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Abstract—A single unicast index coding problem (SUICP) with
symmetric neighboring interference (SNI) has K messages and
K receivers, the kth receiver Rk wanting the kth message xk

and having the interference with D messages after and U (D ≥
U) messages before its desired message. Maleki et. al. derived
the lowerbound on the broadcast rate of this setting to be D +
1. In our earlier work, for SUICP(SNI) with arbitrary K,D
and U , we defined set S of 2-tuples and for every (a, b) ∈ S,
we constructed b-dimensional vector linear index code with rate
D + 1 + a

b
by using an encoding matrix of dimension Kb ×

(b(D + 1) + a). In this paper, we use the symmetric structure
of the SUICP(SNI) to reduce the size of encoding matrix by
partitioning the message symbols. The rate achieved in this paper
is same as that of the existing constructions of vector linear index
codes. More specifically, we construct b-dimensional vector linear
index codes for SUICP(SNI) by partitioning the Kb messages
into b(U + 1) + c sets for some non-negative integer c. We use
an encoding matrix of size Kb

b(U+1)+c
× b(D+1)+a

b(U+1)+c
to encode each

partition separately. The advantage of this method is that the
receivers need to store at most b(D+1)+a

b(U+1)+c
number of broadcast

symbols (index code symbols) to decode a given wanted message
symbol. We also give a construction of scalar linear index codes
for SUICP(SNI) with arbitrary K,D and U . We give an improved
upperbound on the broadcast rate of SUICP(SNI).

I. INTRODUCTION AND BACKGROUND

The problem of index coding with side-information was
introduced by Birk and Kol [1]. Ong and Ho [2] classified
the index coding problem depending on the demands and
the side-information possessed by the receivers. An index
coding problem is single unicast if the demand-sets of the
receivers are disjoint and the cardinality of demand-set of
every receiver is one. A single unicast index coding problem
(SUICP) has K messages {x0, x1, . . . , xK−1} and K receivers
{R0, R1, . . . , RK−1} for some positive integer K. Receiver
Rk wants the message xk and knows a subset of messages in
{x0, x1, . . . , xK−1} as side-information.

In a single unicast index coding problem, the side-
information is represented by a directed graph G = (V ,E)
with V = {x0, x1, . . . , xK−1} vertices and E is the set of
edges such that the directed edge (xi, xj) ∈ E if receiver Ri

knows xj . This graph G for a given index coding problem is
called the side-information graph. In this paper, we use Wk

to denote want set and Kk to denote side-information of the
receiver Rk. The messages which are neither wanted by nor
known to Rk is called interference Ik to Rk.

In the index coding, we assume that the messages belongs
to a finite alphabet B. The solution (includes both linear and
nonlinear) of the index coding problem must specify a finite
alphabet BP to be used by the transmitter, and an encoding
scheme ε : BK → BP such that every receiver is able to
decode the wanted message from the ε(x0, x1, . . . , xK−1)
and the known information. The minimum encoding length
l = dlog2|BP |e for messages that are t bit long (|B| = 2t)
is denoted by βt(G). The broadcast rate of the index coding
problem with side-information graph G is defined [3] as,

β(G) , inf
t

βt(G)

t
.

If t = 1, it is called scalar broadcast rate. For a given
index coding problem, the broadcast rate β(G) is the minimum
number of index code symbols required to transmit to satisfy
the demands of all the receivers. The broadcast rate β(G) and
capacity C(G) are related as [4]

C(G) =
1

β(G)
.

In a vector linear index code xk = (xk,1, xk,2, . . . , xk,pk
) ∈

Fpk
q , xk,j ∈ Fq for k ∈ [0 : K − 1] and j ∈ [1 : pk] where Fq

is a finite field with q elements. In vector linear index coding
setting, we refer xk ∈ Fpk

q as a message-vector or message
and xk,1, xk,2, . . . , xk,pk

as the message symbols. An index
coding is a mapping defined as

E : Fp0+p1+...+pK−1
q → FN

q ,

where N is the length of index code. The index code C =
{(c0, c1, . . . , cN−1)} is the collection of all images of the
mapping E. We refer c0,c1, . . .,cN−1 as index code symbols,
which are the symbols broadcasted by the transmitter. If
pk = p for every k ∈ [0 : K − 1], then the index code is
called symmetric rate p-dimensional vector linear index code.
If p = 1, then the index code is called scalar index code.

A p-dimensional vector linear index code of length N is
represented by a matrix L (∈ FpK×N

q ), where the jth column
contains the coefficients of the jth coded transmission and
the (ip + j)th row Lip+j (∈ F1×N

q ) contains the coefficients
used for mixing message xi,j in the N transmissions for every
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i ∈ [0 : K − 1] and j ∈ [1 : p]. The broadcast vector is

[c0, c1, . . . , cN−1] = [x0,1, . . . , x0,p︸ ︷︷ ︸
x0

. . . xK−1,1, . . . , xK−1,p︸ ︷︷ ︸
xK−1

]L

=

K−1∑
i=0

p∑
j=1

xi,jLip+j .

Example 1 given below illustrates the advantage of vector
linear index codes.

Example 1. Consider the index coding problem with wanted
message and side-information as given in Table below.

Rk Wk Kk

R0 x0 x1, x3
R1 x1 x2, x3
R2 x2 x0
R3 x3 x1, x2

The side-information graph of this SUICP is given in Fig. 1.
Let xk,1, xk,2 be the two generations of the message symbol

x3 x2

x1x0

Fig. 1. side-information graph of SUICP given in Example 1

xk for k ∈ [0 : 3]. A vector linear index code with symmetric
rate 2

5 for this index coding problem is

(c0, c1, c2, c3, c4) = {x0,1 + x1,1, x1,1 + x2,1,

x0,2 + x3,1, x3,1 + x2,2,

x1,2 + x3,2}.

It is easy to see that from the five broadcast symbols
(y0, y1, y2, y3, y4), every receiver can decode its two wanted
message symbols by using the available side-information with
them.

A. Symmetric neighboring interference single unicast index
coding problem

A symmetric neighboring interference single unicast in-
dex coding problem (SUICP(SNI)) with K messages and
K receivers, each receiver has a total of U + D < K
interfering messages, corresponding to the D messages after
and U (D ≥ U) messages before its desired message. In this
setting, the kth receiver Rk demands the message xk having
the interference

Ik = {xk−U , . . . , xk−2, xk−1} ∪ {xk+1, xk+2, . . . , xk+D}.
(1)

The side-information of this setting is given by

Kk = (Ik ∪ xk)c. (2)

All the subscripts in SUICP(SNI) are to be considered
modulo K.

B. Existing Results

Maleki et al. [4] found the capacity of SUICP(SNI) with
K →∞. The capacity of SUICP(SNI) with K →∞ is

C =
1

D + 1
per message. (3)

Maleki et al. [4] proved the outerbound for the capacity of
SUICP(SNI) for finite K. The outerbound for the finite K is
given by

C ≤ 1

D + 1
. (4)

Blasiak et al. [3] found the capacity of SUICP(SNI) with
U = D = 1 by using linear programming bounds. The
capacity of this SUICP(SNI) with U = D = 1 is given by⌊

K
2

⌋
K

. (5)

In [8], we give a construction of binary matrices with a
given size m× n (m > n), such that any n adjacent rows in
the matrix are linearly independent over every field Fq . We call
these matrices as Adjacent Independent Row (AIR) matrices.
In [10], for SUICP(SNI) with arbitrary K,D and U , we define
a set S of 2-tuples as given below

S = {(a, b) : gcd(bK, b(D + 1) + a) ≥ b(U + 1)} (6)

and we show that for every (a, b) ∈ S, the rate D + 1 + a
b is

achievable by using b-dimensional vector linear index codes
and AIR matrices of size Kb× (b(D + 1) + a).

Jafar [5] established the relation between index coding
problem and topological interference management problem.
The SUICP(SNI) is motivated by topological interference
management problems. The capacity and optimal coding re-
sults in index coding can be used in corresponding topological
interference management problems.

C. Contributions

The contributions of this paper are summarized below:
• We construct b-dimensional vector linear index codes

for SUICP(SNI) by partitioning the Kb messages into
b(U+1)+c sets for some non-negative integer c satisfying
the condition gcd(Kb, b(D+1)+a) = b(U +1)+ c. We
use Kb

b(U+1)+c ×
(b(D+1)+a)
b(U+1)+c size matrix to encode each

partition separately. The advantage of this method is that
the receivers need to store at most (b(D+1)+a)

b(U+1)+c received
broadcast symbols to decode a given wanted message
symbol.

• This proposed index code construction identifies the
receivers which will be able to decode their wanted
messages instantly (without using buffers).

• We give a construction of scalar linear index codes for
SUICP(SNI) with arbitrary K,D and U .

• We give an improved upperbound on the broadcast rate
of SUICP(SNI).

The paper is organized as follows. In Section II, we give
reduced complexity encoding for SUICP(SNI) by partitioning
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the message symbols. In Section III, we give a scalar lin-
ear construction of index codes for SUICP(SNI). In Section
IV, we give an improved upperbound on broadcast rate of
SUICP(SNI). We summarize the paper in Section V.

The proofs of all Theorems and Lemmas in this paper have
been omitted due to space constraints. All the proofs can be
found in [12].

II. PARTITION BASED VECTOR LINEAR INDEX CODES FOR
SUICP(SNI) WITH ARBITRARY K,U AND D

In this section, we use partition of message symbols to ob-
tain a simple linear index code for SUICP(SNI) with arbitrary
K, D and U . Let

S = {(a, b) : gcd(bK, b(D + 1) + a) ≥ b(U + 1)} (7)

In a b-dimensional vector linear index code, receiver Rk wants
to decode the b message symbols xk,1 xk,2 . . . xk,b for every
k ∈ [0 : K− 1]. In the b-dimensional vector linear index code
construction for SUICP(SNI) given in [10], the Kb messages
corresponding to K receivers are linearly combined to give
b(D+ 1) + a index code symbols by using an AIR matrix of
size Kb× (b(D + 1) + a).

In Theorem 1, we partition the Kb message symbols into
b(U + 1) + c sets for some non-negative integer c such that
each set comprises of Kb

b(U+1)+c messages. Then, by using the
symmetry in the SUICP(SNI), we show that we can use an AIR
matrix of size Kb

b(U+1)+c ×
b(D+1)+a
b(U+1)+c to encode each partition

separately.

Theorem 1. Consider a SUICP(SNI) with arbitrary K,D and
U . Let (a, b) ∈ S and gcd(bK, b(D+ 1) + a) = b(U + 1) + c

for some c ∈ Z≥0. Let Kb
b(U+1)+c = t and b(D+1)+a

b(U+1)+c = γ.
An index code for this SUICP(SNI) with rate D + 1 + a

b is
obtained by using a t× γ AIR matrix.

Note 1. In [6], in the noisy communication channels where the
received broadcast symbols are error prone, it is shown that
the message probability of error in decoding a message at a
particular receiver decreases with a decrease in the number of
transmissions used to decode the message among the total of
broadcast transmissions. The encoding and decoding method
given in Theorem 1 indicates that every receiver uses at
most b(D+1)+a

b(U+1)+c = γ broadcast symbols to decode its wanted
message symbol.

Note 2. Another application of the construction method given
in Theorem 1 is related to Instantly Decodable Network
Coding (IDNC). IDNC deals with code designs when the
receivers have no buffer and need to decode the wanted mes-
sages instantly without having stored previous transmissions.
A recent survey article on IDNC with application to Device-to-
Device (D2D) communications is [7]. These results are valid
for index coding since it is a special case of network coding.
In Theorem 1, if γ = 1, then every receiver uses at most one
broadcast symbol to decode a message symbol and hence the
code is instantly decodable.

Example 2. Consider a SUICP(SNI) with K = 13, D =
4, U = 1. For this SUICP(SNI), we have (a = 1, b = 5) ∈ S
and in [10], we showed that the rate D + 1 + a

b = 5.2 can
be achieved by using AIR matrix of size 65 × 26 and 5-
dimensional vector linear index coding. However, by using the
partition method given in this paper, in this example, we show
that the AIR matrix of size 5× 2 is adequate for achieving a
rate of D + 1 + a

b = 5.2.
For this SUICP(SNI), we have

t =
Kb

b(U + 1) + c
= 5,

γ =
b(D + 1) + a

b(U + 1) + c
= 2,

τ = b(U + 1) + c = 13.

and the thirteen partitioned sets Ai for i ∈ [1 : 13] are

{x0,1, x2,4, x5,2, x8,0, x10,3}, {x0,2, x2,5, x5,3, x8,1, x10,4},
{x0,3, x3,1, x5,4, x8,2, x10,5}, {x0,4, x3,2, x5,5, x8,3, x11,1},
{x0,5, x3,3, x6,1, x8,4, x11,2}, {x1,1, x3,4, x6,2, x8,5, x11,3},
{x1,2, x3,5, x6,3, x9,1, x11,4}, {x1,3, x4,1, x6,4, x9,2, x11,5},
{x1,4, x4,2, x6,5, x9,3, x12,1}, {x1,5, x4,3, x7,1, x9,4, x12,2},
{x2,1, x4,4, x7,2, x9,5, x12,3}, {x2,2, x4,5, x7,3, x10,1, x12,4},
{x2,3, x5,1, x7,4, x10,2, x12,5}.

From the partition, in Ai for every i ∈ [1 : 13], any receiver
wanting a message in Ai knows three other consecutive
messages in Ai. In an AIR matrix of size 5 × 2, every two
adjacent rows are linearly independent. Hence, AIR matrix
of size 5 × 2 can be used as an encoding matrix for Ai for
i ∈ [1 : 13]. AIR matrix of size 5× 2 is given below.

L5×2 =


1 0
0 1
1 0
0 1
1 1


The 26 broadcast symbols for this SUICP(SNI) is obtained

by multiplying each of the 13 partitions above with AIR matrix
of size 5×2. Let [cj cj+13] be the two code symbols obtained
by encoding the five message symbols in the partition Aj+1

with AIR matrix of size 5 × 2 for j ∈ [0 : 12]. Let k = 3.
R3 wants to decode x3,1, x3,2, x3,3, x3,4 and x3,5. We have
x3,j ∈ A2+j for every j ∈ [1 : 5]. R3 decodes x3,j from
[c1+j c14+j ]. In A2+j , R3 knows three messages for every
j ∈ [1 : 5]. Hence, after substituting the known messages, R3

sees [c1+j c14+j ] as two equations with two unknowns and
solves the wanted message x3,j for every j ∈ [1 : 5].

Note 3. In Example 2, the size of the AIR encoding matrix
used is 5×2. Hence, the encoding and decoding method given
in Theorem 1 guarantees that every receiver uses at most 2
broadcast symbols to decode its wanted message symbol.

Example 3. For SUICP(SNI) with K = 71, U ≤ D ≤ 10, the
upperbound on β and lowerbound on β are shown in Table
I. Note that the 9th column of Table I gives the maximum

1249

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on October 19,2022 at 10:27:00 UTC from IEEE Xplore.  Restrictions apply. 



K D U amin bmin D + 1 D + 1 + amin
bmin

AIR matrix size AIR matrix size
(lowerbound (upperbound required in [10] required in this paper

on β) on β) by using partition
71 1 1 1 35 2 2.0285 2485× 71 35× 1∗∗

71 2 1,2 2 23 3 3.0869 1633× 71 23× 1∗∗

71 3 1 2 35 4 4.0571 2485× 142 35× 2
71 3 2,3 5 17 4 4.1764 1207× 71 17× 1∗∗

71 4 1,2,3,4 1 14 5 5.0714 994× 71 14× 1∗∗

71 5 1 3 35 6 6.0857 2485× 71 35× 1∗∗

71 5 2 4 23 6 6.1739 1633× 142 23× 2
71 5 3,4,5 5 11 6 6.4545 781× 71 11× 1∗∗

71 6 1,2,. . .,6 1 10 7 7.1000 710× 71 10× 1∗∗

71 7 1 4 35 8 8.1142 2485× 284 35× 4
71 7 2,3 6 17 8 8.3529 1207× 142 17× 2
71 7 4,5,6,7 7 8 8 8.8750 568× 71 8× 1∗∗

71 8 1 5 31 9 9.1612 2201× 284 31× 4
71 8 2 6 23 9 9.2608 1633× 213 23× 1∗∗

71 8 3 7 15 9 9.4666 1065× 142 15× 2
71 8 4,5,6,7,8 1 7 9 9.1428 497× 71 7× 1∗∗

71 9 1,2,. . .,9 1 7 10 10.1428 497× 71 7× 1∗∗

71 10 1 3 32 11 11.0937 2272× 355 32× 5
71 10 2 4 19 11 11.2105 1349× 213 19× 3
71 10 3,4,. . .,10 5 6 11 11.8333 426× 71 6× 1∗∗

TABLE I
PARTITION ENCODING FOR SUICP(SNI) WITH K = 71 AND U ≤ D ≤ 10 (**INSTANTLY DECODABLE INDEX CODES).

number of broadcast symbols used by any receiver to decode
its wanted message. The 9th column of Table I also indicates
instantly decodable codes.

III. SCALAR LINEAR INDEX CODES FOR SUICP(SNI)
In this section, we give scalar linear index codes for

SUICP(SNI) with arbitrary K,D and U .

Theorem 2. Consider a SUICP(SNI) with arbitrary K,D and
U . Let a and b be the non negative integers satisfying the
relation

gcd(K + a,D + 1 + a+ b) ≥ U + 1 + a. (8)

Then, for this SUICP(SNI), an AIR matrix of size (K + a)×
(D+1+a+b) can be used as an encoding matrix to generate
an index code with length D + 1 + a+ b.

Example 4. Consider SUICP(SNI) with K = 19, D = 13 and
U = 3. These K,D and U satisfy (8) with a = 1 and b = 0.
Hence, AIR matrix of size (K+a)×(D+1+a+b) = 20×15
can be used as an encoding matrix for this SUICP(SNI). The
length of the index code is 15.

Example 5. Consider SUICP(SNI) with K = 71, D = 52 and
U = 16. These K,D and U satisfy (8) with a = 1 and b = 0.
Hence, AIR matrix of size (K+a)×(D+1+a+b) = 72×54
can be used as an encoding matrix for this SUICP(SNI). he
length of the index code is 54.

The following lemma guarantees that the length of index
code for SUICP(SNI) with arbitrary K,D and U is less than
D + U + 1.

Lemma 1. For an SUICP(SNI) with arbitrary K,D and U ,
AIR matrix of size K×(D+U+1) can be used as an encoding
matrix.

IV. IMPROVED UPPER-BOUNDS ON THE BROADCAST RATE
OF SUICP(SNI)

Let S = {(a, b) : gcd(bK, b(D + 1) + a) ≥ b(U + 1)}.
In Theorem 1, we gave reduced complexity index code for
SUICP(SNI) with length D + 1 + a

b . In [10], we gave an
algorithm to find out the values of a and b in S such that
a
b is minimum and gave an index code with length D + 1 +
(ab )min. However, for a given K, for certain values of D and
U , we get D+ 1+ (ab )min = K and this length does not give
any advantage when compared with uncoded transmission. In
Lemma 2, we give the values of D and U for a given K for
which D + 1 + (ab )min = K.

Lemma 2. Consider an SUICP(SNI) with K,D and U . Let

Dl =

[⌊
lK

l + 1

⌋
:

⌊
(l + 1)K

l + 2

⌋
− 1

]
, (9)

Ul =
[⌊

K

l + 2

⌋
:

⌊
K

l + 1

⌋
− 1

]
, (10)

for some non negative integer l. Let D and U be such that

D ∈ Dl and U ∈ Ul (11)

for l ∈ Z+. For this SUICP(SNI), we get D+1+(ab )min = K.

The sets Dl and Ul for K = 71 and l ∈ [1 : 5] are given in
Table II. The value of D + 1 + (ab )min is given in Table III.

Theorem 3. Let l1 = D + 1 + (ab )min, where (ab )min is the
minimum value of a and b such that (a, b) ∈ S given in (7)
and a

b is minimum. Let l2 = D + 1 + (a+ b)min, where (a+
b)min is the minimum value of a and b satisfying (8) and (a+
b)min is minimum. The upperbound on the broadcast rate of
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l Dl Ul

1
[⌊

K
2

⌋
:
⌊
2K
3

⌋
− 1

]
= [35 : 46]

[⌊
K
3

⌋
:
⌊
K
2

⌋
− 1

]
= [23 : 34]

2
[⌊

2K
3

⌋
:
⌊
3K
4

⌋
− 1

]
= [47 : 52]

[⌊
K
4

⌋
:
⌊
K
3

⌋
− 1

]
= [17 : 22]

3
[⌊

3K
4

⌋
:
⌊
4K
5

⌋
− 1

]
= [53 : 55]

[⌊
K
5

⌋
:
⌊
K
4

⌋
− 1

]
= [14 : 16]

4
[⌊

4K
5

⌋
:
⌊
5K
6

⌋
− 1

]
= [56 : 58]

[⌊
K
6

⌋
:
⌊
K
5

⌋
− 1

]
= [11 : 13]

5
[⌊

5K
6

⌋
:
⌊
6K
7

⌋
− 1

]
= [59 : 59]

[⌊
K
7

⌋
:
⌊
K
6

⌋
− 1

]
= [10 : 10]

TABLE II

K D U a b D + 1 D + 1 + (a
b
)min Remark

71 44 1,2,3,4,5 2 11 45 45.1818 D ∈ Dl and U /∈ Ul
71 44 6, 7, . . . , 22 7 3 45 47.3333 D ∈ Dl and U /∈ Ul
71 44 23,24,25,26 26 1 45 71 D ∈ Dl and U ∈ Ul
71 45 1,2 3 20 46 46.1500 D ∈ Dl and U /∈ Ul
71 45 3, 4, . . . , 22 4 3 46 47.3333 D ∈ Dl and U /∈ Ul
71 45 23,24,25,26 25 1 46 71 D ∈ Dl and U ∈ Ul
71 27 27 15 28 28 28.535 D /∈ Dl and U ∈ Ul
71 33 25 3 34 46 34.0882 D /∈ Dl and U ∈ Ul
71 15 2 3 22 16 16.1363 D /∈ Dl and U /∈ Ul
71 3 1 2 35 4 4.0571 D /∈ Dl and U /∈ Ul

TABLE III
D + 1 + (a

b
)MIN FOR K = 71.

SUICP(SNI) is given by

β(G) ≤ min(l1, l2, D + U + 1).

Example 6. Consider an SUICP(SNI) with K = 71, D = 44
and U = 23. From Lemma 2, we have l1 = 71. From Theorem
2, we have l2 = 71. From Lemma 1, we have D+U+1 = 68.
Hence from Theorem 3, the upperbound is given by

β ≤ min(l1, l2, D + U + 1) = 68.

Example 7. Consider an SUICP(SNI) with K = 71, D = 52
and U = 16. From Lemma 2, we have l1 = 71. From Theorem
2, we have l2 = 54. From Lemma 1, we have D+U+1 = 69.
Hence, from Theorem 3, the upperbound is given by

β ≤ min(l1, l2, D + U + 1) = 54.

V. DISCUSSION

In this paper, we gave near-optimal vector linear index codes
for SUICP(SNI) for receivers with small buffer size. We gave
an improved upperbound on the broadcast rate of SUICP(SNI).
The broadcast rate and optimal coding for SUICP(SNI) with
arbitrary K,D and U is a challenging open problem.

ACKNOWLEDGEMENT

This work was supported partly by the Science and Engi-
neering Research Board (SERB) of Department of Science and
Technology (DST), Government of India, through J.C. Bose
National Fellowship to B. Sundar Rajan.

REFERENCES

[1] Y. Birk and T. Kol, “Informed-source coding-on-demand (ISCOD)
over broadcast channels”, in Proc. IEEE Conf. Comput. Commun., San
Francisco, CA, 1998, pp. 1257-1264.

[2] L Ong and C K Ho, “Optimal Index Codes for a Class of Multicast
Networks with Receiver Side Information”, in Proc. IEEE ICC, 2012,
pp. 2213-2218.

[3] A. Blasiak, R. Kleinberg and E. Lubetzky, “Broadcasting With side-
information: Bounding and Approximating the Broadcast Rate” CoRR,
in IEEE Trans. Inf. Theory,, vol. 59, no.9, pp.5811-5823, Sep. 2013.

[4] H. Maleki, V. Cadambe, and S. Jafar, “Index coding an interference
alignment perspective”, in IEEE Trans. Inf. Theory,, vol. 60, no.9,
pp.5402-5432, Sep. 2014.

[5] S. A. Jafar, Topological interference management through index coding,
IEEE Trans. Inf. Theory, vol. 60, no. 1, pp. 529568, Jan. 2014.

[6] A. Thomas, R. Kavitha, A. Chandramouli and B. S. Rajan, “Single
uniprior index coding with min-max probability of error over fading
channels,”in IEEE Trans. on Vehicular Technology, vol. 66, Jul. 2017,
pp. 6050-6059.

[7] A. Douik, S. Sorouar, T. Al-Naffouri and S. Alouini, “Instantly
decodable network coding: From centralized to device-to-device com-
munications, ” in IEEE Commun. Surveys and Tutorials, Feb 2017, pp.
1201-1224.

[8] M. B. Vaddi and B. S. Rajan, “Optimal scalar linear index codes
for one-sided neighboring side-information problems,” in Proc. IEEE
GLOBECOM NETCOD, Washington, USA, December 2016.

[9] M. B. Vaddi and B. S. Rajan, “Low-complexity decoding for sym-
metric, neighboring and consecutive side-information index coding
problems,” in arXiv:1705.03192v2 [cs.IT] 16 May 2017.

[10] M. B. Vaddi and B. S. Rajan, “A New Upperbound on the broadcast
rate and near-optimal vector linear codes for index coding problems
with symmetric neighboring interference”, in Proc.IEEE ISIT 2018,
Colorado, USA, pp. 601-605.

[11] M. B. Vaddi and B. S. Rajan, “Capacity of some index coding problems
with symmetric neighboring interference”, in Proc. IEEE ITW 2017,
Kaohsuing, Taiwan, Nov. 2017, pp. 294-298.

[12] M. B. Vaddi and B. S. Rajan, “Reduced complexity index codes and
improved upperbound on broadcast rate for neighboring interference
problems”, in arXiv:1901.07123v1 [cs.IT] 21 Jan 2019.

1251

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on October 19,2022 at 10:27:00 UTC from IEEE Xplore.  Restrictions apply. 


