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Abstract—In this paper we show that algebraic structure of standard authorizes LDPC codes with blocklengtlis200

codes can be used to improve dramatically the efficiency of and64 800 pseudo-randomly designed [8], with quasi-cycles
code reconstructions techniques especially in the case of quasi-of length 360.

cyclic LDPC codes of large block sizes which are widely used in | ti tructi findi | iaht
standards. We focus on the case where the receiver gets noisy n our seting reconstructing means finding low-weig

blocks, but the principle could be used in the case of non noisy Parity-check equations or equivalently low weight codesgor
reception. We also show that the smoother the length of the from the dual code. Without using the extra structure of the

quasi-cycle is, the better the trade-off can be tuned. codes, finding low-weight parity-check equations of theecod
can be extremely painful. In the noisy case the most efficient

I. INTRODUCTION
techniques presented in [5], [6] have a huge complexity in

We consider a framework where the communication channghmory and time even if one targets only very small weight
petween 'Fhe transmitter and the receiver is partially CODPEharity-check equations. In the case of cyclic codes some
tive.. For instance the context could be that of a receives wré_ttempts were made to use the structure to improve the effi-
for some or other reason has access to a sequence of N@jgcy of reconstructing the generator polynomial of theeco
codewords for some partially unknown code. The sequence kigsq guesses a candidate polynomial, computes the weight

been transmitted through a binary symmetric channel and $iyipution of the syndromes and compares this distriuti
user has some partial information about the code. He knows {g the theoretical distribution. If there is a distortiohen the

example the type of the family, the blocklength or the memogy, ngigate polynomial is a factor of the generator polynamia
of the encoder and maybe the architecture upon which the coge 11].

was built as could be the case in some standards. From thig, this paper we consider a completely different approach.
partial knowledge, our receiver wants to recpnstruct th#ecoThe idea comes from some cryptographic techniques which
and the encoder that was used for the encoding of the Messa@&iyzed the security of McEliece-like cryptosystems gisin

so as to quasi-cyclic structures, [12], [13]. We suppose that thdeco
1) Remove the noise from the received sequence ; is quasi-cyclic and that the receiver knows the position of
2) Recover the information vector, if for instance the enhe orbits under the action of the permutation group of the
coding is systematic. code. Some codewords are received after transmissionghrou

Reconstruction problems were already addressed for vari@ubinary symmetric chann®SC From the knowledge of the
classes of codes and in the general context of knowing ordybits we can make a projection of folding in the sense of [18]
general information on the code and not necessarily acoessvhich transfers the problem of reconstructing the parerf?CD
information on the algebraic structure. [1]-[6]. code to the problem of reconstructing a code with smaller
However, when implemented in systems with limited reparameters but from the knowledge of noisier codewordssinc
sources, codes generally come with a strong algebraic-strtlee folding operation also operates on the channel.
ture. The reason is that an algebraic structure can be estyem Provided the parameters are well chosen and there are
useful to save memory and to potentially parallelize thenough received codewords, there is a strong relation leetwe
encoding. This is especially the case for LDPC codes thadrity-check equations of the projected code and the aigin
one finds in standards. These codes usually come with quaside. This idea can be iterated if the index of the quasiicycl
cyclic or convolutional structures. They traditionally viea code is smooth (has many factors). And in this case offers a
large lengths of several thousands of bits. The quasieycpotential trade-off between computational and data coxitgle
or convolutional structure enables to perform the encotiyng and amount of data available at the receiver’'s end.
storing only a few rows of the parity-check matrix and using a Since reconstructing LDPC codes reduces to finding low
LFSR based architecture. For a good survey of binary LDR@ight codewords in the dual code, we briefly recall the
codes in standards, the reader can refer to [7], chapt@n complexity of one of the most efficient technique in a noisy
French). This is the reason why we focus on the so-calledvironment. This is also one of the simplest to analyze. In a
reconstruction of LDPC codes in a noisy environment. Thesecond part, we recall the definition of quasi-cyclic codes.
codes are widely implemented in standards, versatile anel ha third part, we describe the so-called folding operatioe. W
usually a strong algebraic structure. For instance the [32B- show that in the case where the code is quasi-cyclic, the dual



of the folded code is also the folded of the dual code. In a Example 1:Here are some parameters if we suppose regular
fourth part, we finally explain how to exploit this property t LDPC codes with ratd /2, parity-check equations of weight
improve the complexity of the recovery of low-weight parity 8 over a BSC with cross-over probabiliy- 1073,

check equations.

n | My | Bin. Ops.| List Size
Il. FINDING SMALL WEIGHT CODEWORDS IN NOISY 64 300 31 973 T
ENVIRONMENT 16 200 9218 260 935
At the receiver's end one has/ noisy codewords
by,..., by coming from the same targeted codeof length

If e = 0, then there exist more efficient algorithms to recover
small weight codewords. However when the noise increases (
decreases), then the most efficient algorithms use thesk kin
gf techniques. Thus, considering the complexities, it can b

equations could provide some useful information. In [5] the, . i .
author study two techniques to find parity-check equatidns %f Interest to find a tradg-gff between the noise and the code
4ength to improve the efficiency.

low Hamming weight. In the context of a noisy environment,
the most efficient is the Chose-Joux-Mitton [14] (CJM) algo-
rithm which is based on the search for collisions. The other

one is based on Gaussian elimination [3], which is rather\yie consider only binary codes, although this framework can
efficient whenever there are no noisy codewords, but whigf adapted to the non-binary case. Quasi-cyclic codes can be
is not noise-proof. This approach was further improved In [onsidered as module codes over polynomial rings, [15], [16
combining the best of the two techniques by a sort of tradie-qfyt for our purpose it is more meaningful to describe them as
between Gaussian elimination and collision techniquasceSi being invariant codes under the action of a cyclic permoitati
our goal in the paper is to show the advantage of using i@ constant size orbits. In the following we will consider

algebraic structure of the targeted code in terms of data agl; vectorc € GF(2)" wheren = Np under the form
computational complexity, to simplify our analysis we only

n and dimensiork. Reconstructing’ in this context implies
finding parity-check equations. Ideally sufficiently enbuip
recover the whole code, but practically recovering onlya fe

[1l. QUASI-CYCLIC CODES

consider the CJM algorithm. c=(ci,...,cn),
We consider the following parameters:
1) The number of noisy available codewotsls ..., by, of Wherei=1,..., L ¢; = (Ci4(i—1)p>-- > Cp+(i-1)p)-
lengthn is equal toM. This corresponds to the amount Definition 1 (Quasi-cyclic codes)et C C GF(2)", where
of data available at the receiver’s end ; n = Np. ThenC is quasi-cyclic of index if up to permutation
2) The cross-over probability of the BSC channel is equaf the components of the code
to1/2 —¢;

3) The weight of the targeted parity-check equationgis V(€1,---,¢n) €C, then(c; >>>1,...,cy >>>1) eC
For simplicity we assume that and w are even numbers.

Then results from [5], [7] imply that for sufficiently low feé (Cir(i-1ps- - Cpis_n)y) and >>> 1 denotes the right
alarm one needs at2least . circular Sermutgtion 0? the components of the vectoysof
o M > (4/(2¢)“)” codewords, that is one needs at lea%'izep.
Mn bits ;
o If M is sufficiently large, the average computational co§;
in binary operations to find one parity-check equation

where for 1 = 1,...,N, we have c; =

This implies in particular that the permutation group
erm(C) is non trivial and contains a cyclic group generated
|'r?y a permutation- which is a product of cycles of size The

given by group action ofr is described in figure 1.
2+ (ur2) n
Cor =2 72 < ) (1)
(n— k) ()5) (1 + (2€)»)f \w
. o . . Iol 7(01) Tr71(0|1) or, T(0N1 - 7171(0{\0
where ¢ is a constant giving the size of the window AT A NG O |
on which collision are considered. In applications this o, oy
quantity can be optimized depending on the weight of _ _ _
the targeted equations and the length of the code. The Fig. 1. Action of the generator of the cyclic group
impact in term of list size is: ) ) ) o )
It is also usual to find more algebraic description of quasi-
Lo =c- ( " ) (2) cyclic codes as module codes over a quotient polynomial
w/2 ring [15], [16]. However in our case we will use only the
wherec is a small constant. permutation group structure. So we will focus only on the
Equation (1) shows that for constahsmall noise ¢ small), binary representation of code vectors.
providedw << n, the complexity is proportional ta™ /w!, Another well-known property is that € is quasi-cyclic of

thus exponential in the size of the code. index p, then C* is also quasi-cyclic of index. Hence a



quasi-cyclic code has a parity-check/generator matrixhef tNote that proposition 1 does not necessarily imply that t he

form minimum distance of the folded code is less than that of the
A A - Ay parent code. Namely in theory, many codewords of weight
Az Ay - Agy could be folded onto the all zero vector. A description of the

: : : ’ ©) operation can be found at figure 2.

Ajp Ajp - Ay o on

where A;; are p x p binary circulant matrices. Such an_/"w"x

algebraic is of interest in applications where limited eses Lo [roo] plep o [on foo] o fTed

is available since the encoding of the information can be

implemented by clocking LFSR’s of sizg. This enables

simple parallelization and saves memory, see [17] for msta | .., *T(ol) Clpfl(ol) coy 4,(0L| ...CTL,I(OL)

IV. PROJECTION OR FOLDING OPERATION \ / \l/
5}

The technique of projecting of folding code by considering 1 i
a subcode of the invariant code and keeping only column per Dicrin) Di € ri(o)
orbit is not new, [18]. This technique has already been ricen
applied to cryptanalysis of public-key encryption schemes Fig. 2. Folding the code

based on MDPC/LDPC codes or LRPC codes using doubly-
circulant structure, [12], [13]. However since the term of In general case there is no obvious relation betwelen /-
folding is more employed in cryptanalysis papers, we witt uscodeC and its correspondingV, Iﬂ -codeC except the obvious

this term rather than projecting. relation relating the dimensiong, < pk. However whenever
Let 7 € S, be a product ofV cycles of sizep. Fori = ( is a quasi-cyclic code of index this is another story and
., N let us denote by some useful properties can be derived.
b1 Proposition 2:Let C C GF(2™) be quasi-cyclic of index
O = {oi,7(0i),..., ™" (0i)}. p, given by a generator matrix under the form (3). Then the
Thus O, corresponds to thith cycle of sizep. Since the orbits dimensionk of the projected codé€ satisfiesk < J.
form a partition of the sef1,...,n}, a vector of lengtm will ~ Proof 2: The idea is that thep x n each submatrix
be labeled accordingly under the form (Ai1,...,A;n) of the generator matrix of the codeprojects
onto apx N matrices of rank. See [13], [18] for more details.
c=(co,,.--,Coy)- The core result on which is based all the subsequent analysis

and simulations is the following theorcli
Theorem 1:Let C C GF(2") be a quasi-cyclic code of
index p. Then we have

With this notation we define the following folding operation
Definition 2 (Folding operation):Let n = pN, 7 €
S,, and let O; be the corresponding orbits of size Let B -
b = (bo,,...,bo,) € GF(2)". Then the folding operation ct=ct

relatively tor is defined by Proof 3: Leth € CNl and leth € C* be a preimage oh.

~ Now let¢ € C and letc € C be a preimage. We have
bz(Zbu,...,Zbu> N
u€Oy ueOn h-c— Z Z huCu -0
Vector b is a binary vector of lengthiV, and the vectob =0 u€0;
is its preimage. An obvious property of this operation istthdet - be a generator of the quasi-cycle as described in the
it necessary decreases the Hamming weight previous section. Let us denote by be the vectorh on

Proposition 1:1f wt is the Hamming weight function, thenwhich the permutation acts,i.e.

(hr(1ys s hen))

Proof 1: Since we haveut(b) = S~  wt(bp,), if the ith Now sincer € Perm(C), it is also in the permutation group
componenth; of b is non-zero, this implies necessarily tha®f C*, therefore

wt(b) < wt(b). hm

wt(boi) 2 1.1 ;
The folding operation is naturally additive, and thus canbe Vj=0,...,p—1, h™ .c= Z Z hri(uycu =0
extended to vector spaces and codes. i=1 ueo;

Definition 3 (F0|d6d COdE)"_etT € S, and letC C GF(Q)" by Summing orny one obtains
be a[n, k, d] linear code. Then the folded code is defined by o1

N p—1
CY@lcecy 220 Moo =0=3_ 3 Y hoaes

j=0i=1 ucO; i=1 ucO; j=0



Since the orbits have same sigefor j = 0,...,p — 1 and
for any v € O;, 7(u) describes the orbit. This implies that
Z;’;é h.i ) does not depend on the chosen elemeitt the
orbit O;. Hence

N p—1 N
Z Z Zth(“)C“ :Z Z hu . Z Cy =0

i=1ueQ; =0 i=1 ueO; ue0;

he

V. FOLDING THE CHANNEL
Suppose that at the receiver's end one gets GF(2")

o We use as a black-box the CIM algorithm described at
section II;

o The receiver aims at finding parity-check equation€ of
of weight w.

The reconstruction principle is:

1) Select a folding indey’ dividing p such thatp’ is the
largest integer satisfying

1> ()

2) Apply the folding operation on

(4)

bi,....by € (GF2))M by, ... by € (GF(2)"/P)M,

such that 3) lterate CJIM algorithm on the folded received vectors

and obtainT’ parity-check equations of weight for C
sayhy,... hy; _
4) Find preimages; of weightw of the equations,;.

b:(bl,...,bn):(Cl,...,Cn)+e,

—_——
eC

where C is a quasi-cyclic code of index, and e
(e1,-..,en) € GF(2)" Is an error vector modelizing the effect |, the second item, the folding operation is applied to
of a BSC with cross-over probability/2—e. This implies that recejved vectors, which are from previous results, noisy
the e;'s are realizations of identically distributed independen.qggewordsC’ modified by the action of a BSC with cross-
Bernoulli trials such that over probability1/2(1 — (2¢?)) The inequality condition on

. Pr(e;=0)=1/2+¢ the amount of received data ensures that there are enough

Vi=1,...,n
Pr(e;=1)=1/2—¢

codewords so that the statistical test of CIM algorithm is
By applying the folding operation of definition 2 to we Meaningful.
obtain

Concerning the third item, we know from proposition 1 that
a parity-check equatioh of weightw of the codeC is folded
onto a parity-check equatidm of weight at mosto of C. The
Hamming weights are equal if and only if there is at most one
wheree = (ey,...,€ex) is an error-vector modelizing a BSCnon-zero position per orbit. In our reconstruction hypstse
channel with cross-over probability/2(1 — (2¢?)), that is we suppose_that for most of the parity-check equations of
~ » weightw in C, there exists a preimage of weigit
Vi=1,...,n { Eig;f _ (1)3 _ igg i— ggp;’ Two results back up this claim:

‘ « In standards, parity-check equations of LDPC codes have

The independence of the random variabiges= Zueoi ey

usually at most one non-zero bit per orbit. Therefore any
is directly induced from the fact that the orbit% consist of parity-check equatioi of weight w can be folded onto
distinct elements.

a parity-check equation of weight exactly,
Examp!))e 2:Suppose that the channel has cross-over proba-, The Hamming weightw of the targeted parity-check
bility 10~ then e

equations is well below Varshamov-Gilbert boundof.
« if p =2, the projected channel has cross-over probability We use this condition to guarantee that a randomly chosen

b c _+e,

c

2x 1073 ; parity-check equation foC cannot be folded onto a
o if p =45, the projected channel has cross-over probabil- parity-check equation of weight for C. This condition
ity 4.3 x 1073 ; is clearly necessary, but is not sufficient. Namelyyifs
o if p = 360, the projected channel has cross-over proba- larger than this bound it is not possible to distinguish the
bility 0.25. obtained parity-check equation from a randomly chosen
VI. RECONSTRUCTION METHODOLOGY parity-check equation.

bi,...,bas. The reconstruction hypotheses are the followinghis is well beyond the scope of the article. The efficiency
. forall j=1 M of the technique that we describe on an examples supposes

that the index of the quasi-cyclic code is smooth (can be
decomposed in small factors). Roughly speaking, a quasi-
cyclic code of indexp is also a quasi-cyclic code of index
p’ wherep’ is any divisor ofp. This idea is thus to find a
suitablep’ and a path of divisors from to p':

bj:cj—l—ej

wherec; € C ande; modelizes a BSC channel with
cross-over probability /2 — ¢;
o The codeC is a quasi-cyclic code of indey, and the

positions of the orbits are known to the receiver; 1—=pr— - —p—p



This path of divisors gives also a path of folded codes was a rate3/5 code of lengthn = 16 200 generated via
the standards of DVB-S2, and noisy codewords were received
over a channel with nois&- 10-5. We ran1 iteration of the
wherepi,1/p; is small typically less thas. We find weight algorithm for different indexes. The amount of data on which
w parity-check equations fof; form weightw parity-check We operated isM = 200 noisy codewords. The results are
equations formC;_, by testing the(p;/p;_1)" possibilities. Presented in the following table:

Therefore, if the maximum of thg; /p;_1, the complexity of
step 4 is negligible. 7T Number of Egs. | Ov. time(s) [ Time per Eq.(s)| List Size

CoC =0 —C

g
S

This approach is particularly well suited to the family of g } - 632 91' fgg . 13(7) 31;
LDPC codes specified in the DVB-S2 standard, [8]. Theseg | 79 8 1174 23 29
codes have length6 200 or 64 800. These are not quasi-cyclic, TABLE Il

but can pe made quasrpychc of md@(_: 360 by a pUb“C SIMULATION RESULTS FORDVB-S2 LDPCCODE WITH RATE3/5 AND
permutation and puncturing some positions. The inglgx= LENGTH 16 200

23325 is very smooth. The trellis of divisors is presented in

figure 3 When searching parity-check equations of weightour

M — 23325 — 360 method speeds up the computational complexity by a factor

/ | \ of 50, and the list size factor gain &00.
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