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Abstract—In this paper we show that algebraic structure of
codes can be used to improve dramatically the efficiency of
code reconstructions techniques especially in the case of quasi-
cyclic LDPC codes of large block sizes which are widely used in
standards. We focus on the case where the receiver gets noisy
blocks, but the principle could be used in the case of non noisy
reception. We also show that the smoother the length of the
quasi-cycle is, the better the trade-off can be tuned.

I. I NTRODUCTION

We consider a framework where the communication channel
between the transmitter and the receiver is partially coopera-
tive.. For instance the context could be that of a receiver who
for some or other reason has access to a sequence of noisy
codewords for some partially unknown code. The sequence has
been transmitted through a binary symmetric channel and the
user has some partial information about the code. He knows for
example the type of the family, the blocklength or the memory
of the encoder and maybe the architecture upon which the code
was built as could be the case in some standards. From this
partial knowledge, our receiver wants to reconstruct the code
and the encoder that was used for the encoding of the message
so as to

1) Remove the noise from the received sequence ;
2) Recover the information vector, if for instance the en-

coding is systematic.

Reconstruction problems were already addressed for various
classes of codes and in the general context of knowing only
general information on the code and not necessarily access to
information on the algebraic structure. [1]–[6].

However, when implemented in systems with limited re-
sources, codes generally come with a strong algebraic struc-
ture. The reason is that an algebraic structure can be extremely
useful to save memory and to potentially parallelize the
encoding. This is especially the case for LDPC codes that
one finds in standards. These codes usually come with quasi-
cyclic or convolutional structures. They traditionally have
large lengths of several thousands of bits. The quasi-cyclic
or convolutional structure enables to perform the encodingby
storing only a few rows of the parity-check matrix and using an
LFSR based architecture. For a good survey of binary LDPC
codes in standards, the reader can refer to [7], chapter4 (in
French). This is the reason why we focus on the so-called
reconstruction of LDPC codes in a noisy environment. These
codes are widely implemented in standards, versatile and have
usually a strong algebraic structure. For instance the DVB-S2

standard authorizes LDPC codes with blocklengths16 200
and64 800 pseudo-randomly designed [8], with quasi-cycles
of length360.

In our setting reconstructing means finding low-weight
parity-check equations or equivalently low weight codewords
from the dual code. Without using the extra structure of the
codes, finding low-weight parity-check equations of the code
can be extremely painful. In the noisy case the most efficient
techniques presented in [5], [6] have a huge complexity in
memory and time even if one targets only very small weight
parity-check equations. In the case of cyclic codes some
attempts were made to use the structure to improve the effi-
ciency of reconstructing the generator polynomial of the code.
One guesses a candidate polynomial, computes the weight
distribution of the syndromes and compares this distribution
to the theoretical distribution. If there is a distortion, then the
candidate polynomial is a factor of the generator polynomial,
[9]–[11].

In this paper we consider a completely different approach.
The idea comes from some cryptographic techniques which
analyzed the security of McEliece-like cryptosystems using
quasi-cyclic structures, [12], [13]. We suppose that the code
is quasi-cyclic and that the receiver knows the position of
the orbits under the action of the permutation group of the
code. Some codewords are received after transmission through
a binary symmetric channelBSC. From the knowledge of the
orbits we can make a projection of folding in the sense of [18]
which transfers the problem of reconstructing the parent LDPC
code to the problem of reconstructing a code with smaller
parameters but from the knowledge of noisier codewords since
the folding operation also operates on the channel.

Provided the parameters are well chosen and there are
enough received codewords, there is a strong relation between
parity-check equations of the projected code and the original
code. This idea can be iterated if the index of the quasi-cyclic
code is smooth (has many factors). And in this case offers a
potential trade-off between computational and data complexity
and amount of data available at the receiver’s end.

Since reconstructing LDPC codes reduces to finding low
weight codewords in the dual code, we briefly recall the
complexity of one of the most efficient technique in a noisy
environment. This is also one of the simplest to analyze. In a
second part, we recall the definition of quasi-cyclic codes.In
a third part, we describe the so-called folding operation. We
show that in the case where the code is quasi-cyclic, the dual



of the folded code is also the folded of the dual code. In a
fourth part, we finally explain how to exploit this property to
improve the complexity of the recovery of low-weight parity-
check equations.

II. F INDING SMALL WEIGHT CODEWORDS IN NOISY

ENVIRONMENT

At the receiver’s end one hasM noisy codewords
b1, . . . ,bM coming from the same targeted codeC of length
n and dimensionk. ReconstructingC in this context implies
finding parity-check equations. Ideally sufficiently enough to
recover the whole code, but practically recovering only a few
equations could provide some useful information. In [5] the
author study two techniques to find parity-check equations of
low Hamming weight. In the context of a noisy environment,
the most efficient is the Chose-Joux-Mitton [14] (CJM) algo-
rithm which is based on the search for collisions. The other
one is based on Gaussian elimination [3], which is rather
efficient whenever there are no noisy codewords, but which
is not noise-proof. This approach was further improved in [6]
combining the best of the two techniques by a sort of trade-off
between Gaussian elimination and collision techniques. Since
our goal in the paper is to show the advantage of using the
algebraic structure of the targeted code in terms of data and
computational complexity, to simplify our analysis we only
consider the CJM algorithm.

We consider the following parameters:
1) The number of noisy available codewordsb1, . . . ,bM of

lengthn is equal toM . This corresponds to the amount
of data available at the receiver’s end ;

2) The cross-over probability of the BSC channel is equal
to 1/2− ǫ;

3) The weight of the targeted parity-check equations isw.
For simplicity we assume thatn and w are even numbers.
Then results from [5], [7] imply that for sufficiently low false
alarm one needs at least

• M > (4/(2ǫ)w)
2 codewords, that is one needs at least

Mn bits ;
• If M is sufficiently large, the average computational cost

in binary operations to find one parity-check equation is
given by

CCF = 2
2ℓ +

(
n/2
w/2

)

(n− k)
(
n/2
w/2

)
(1 + (2ǫ)w)ℓ

(
n

w

)
(1)

where ℓ is a constant giving the size of the window
on which collision are considered. In applications this
quantity can be optimized depending on the weight of
the targeted equations and the length of the code. The
impact in term of list size is:

LCJM = c ·

(
n

w/2

)
(2)

wherec is a small constant.
Equation (1) shows that for constantℓ small noise (ǫ small),

providedw << n, the complexity is proportional tonw/w!,
thus exponential in the size of the code.

Example 1:Here are some parameters if we suppose regular
LDPC codes with rate1/2, parity-check equations of weight
8 over a BSC with cross-over probability2 · 10−3.

n Mmin Bin. Ops. List Size
64 800 31 273 241

16 200 218 260 235

If ǫ = 0, then there exist more efficient algorithms to recover
small weight codewords. However when the noise increases (ǫ
decreases), then the most efficient algorithms use these kind
of techniques. Thus, considering the complexities, it can be
of interest to find a trade-off between the noise and the code
length to improve the efficiency.

III. QUASI-CYCLIC CODES

We consider only binary codes, although this framework can
be adapted to the non-binary case. Quasi-cyclic codes can be
considered as module codes over polynomial rings, [15], [16]
but for our purpose it is more meaningful to describe them as
being invariant codes under the action of a cyclic permutation
with constant size orbits. In the following we will consider
any vectorc ∈ GF (2)n wheren = Np under the form

c = (c1, . . . , cN ),

wherei = 1, . . . , L ci = (c1+(i−1)p, . . . , cp+(i−1)p).
Definition 1 (Quasi-cyclic codes):Let C ⊂ GF (2)n, where

n = Np. ThenC is quasi-cyclic of indexp if up to permutation
of the components of the code

∀(c1, . . . , cN ) ∈ C, then (c1 >>> 1, . . . , cN >>> 1) ∈ C

where for i = 1, . . . , N , we have ci =
(c1+(i−1)p, . . . , cp+(i−1)p) and >>> 1 denotes the right
circular permutation of the components of the vectorsci of
sizep.

This implies in particular that the permutation group
Perm(C) is non trivial and contains a cyclic group generated
by a permutationτ which is a product of cycles of sizep. The
group action ofτ is described in figure 1.

· · ·

O1 ON

o1 τ(o1) · · · τp−1(o1) oL τ(oN ) · · · τp−1(oN )

Fig. 1. Action of the generatorτ of the cyclic group

It is also usual to find more algebraic description of quasi-
cyclic codes as module codes over a quotient polynomial
ring [15], [16]. However in our case we will use only the
permutation group structure. So we will focus only on the
binary representation of code vectors.

Another well-known property is that ifC is quasi-cyclic of
index p, then C⊥ is also quasi-cyclic of indexp. Hence a



quasi-cyclic code has a parity-check/generator matrix of the
form 



A11 A12 · · · A1N

A21 A22 · · · A2N

...
...

. ..
...

AJ1 AJ2 · · · AJN


 , (3)

where Aij are p × p binary circulant matrices. Such an
algebraic is of interest in applications where limited resources
is available since the encoding of the information can be
implemented by clocking LFSR’s of sizep. This enables
simple parallelization and saves memory, see [17] for instance.

IV. PROJECTION OR FOLDING OPERATION

The technique of projecting of folding code by considering
a subcode of the invariant code and keeping only column per
orbit is not new, [18]. This technique has already been recently
applied to cryptanalysis of public-key encryption schemes
based on MDPC/LDPC codes or LRPC codes using doubly-
circulant structure, [12], [13]. However since the term of
folding is more employed in cryptanalysis papers, we will use
this term rather than projecting.

Let τ ∈ Sn be a product ofN cycles of sizep. For i =
1, . . . , N let us denote by

Oi = {oi, τ(oi), . . . , τ
p−1(oi)}.

ThusOi corresponds to theith cycle of sizep. Since the orbits
form a partition of the set{1, . . . , n}, a vector of lengthn will
be labeled accordingly under the form

c = (cO1
, . . . , cON

).

With this notation we define the following folding operation.
Definition 2 (Folding operation):Let n = pN , τ ∈

Sn, and let Oi be the corresponding orbits of sizep. Let
b = (bO1

, . . . ,bON
) ∈ GF (2)n. Then the folding operation

relatively toτ is defined by

b̃ =

(
∑

u∈O1

bu, . . . ,
∑

u∈ON

bu

)
.

Vector b̃ is a binary vector of lengthN , and the vectorb
is its preimage. An obvious property of this operation is that
it necessary decreases the Hamming weight

Proposition 1:If wt is the Hamming weight function, then

wt(b̃) ≤ wt(b).

Proof 1: Since we havewt(b) =
∑N

i=1 wt(bOi
), if the ith

component̃bi of b̃ is non-zero, this implies necessarily that
wt(bOi

) ≥ 1. �
The folding operation is naturally additive, and thus can be

extended to vector spaces and codes.
Definition 3 (Folded code):Let τ ∈ Sn and letC ⊂ GF (2)n

be a[n, k, d] linear code. Then the folded code is defined by

C̃
def
= {c̃ | c ∈ C}

Note that proposition 1 does not necessarily imply that t he
minimum distance of the folded code is less than that of the
parent code. Namely in theory, many codewords of weight
could be folded onto the all zero vector. A description of the
operation can be found at figure 2.

· · ·· · ·

O1

· · ·

· · · · · · coL · · ·cτ(oL)

⊕ ⊕

τ(oL)oLτp−1(o1)o1 τ(o1)

⊕
i c

τi(o1) · · ·

cτ(o1)co1
c
τp−1(o1)

τp−1(oL)

c
τp−1(oN )

ON

⊕
i c

τi(oN )

Fig. 2. Folding the code

In general case there is no obvious relation between a[n, k]-
codeC and its corresponding[N, k̃]-codeC̃ except the obvious
relation relating the dimensions,̃k ≤ pk. However whenever
C is a quasi-cyclic code of indexp this is another story and
some useful properties can be derived.

Proposition 2: Let C ⊂ GF (2n) be quasi-cyclic of index
p, given by a generator matrix under the form (3). Then the
dimensionk̃ of the projected codẽC satisfies̃k ≤ J .

Proof 2: The idea is that thep × n each submatrix
(Ai1, . . . ,AiN ) of the generator matrix of the codeC projects
onto ap×N matrices of rank1. See [13], [18] for more details.

The core result on which is based all the subsequent analysis
and simulations is the following theorem�

Theorem 1:Let C ⊂ GF (2n) be a quasi-cyclic code of
index p. Then we have

C̃⊥ = C̃⊥

Proof 3: Let h̃ ∈ C̃⊥, and leth ∈ C⊥ be a preimage of̃h.
Now let c̃ ∈ C̃ and letc ∈ C be a preimage. We have

h · c =

N∑

i=0

∑

u∈Oi

hucu = 0

Let τ be a generator of the quasi-cycle as described in the
previous section. Let us denote byhτ be the vectorh on
which the permutationτ acts,i.e.

h
τ def

= (hτ(1), . . . , hτ(n))

Now sinceτ ∈ Perm(C), it is also in the permutation group
of C⊥, therefore

∀j = 0, . . . , p− 1, h
τj

· c =

N∑

i=1

∑

u∈Oi

hτj(u)cu = 0

by summing onj one obtains
p−1∑

j=0

N∑

i=1

∑

u∈Oi

hτj(u)cu = 0 =
N∑

i=1

∑

u∈Oi

p−1∑

j=0

hτj(u)cu



Since the orbits have same sizep, for j = 0, . . . , p − 1 and
for any u ∈ Oi, τ(u) describes the orbit. This implies that∑p−1

j=0 hτj(u) does not depend on the chosen elementu in the
orbit Oi. Hence

N∑

i=1

∑

u∈Oi

p−1∑

j=0

hτj(u)cu =

N∑

i=1

∑

u∈Oi

hu ·
∑

u∈Oi

cu

︸ ︷︷ ︸
h̃·c̃

= 0

�

V. FOLDING THE CHANNEL

Suppose that at the receiver’s end one gets⌊ ∈ GF (2n)
such that

b = (b1, . . . , bn) = (c1, . . . , cn)︸ ︷︷ ︸
∈C

+e,

where C is a quasi-cyclic code of indexp, and e =
(e1, . . . , en) ∈ GF (2)n is an error vector modelizing the effect
of a BSC with cross-over probability1/2−ǫ. This implies that
the ei’s are realizations of identically distributed independent
Bernoulli trials such that

∀ i = 1, . . . , n

{
Pr(ei = 0) = 1/2 + ǫ
Pr(ei = 1) = 1/2− ǫ

By applying the folding operation of definition 2 tob we
obtain

b̃ = c̃︸︷︷︸
C̃

+ẽ,

where ẽ = (ẽ1, . . . , ẽN ) is an error-vector modelizing a BSC
channel with cross-over probability1/2(1− (2ǫp)), that is

∀ i = 1, . . . , n

{
Pr(ẽi = 0) = 1/2(1 + (2ǫ)p),
Pr(ẽi = 1) = 1/2(1− (2ǫ)p)

The independence of the random variablesẽi =
∑

u∈Oi
eu

is directly induced from the fact that the orbitsOi consist of
distinct elements.

Example 2:Suppose that the channel has cross-over proba-
bility 10−3 then

• if p = 2, the projected channel has cross-over probability
2× 10−3 ;

• if p = 45, the projected channel has cross-over probabil-
ity 4.3× 10−3 ;

• if p = 360, the projected channel has cross-over proba-
bility 0.25.

VI. RECONSTRUCTION METHODOLOGY

The receiver has access toM binary vectors of lengthn, say
b1, . . . ,bM . The reconstruction hypotheses are the following:

• for all j = 1, . . . ,M

bj = cj + ej

where cj ∈ C and ej modelizes a BSC channel with
cross-over probability1/2− ǫ;

• The codeC is a quasi-cyclic code of indexp, and the
positions of the orbits are known to the receiver;

• We use as a black-box the CJM algorithm described at
section II;

• The receiver aims at finding parity-check equations ofC
of weightw.

The reconstruction principle is:
1) Select a folding indexp′ dividing p such thatp′ is the

largest integer satisfying

M >

(
4

(2ǫ)p′w

)2

; (4)

2) Apply the folding operation on

b1, . . . ,bM ∈ (GF (2)n)M
p′

→ b̃1, . . . , b̃M ∈ (GF (2)n/p
′

)M ;

3) Iterate CJM algorithm on the folded received vectors
and obtainT parity-check equations of weightw for C̃
say h̃1, . . . , h̃T ;

4) Find preimageshj of weightw of the equations̃hj .

In the second item, the folding operation is applied to
received vectors, which are from previous results, noisy
codewordsC̃ modified by the action of a BSC with cross-
over probability1/2(1 − (2ǫp

′

)) The inequality condition on
the amount of received data ensures that there are enough
codewords so that the statistical test of CJM algorithm is
meaningful.

Concerning the third item, we know from proposition 1 that
a parity-check equationh of weightw of the codeC is folded
onto a parity-check equatioñh of weight at mostw of C̃. The
Hamming weights are equal if and only if there is at most one
non-zero position per orbit. In our reconstruction hypotheses
we suppose that for most of the parity-check equations of
weightw in C̃, there exists a preimage of weightw.

Two results back up this claim:
• In standards, parity-check equations of LDPC codes have

usually at most one non-zero bit per orbit. Therefore any
parity-check equationh of weightw can be folded onto
a parity-check equation of weight exactlyw;

• The Hamming weightw of the targeted parity-check
equations is well below Varshamov-Gilbert bound ofC̃⊥.
We use this condition to guarantee that a randomly chosen
parity-check equation forC cannot be folded onto a
parity-check equation of weightw for C̃. This condition
is clearly necessary, but is not sufficient. Namely, ifw is
larger than this bound it is not possible to distinguish the
obtained parity-check equation from a randomly chosen
parity-check equation.

Different techniques to achieve step4 can be imagined. But
this is well beyond the scope of the article. The efficiency
of the technique that we describe on an examples supposes
that the index of the quasi-cyclic code is smooth (can be
decomposed in small factors). Roughly speaking, a quasi-
cyclic code of indexp is also a quasi-cyclic code of index
p′ where p′ is any divisor ofp. This idea is thus to find a
suitablep′ and a path of divisors from1 to p′:

1 → p1 → · · · → pt → p′



This path of divisors gives also a path of folded codes

C → C1 → · · · → Ct → C̃

wherepi+1/pi is small typically less than5. We find weight
w parity-check equations forCi form weightw parity-check
equations formCi−1 by testing the(pi/pi−1)

w possibilities.
Therefore, if the maximum of thepi/pi−1, the complexity of
step 4 is negligible.

This approach is particularly well suited to the family of
LDPC codes specified in the DVB-S2 standard, [8]. These
codes have length16 200 or 64 800. These are not quasi-cyclic,
but can be made quasi-cyclic of indexp = 360 by a public
permutation and puncturing some positions. The index360 =
23325 is very smooth. The trellis of divisors is presented in
figure 3

M = 23325 = 360

180 120 72

90 60 36 24

45 30 1820

15 10 9

2 3 5

64

812

40

Fig. 3. Trellis of360

With this technique, from the results of section II, we
obtain the following tables, whereMin M is the minimum
number of noisy codewords necessary for the reconstruction,
and Nb. Eq./Iter is the average number of parity-check
equations of weight8 found by one iteration of the CJM
algorithm where the windowℓ is optimized accordingly.

N p′ Min M Nb. Eq./Iter Ops Bins List Size
64 800 1 31 2 370 266 241

32 400 2 60 1 179 262 238

16 200 4 218 518 258 236

8 100 8 2074 274 254 233

5 400 12 40 554 251 231

TABLE I
CROSS-OVER PROBABILITY: 2%

N p′ Min M Nb. Eq./Iter Ops Bins List Size
1 800 36 180 112 245 227

1 440 45 287 90 244 226

720 90 5 136 45 240 223

TABLE II
CROSS-OVER PROBABILITY: 2.10−3

We ran an example with an implementation inC of the
algorithm presented in section II. The code we considered

was a rate3/5 code of lengthn = 16 200 generated via
the standards of DVB-S2, and noisy codewords were received
over a channel with noise1 · 10−6. We ran1 iteration of the
algorithm for different indexes. The amount of data on which
we operated isM = 200 noisy codewords. The results are
presented in the following table:

w p′ Number of Eqs. Ov. time(s) Time per Eq.(s) List Size
6 1 33 1 200 37 217

8 1 7 676 9 · 106 1 100 217

8 72 28 1 174 23 29

TABLE III
SIMULATION RESULTS FORDVB-S2 LDPCCODE WITH RATE3/5 AND

LENGTH 16 200

When searching parity-check equations of weight8, our
method speeds up the computational complexity by a factor
of 50, and the list size factor gain is300.
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