(M)B2
.

Hence, rM,L(1, t) 6 1 if B2 6 2LM+1

log(M)(le·M+2) . According to

Lemma 4.7 in [15], B2 6 2
LMH

(
t−1
LM

)
and hence it is enough

to require that 2
LMH

(
t−1
LM

)
6 2LM+1

log(M)(le·M+2) , i.e.,

LMH
(
t− 1

LM

)
6 LM − log(M)− log log(M)

6 LM + 1− log(le ·M + 2)− log log(M).

For M = 2βL, this holds for all t 6 LMH−1
(

1−2β
1−β −

log(βL)
(1−β)L

)
.

A similar upper bound on AM,L(e, t) is presented next.

Theorem 5. For all M,L, e and t it holds that

AM,L(e, t) 6 2MLM

(
1− B2

2LM

)M−1

,

and therefore rM,L(e, t) > le·(M−1)·B2

2LM
. Furthermore, if

t > LM · H−1
(

1−2β
1−β + log(LM )

LM

)
+ 1 then rM,L(1, t) > 1.

From Corollary 4 and Theorem 5 we get that for LM large
enough and t ≈ LM ·H−1

(
1−2β
1−β

)
, we get that rM,L(1, t) ≈ 1.

An asymptotic improvement to the upper bound from Theo-
rem 5 for e = 1 which matches the lower bound from Theo-
rem 3 is proved in the next theorem.

Theorem 6. For LM large enough, if t
LM

< 1
2H
−1
(

1−2β
1−β

)
− ε,

for some fixed ε > 0, then it holds that

AM,L(1, t) 6 2MLM

(
1− log(M)B2

2LM

)M/2

(1 + δ),

for δ small enough, and hence

rM,L(1, t) >
M log(M)B2

2LM+1 − 2 log(M)B2
− log(1 + δ).

Proof: Let C be a (1, t)-CCC of maximal size AM,L(1, t).
For every set S = {(ind0,u0), . . . , (indM−1,uM−1)} ∈ C, let

Seven = (ui)i:wH(indi) is even ∈ ({0, 1}LM )M/2 , ΣM,L

be the vector projection of S to the data fields of the strands with
indices of even weight and let Ieven , {i | wH(indi) is even}.

The sets of the strands in the code C are partitioned accord-
ing to their projection on the indices with even weight. More
specifically, for every v ∈ ΣM,L, let Cv be the subcode of C,

Cv = {S ∈ C | Seven = v},



so it holds that C =
⋃

v∈ΣM,L
Cv .

A vector v = (vi)i∈Ieven ∈ ΣM,L is good if for all i, j ∈
Ieven such that dH(indi, indj) = 2 it holds that Bt−1(vi) ∩
Bt−1(vj) = ∅, and otherwise it is bad. Denote by Xgood, Xbad
the number of good, bad vectors in ΣM,L, respectively. If a vec-
tor v ∈ ΣM,L is bad, then there are at least two indices i, j ∈
Ieven such that dH(indi, indj) = 2 and Bt−1(vi)∩Bt−1(vj) 6=
∅, i.e., dH(vi,vj) 6 2t− 2. Hence, we get that

Xbad 6M(log(M))2B3 · 2LM ( M
2 −1),

where B3 = BLM
(2t− 2).

Consider the size of Cv when v is good. For every S ∈ Cv ,
we only need to assign the data fields for strands of odd weight
index. Since v is a good vector, for every index of odd weight,
the radius-(t−1) balls of all of its neighbor strands are mutually
disjoint so there are exactly

2LM − log(M) ·B2

options to choose the data field of the i-th strand. For every
bad vector v ∈ ΣM,L, it is enough to take the loose bound in
which |Cv| 6

(
2LM

)M
2 . In conclusion we get that

|C| =
∣∣∣ ⋃
v∈ΣM,L

Cv
∣∣∣ = ∣∣∣ ⋃

v∈ΣM,L:v is good

Cv
∣∣∣+ ∣∣∣ ⋃

v∈ΣM,L:v is bad

Cv
∣∣∣

6 Xgood

(
2LM − log(M)B2

)M
2
+Xbad

(
2LM

)M
2

6 2
MLM

2

(
2LM − log(M)B2

)M
2
+Xbad2

MLM
2

6 2MLM

(
1− log(M)B2

2LM

)M
2

+
M(log(M))2B32

MLM

2LM

= 2MLM

(
1− log(M)B2

2LM

)M
2

1 + M(log(M))2B3

2LM ·
(
1− log(M)·B2

2LM

)M
2

 .

According to − log(1−x) 6 le · x
1−x for all 0 < x < 1 we get(

1− log(M)B2

2LM

)M
2

> 2
− le·log(M)B2(M/2)

2LM−log(M)B2 .

We use again the inequality B2 6 2
LMH

(
t−1
LM

)
and B3 6

2
LMH

(
2(t−1)
LM

)
, while for t

LM
< 1

2H
−1
(

1−2β
1−β

)
− ε it holds

lim
LM→∞

le · log(M)B2(M/2)

2LM − log(M)B2
6 lim
LM→∞

le · log(M)2
LMH

(
t−1
LM

)
2βL−1

2LM − log(M)2
LMH

(
t−1
LM

)

= lim
LM→∞

le · log(M)2
LMH

(
t−1
LM

)
2βL−1

2LM
= 0,

and

lim
LM→∞

M(log(M))2B3

2LM
6 lim
LM→∞

M(log(M))22
LMH

(
2(t−1)
LM

)
2LM

= lim
L→∞

2βL(βL)22(1−2β−ε′)L

2(1−β)L
= lim
L→∞

(βL)2

2ε′L
= 0,

for some ε′ > 0. Thus, limL→∞
ML2t

2LM ·
(

1− log(M)·B2

2LM

)M
2

= 0,

which confirms the theorem’s statements.

IV. A CONSTRUCTION OF CCCS

In this section we propose a construction of CCCs. It is
shown that with a single bit of redundancy it is possible to
construct CCCs for relatively large values of t.

The algorithm will use the following functions:
• The function w`(S, t) is defined over a set of vectors S

and a positive integer t and outputs a vector w ∈ {0, 1}`
which satisfies the following condition. For all v ∈ S,
dH(w,v[log(M),`]) > t. The value of ` will be determined
later as a function of e, t, and M .

• The function ∆1(indi, indj) encodes the difference be-
tween the two indices i and j of Hamming distance
at most e using edlog(log(M))e bits which mark the
positions where the indices indi, indj differ.

• The function ∆2(ui,uj) encodes the difference between
the two data fields ui,uj ∈ {0, 1}LM of Hamming dis-
tance at most t−1 using (t−1) log(LM ) bits which mark
the positions where they differ.

The input to the algorithm is M vectors v0, . . . ,vM−1. All
vectors are of length LM bits, except for vM−1 which has length
of LM − 1 bits. The idea behind the presented algorithm is to
find all pairs of vectors that do not satisfy the clustering con-
straint, and correct them in a way that they satisfy the constraint
and yet the original data can be uniquely recovered. A bit is
added to vM−1, hence, the code has a single bit of redundancy,
to mark whether some vectors were altered by the algorithm.

For i ∈ [M ], the notation S(e, i) in the algorithm will be
used as a shortcut to the set {uj | dH(indi, indj) 6 e} of data
fields corresponding to indices indj of Hamming distance at
most e from indi. At any iteration of the while loop, when the
i-th strand is corrected, the function w`(S(e, i), t) will be used
to update the data field ui such that it does not violate the
constraint and yet can be decoded. In order to make room for
the vector generated by the function w`(S(e, i), t), we will en-
code ui based on its similarity to one of its close neighbors uj .
These modifications are encoded together as a repelling vector
of length len = `+log log(M)+(t−1) log(LM ), when e = 1.

Algorithm 1 (1, t)− CCC Construction

Input: M vectors v0, . . . ,vM−1 such that v0, . . . ,vM−2 ∈
{0, 1}LM and vM−1 ∈ {0, 1}LM−1

Output: a codeword S = {(ind0,u0), . . . , (indM−1,uM−1)}
1: ∀i ∈ {0, . . . ,M − 2} : ui = vi,uM−1 = (vM−1, 0)

2: p = M − 1

3: B = {(i, j) | i < j, dH(indi, indj) 6 1 ∧ dH(ui,uj) < t}
4: while B 6= ∅, let (i, j) ∈ B do
5: (up)LM−1 = 1

6: (up)[0,log(M)] = indi

7: p = i

8: repl = (w`(S(1, i), t),∆1(indi, indj),∆2(ui,uj))

9: (ui)[log(M),len] = repl

10: B = {(i, j) | (i, j) ∈ B ∧ dH(ui,uj) < t}
11: end while
12: (up)LM−1 = 0

13: (up)[0,log(M)] = (vM−1)[0,log(M)]



Theorem 7. For any input vectors v0 . . . ,vM−1 , Algorithm 1
returns a valid (1, t)-CCC codeword for any t that satisfies:
`+ log log(M) + (t− 1) log(LM ) + 1 6 LM − log(M).

Furthermore, it is possible to decode the vectors v0 . . . ,vM−1.
Proof: After the initializing steps, in Step 3 the algorithm

gathers the indices of all pairs of strands that both their index
and data fields are too close to each other, hence, violating the
constraint. The algorithm iterates over the set B, handling one
pair at a time. In Step 10, this set is updated and the algorithm
stops when the set B is empty, i.e., there are no bad pairs and
so {(ind0,u0), . . . , (indM−1,uM−1)} satisfies the constraint.

On each iteration of the while loop, the algorithm takes a
pair of strands, say of indices i and j, where i < j, which vio-
lates the constraint and changes the data field in the i-th strand.
First, the flag at the end of the previous strand is changed to
1 (Step 5). This denotes that it is not the last strand in the
decoding chain. In Step 8, the algorithm calculates the vec-
tor w = w`(S(1, i), t) and embeds it in the data field of the
i-th strand. The vector w satisfies that for all u ∈ S(1, i),
dH(w,u[log(M),`]) > t. Then, for all u ∈ S(1, i) we have that
dH((ui)[log(M),`],u[log(M),`]) > t and lastly for all u ∈ S(1, i),
dH(ui,u) > t. Therefore the i-th and the j-th strands satisfy
the constraint and thus do not belong to the set B when it is up-
dated in Step 10. In fact any bad pair of indices which includes
the i-th strand will be removed as well from the set B. Fur-
thermore, since the i-th strand has been updated in such a way
that it satisfies the constraint with respect to all of its neigh-
bors, and the p-th strand in this iteration already satisfies the
constraint according to his last LM − log(M) bits, no bad pairs
have been created. That is, the size of the set B decreases in
each iteration, and the algorithm terminates. The constraint on
t guarantees that the data field is large enough in order to write
the information required on each update step of the while loop.

The idea of the decoding process is to track the updates chain
of the strands and then traverse the chain in the opposite direc-
tion while recovering the input vectors.

Algorithm 1 can easily be extended to support larger values
of e. In this case the constraint on t is

L− 2 log(M) > `+ log(Blog(M)(e) ·BLM
(t− 1)) + 1.

Next we discuss the function w`(S, t). This function takes
a set of vectors S as input, and outputs a vector w ∈ {0, 1}`
such that for all v ∈ S[log(M),`] , {v[log(M),`]|v ∈ S}, it holds
that dH(w,v) > t. The length ` of the vector w is determined
by the minimum value of ` for which

2` > |S[log(M),`]| ·B`(t− 1).

That is, the minimum length that allows us to choose a vector
that does not fall into any of the radius-(t − 1) balls of the
vectors in the set S[log(M),`]. The size of S[log(M),`] is at most
Blog(M)(e)− 1, and we denote by `(e, t,M) the smallest value
of ` such that 2` > (Blog(M)(e)− 1) ·B`(t− 1).

Lemma 8. For all e, t,M such that t 6 (log(M))e

e·log log(M) , it holds that

`(e, t,M) 6 et · log log(M).

Corollary 9. For all t 6 LM−log(M)−e log log(M)+log(LM )
log(LM )+e log log(M)

there exists an explicit construction of an (e, t)-CCC using
Algorithm 1 which uses a single bit of redundancy.

Proof: From Lemma 8 we can use w`(S, t) in Algorithm 1
with ` = et · log log(M). In addition, from Theorem 7 the value
of t should satisfy

`+ log(Blog(M)(e) ·BLM
(t− 1)) + 1 6 LM − log(M).

Thus, it is enough to show that

et · log log(M) + log((log(M))e · LMt−1) 6 LM − log(M),

while using Blog(M)(e) 6 (log(M))e and BLM
(t − 1) 6

LM
t−1. Hence, it is enough for t to satisfy

t(log(LM )+e log log(M)) 6 LM−log(M)−e log log(M)+log(LM ).

According to Section III, rM,L(1, t) = 1 when t is approx-
imately LM · H−1

(
1−2β
1−β

)
. However, this is not achieved by

an explicit construction of such codes. Here, we presented an
explicit construction for e = 1 in which the maximum value
of t is roughly LM

log(LM )
1−2β
1−β . That is, at most only a factor of

log(LM ) from the theoretical upper bound on t.
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