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Abstract—Private information retrieval (PIR) allows a user to
download one of K messages from N databases without revealing
to any database which of the K messages is being downloaded.
In general, the databases can be storage constrained where each
database can only store up to µKL bits where 1

N
≤ µ ≤ 1 and

L is the size of each message in bits. Let t = µN , a recent work
showed that the capacity of Storage Constrained PIR (SC-PIR)

is
(

1 + 1

t
+ 1

t2
+ · · ·+ 1

tK−1

)

−1
, which is achieved by a storage

placement scheme inspired by the content placement scheme in
the literature of coded caching and the original PIR scheme. Not
surprisingly, this achievable scheme requires that each message
is L =

(

N

t

)

tK bits in length, which can be impractical. In this
paper, without trying to make the connection between SC-PIR
and coded caching problems, based on a general connection
between the Full Storage PIR (FS-PIR) problem (µ = 1) and SC-
PIR problem, we propose a new SC-PIR design idea using novel
storage placement schemes. The proposed schemes significantly
reduce the message size requirement while still meeting the
capacity of SC-PIR. In particular, the proposed SC-PIR schemes
require the size of each file to be only L = NtK−1 compared
to the state-of-the-art L =

(

N

t

)

tK . Hence, we conclude that PIR
may not meet coded caching when the size of L is constrained.

I. INTRODUCTION

Recent works have taken an information theoretic approach

to solve the private information retrieval (PIR) problem [1],

[2] originally introduced by Chor et al. [3], [4]. In the PIR

problem, a user desires to privately download one of K
messages from N non-colluding databases. In this context,

privacy means that the identity of the message desired by the

user is not revealed to any database. Ensuring privacy relies

on the concept that a user will request sub-messages from

all K messages as opposed to just the message that the user

desires. To efficiently download the desired message, the user

strategically generates database queries that utilize undesired

but downloaded sub-messages for coding opportunities. The

rate of a PIR scheme is defined as the ratio of desired bits, L,

or the size of each message, to the total number of downloaded

bits, D. The capacity C (optimal rate) is defined as the

maximum achievable rate.

Previously, Sun and Jafar [1] derived the capacity of the

Full Storage PIR (FS-PIR) problem where a user privately

downloads one of K messages from N databases that each

stores all K messages. In this case, the capacity is C =
(

1 + 1
N

+ 1
N2 + · · ·+ 1

NK−1

)−1
, which was achieved by a

PIR scheme requiring L = NK . This result was further

generalized by Attia et al. [2] for the Storage Constrained

PIR (SC-PIR) problem where each database can only store

µKL uncoded bits where 1
N

≤ µ ≤ 1. In this case, both a

storage placement scheme and a PIR scheme (querying and

decoding) need to be designed. Let t = µN , the capacity

of SC-PIR is
(

1 + 1
t
+ 1

t2
+ · · ·+ 1

tK−1

)−1
under an uncoded

storage placement constraint and was achieved by a storage

placement scheme inspired by the coded caching problem [5]

and a PIR scheme based on [1]. One of the limitations of this

scheme is the requirement of a large message size, L =
(

N

t

)

tK

[2], which is due to the fact that the storage placement is

designed based on the cache placement in coded caching

problem [5]. Hence, the proposed PIR scheme of [2] can be

impractical for a large number of databases. This achievable

scheme was generalized to the decentralized storage placement

in [6]. Furthermore, Tian et al. [7] use Shannon theoretic

approach to analyze the SC-PIR problem for the canonical

case of K = 2 and N = 2 and proposed the optimal linear

scheme. More interestingly, they also showed that non-linear

scheme can use less storage than the optimal linear scheme.

In this paper, we aim to find SC-PIR schemes that achieve

the capacity of SC-PIR while requiring a significantly smaller

message size L. In order to achieve this goal, for the storage

placement, we abandon the idea of using the cache placement

of coded caching problem and design it from scratch. In fact,

our proposed SC-PIR schemes achieve the capacity and require

only L = NtK−1, which is significantly less than L =
(

N

t

)

tK

in [2]. More specifically, our contributions are as follows.

Our Contributions:

1) We provide a general design methodology for the SC-

PIR problem by establishing a generic connection be-

tween the FS-PIR and SC-PIR problems. Based on this

connection, a SC-PIR scheme can be readily designed

from any given FS-PIR scheme.

2) We propose a simple storage placement when N
t

is an

integer. By adopting the achievable scheme based on

[1], the capacity of SC-PIR can be achieved and L =
NtK−1. This serves as a base case for the more general

scenario when N
t

is not an integer.

3) When N
t

is not an integer, we propose a novel stor-

age placement, which in conjunction with the FS-PIR

scheme of [8], achieves the capacity of SC-PIR and only

http://arxiv.org/abs/1901.07490v1


requires L = NtK−1. The key to the reduction in L is

achieved using the proposed novel storage placement.

4) We present a set of sufficient conditions under which

the proposed SC-PIR schemes are capacity-achieving.

Notation Convention: We use | · | to represent the cardi-

nality of a set or the length of a vector and [n] := [1, 2, . . . , n].

II. PROBLEM FORMULATION

There are K independent messages, W1, . . . ,WK , each of

size L bits. The messages are collectively stored in an uncoded

fashion among N non-colluding databases that each has a

storage capacity of µKL bits, where 1
N

≤ µ ≤ 1. We define

Zn as the storage contents of database n ∈ [N ]. Also, we

define t , µN as the average number of times each bit of

the messages is stored among the databases. A user makes a

request Wk and sends a query Q
[k]
n , which is independent of

the messages, to each database n ∈ [N ] which then sends an

answer A
[k]
n such that

H(A[k]
n |Zn, Q

[k]
n ) = 0, ∀k ∈ [K]. (1)

Furthermore, given the answers from all the databases, the user

must be able to recover the requested message with a small

probability of error. Therefore,

H(Wk|A
[k]
1 , . . . , A[k]

n , Q
[k]
1 , . . . , Q[k]

n ) = 0. (2)

The user generates queries in a manner to ensure privacy

such that no database has insight into which message the user

desires, i.e.,

I(k;Q[k]
n , A[k]

n ,W1, . . . ,WK , Z1, . . . , ZN ) = 0. (3)

Let D be the total number of downloaded bits. Given µ, we

say that a pair (D,L) is achievable if there exists a SC-PIR

scheme with rate R = L/D that satisfies (1)-(3). The SC-PIR

capacity is defined as

C∗(µ) = max{R : (D,L) is achievable}. (4)

III. THE PROPOSED SC-PIR SCHEME WHEN
N
t
∈ Z

+

In order to present the proposed scheme, we need to

establish a connection between FS-PIR and SC-PIR problems.

This connection is vital to reduce the required minimum size

of messages from
(

N

t

)

tK , as in the state-of-the-art scheme of

[2], to NtK−1 without affecting the optimal rate. We show that

an achievable SC-PIR scheme can be derived from any general

achievable scheme for the FS-PIR problem. Hence, by using

the proposed storage placement, the achievable scheme in [1]

can be used to obtain a new SC-PIR scheme. To illustrate our

idea, we first present an example as follows.

A. A Storage Constrained PIR Example when N
t
∈ Z

+

Consider N = 4 databases labeled as DB1 through DB4.

Collectively the databases store K = 3 messages, denoted by

A, B and C. Each message is comprised of L = 16 bits.

1) Storage placement scheme: We split each message as

follows.

A =
{

aji : i ∈ [2], j ∈ [8]
}

(5)

B =
{

bji : i ∈ [2], j ∈ [8]
}

(6)

C =
{

cji : i ∈ [2], j ∈ [8]
}

. (7)

Each database has the storage capacity of up to 24 bits, or

half of all 3 messages
(

µ = 1
2

)

. The storage contents of the

databases are defined to be

Z1 = Z2 =
{

aj1 : j ∈ [8]
}

∪
{

bj1 : j ∈ [8]
}

∪
{

cj1 : j ∈ [8]
}

(8)

Z3 = Z4 =
{

aj2 : j ∈ [8]
}

∪
{

bj2 : j ∈ [8]
}

∪
{

cj2 : j ∈ [8]
}

.

(9)

2) PIR Scheme: Each database stores 8 out of 16 bits

of each message. Databases 1 and 2 have the same storage

contents, but do not have any storage contents in common with

databases 3 and 4. Likewise, databases 3 and 4 have the same

storage contents. In this way, we essentially reduce a SC-PIR

problem into two independent FS-PIR problems; one consists

of databases 1 and 2, and the other consists of databases 3

and 4. Subsequently, we can simply adopt the achievable FS-

PIR scheme of [1] to generate the queries for each pair of

the databases separately. The queries of a user that desires

message A are shown in Table I.

TABLE I
STORAGE CONSTRAINED PIR, N = 4, K = 3, µ = 1

2

DB1 DB2 DB3 DB4

a5

1 b81 c61 a1

1 b31 c11 a5

2 b72 c42 a2

2 b62 c22

a6

1 + b31 a3

1 + b81 a1

2 + b62 a7

2 + b72

a7

1 + c11 a8

1 + c61 a6

2 + c22 a8

2 + c42

b61 + c51 b71 + c31 b32 + c62 b82 + c72

a2

1 + b71 + c31 a4

1 + b61 + c51 a3

2 + b82 + c72 a4

2 + b32 + c62

3) Achievable Rate: The total number of downloaded bits

is D = 28. Thus, we have for this scheme R = L
D

= 16
28 =

4
7 , which achieves the capacity of (1 + 1

t
+ 1

t2
)−1 = (1 +

1
2 + 1

22 )
−1 = 4

7 . Compared to the SC-PIR scheme of [2] that

requires L =
(

N
t

)

tK =
(

4
2

)

23 = 48 bits, the proposed SC-PIR

requires only L = 16 bits.

4) Privacy Constraint: Privacy is ensured since the FS-PIR

scheme of [1] is used to privately download half of message

A from DB1 and DB2 and the other half from DB3 and DB4.

The query to each database is symmetric such that for each

bit of A that is requested, a bit each from B and C are also

requested. All coded pairs of bits from the 3 messages are

requested an equal number of times. Ultimately, the user can

decode all bits of message A, because downloaded bits of B
and C can be used for decoding (see Table I). In the following,

we will first formalize the connection between the FS-PIR and

SC-PIR problems and then generalize this example.



B. The general connection between the FS-PIR and SC-PIR

Define a vector α = [α1, . . . , αF ], where F ∈ Z
+,

∑F

i=1 αi = 1, and αf , ∀f ∈ [F ] is rational number such that

αfL ∈ Z
+. For all k ∈ [K], we divide message Wk into F

disjoint sub-messages Wk = Wk,1, . . . ,Wk,F such that for all

f ∈ [F ], |Wk,f | = αfL bits. For all f ∈ [F ], let

Mf ,
⋃

k∈[K]

Wk,f , (10)

and Nf ⊆ [N ] be a non-empty subset of databases which have

the sub-messages in Mf locally available to them. The storage

contents of database n ∈ [N ] is

Zn = {Mf : f ∈ [F ], n ∈ Nf} , (11)

where we have the requirement that for any n ∈ [N ],
∑

{f :f∈[F ],n∈Nf}

αf ≤ µ. (12)

Given that a user requests file Wθ for some θ ∈ [K],
we do the following. For all f ∈ [F ], using a FS-PIR

scheme, the user generates a query to privately download Wθ,f

from the databases in Nf . In other words, a SC-PIR scheme

can be found by applying a FS-PIR scheme to each set of

databases Nf . Changing the choice of the FS-PIR scheme or

the definitions of Nf will result in new SC-PIR schemes.

The rate of the SC-PIR scheme as a function of the rate

of the implemented FS-PIR scheme is given in the following

theorem.

Theorem 1: Given N,K,F ∈ Z
+ and α, split each

of the L-bit messages W1, . . . ,WK into F sub-messages

of size α1L, . . . , αFL and store them at sets of databases

N1, . . . ,NF ⊆ [N ], respectively. Given a set of FS-PIR

schemes with achievable rates R1, . . . , RF , the achievable rate

of privately downloading Wθ , θ ∈ [K], from the N storage

constrained databases is

R =

(

α1

R1
+

α2

R2
+ · · ·+

αF

RF

)−1

. (13)

Proof: We first count the number of downloaded bits.

For all f ∈ [F ], Rf =
αfL

Df
where Df is the number of

downloaded bits necessary to privately download Wθ,f of size

αfL bits from the databases in Nf . Therefore, the total number

of bits required to privately download the entirety of Wθ is

D = D1 +D2 + · · ·+DF = L

(

α1

R1
+

α2

R2
+ · · ·+

αF

RF

)

.

Since R = L
D

, we obtain (13).

C. General Achievable Storage Constrained PIR Scheme

When N
t
∈ Z

+

1) Storage Placement Scheme: Given N ∈ Z
+ and t ∈

[N ] such that N
t

∈ Z
+, let F = N

t
and for each k ∈ [K],

split message Wk into N
t

disjoint, equal-size sub-messages,

Wk,1, . . . ,Wk,N
t

. Furthermore, split the N databases into N
t

disjoint groups of size t labeled as N1, . . . ,NN
t

. For each

f ∈
[

N
t

]

, the sub-messages of

Mf =
⋃

k∈[K]

Wk,f (14)

are stored at every database of Nf .

2) PIR Scheme: A user desires to privately download

message Wθ for some θ ∈ [K]. For each f ∈
[

N
t

]

, the

user generates a query using the scheme of [1], to privately

download Wθ,f from the t databases in Nf . The user combines

the downloaded sub-messages, Wθ,1, . . . ,Wθ,N
t

to recover the

desired message Wθ .

To implement this SC-PIR scheme, each message is split

into N
t

equal-size, disjoint sub-messages. Furthermore, the

adaptation of the FS-PIR scheme of [1] requires that each

sub-message is further split into tK equal-size, disjoint sub-

messages. The resulting SC-PIR requires a total of L =
N
t
· tK = NtK−1 bits. An example of this SC-PIR scheme is

described in Section III-A.

3) Achievable Rate: The achievable rate of this scheme is

summarized as follows.

Theorem 2: Given N,K, and µ ∈
[

1
N
, 1
]

, such that t =
µN ∈ [N ], N

t
∈ Z

+ and L = NtK−1, for a user to privately

download one of K L-bit messages from N databases with a

storage capacity of µKL bits, the achievable rate is

R =

(

1 +
1

t
+

1

t2
+ · · ·+

1

tK−1

)−1

. (15)

�

Moreover, it was shown in [2] that (15) is the capacity of

SC-PIR for t ∈ Z
+. While we do not directly prove Theorem 2

here, in Section V we present a set of sufficient conditions,

which this scheme satisfies, for an SC-PIR scheme to meet

the capacity.

IV. THE PROPOSED SC-PIR SCHEME WHEN
N
t

/∈ Z
+

In Section III, we established a general connection between

SC-PIR and FS-PIR problems. We showed that by properly

splitting messages and allocating sub-messages to different

groups of databases, a SC-PIR scheme can be derived by

applying a separately designed FS-PIR scheme to each group

of databases. In particular, when choosing the FS-PIR scheme

to be the one in [1], we obtain a SC-PIR scheme that achieves

capacity while requiring N
t

∈ Z
+. In order to remove this

restriction, in this section, we propose a new storage placement

and use it in conjunction with the achievable FS-PIR scheme

of [8] to obtain a new SC-PIR scheme. This scheme achieves

capacity while requiring only L = NtK−1, which is the same

as the scheme of Section III-C when N
t
∈ Z

+.

A. A Storage Constrained PIR Example when N
t

/∈ Z
+

In this example, N = 5 databases, labeled DB1 through

DB5, collectively store K = 2 messages, A and B, and each

has a size of L = 15 bits. Each database stores an µ = 3
5

fraction of the 2-message library (t = µ ·N = 3).



1) Storage Placement Scheme: Each message is split as

follows.

A =
{

aji : i ∈ [5], j ∈ [3]
}

, B =
{

bji : i ∈ [5], j ∈ [3]
}

.

(16)

By this labeling, we have essentially split the messages in

two phases. The first splitting phase, denoted by the subscript,

determines which databases store these bits. The second split-

ting, denoted by the superscript, is necessary to perform the

FS-PIR scheme. For all f ∈ [5], define

Mf =
⋃

j∈[3]

(

ajf ∪ bjf

)

(17)

and let the set of databases Nf = [−2 : 0] ⊕N f locally

store the bits of Mf . 1 Note that as opposed to the SC-PIR

scheme described in Section III-A where the sets of databases

{Nf , f = 1, · · · , F} are mutually exclusive, here we allow

them to overlap and hence removing the integer constraint of
N
t
∈ Z

+.

As a result, the bits of message A stored at DB n ∈ [5] are

Zn =
{

aji : i ∈ {[0 : 2]⊕N n} , j ∈ [3]
}

. (18)

Message B is stored among the databases in a similar manner.

For instance, DB2 stores all bits aji and bji such that i ∈ [2 : 4]
and DB5 stores all bits aji and bji such that i ∈ {5, 1, 2}.

TABLE II
STORAGE CONSTRAINED PIR, N = 5, K = 2, µ = 3

5

DB1 DB2 DB3 DB4 DB5

(1, 2, 3) (2, 3, 4) (3, 4, 5) (4, 5, 1) (5, 1, 2)

a3

1 b21 a3

2 b22 a1

3 b33 a2

4 b34 a2

5 b15

a1

2 + b22 a3

3 + b33 a3

4 + b34 a1

5 + b15 a2

1 + b21

a2

3 + b33 a1

4 + b34 a3

5 + b15 a1

1 + b21 a2

2 + b22

2) PIR Scheme: The queries of a user that desires to

privately download message A are shown in Table II. The top

row of the table contains database labels and the 3-tuple below

each database label defines the subscripts of the bits that are

locally available to that database. The remaining three rows

of the table show the queries of the user. The user adopts

the FS-PIR scheme of [8] to design queries. For instance,

to obtain bits {aj1, j ∈ [3]}, the user applies the FS-PIR to

DB1, DB4, and DB5. In the first round, the user obtains a31
from DB1. In the second round, the user can decode a11 from

DB4’s transmission of a11 + b21 because the user had already

received b21 from the first round transmission of DB1 in round

1. Similarly, the user decodes a21 from DB5’s transmission

of a21 + b21. These transmissions are highlighted in red in

Table II. To ensure privacy, the queries are symmetric and

no bit is requested more than once from any one database.

In this example, D = 20 bits are downloaded and the rate

is R = 3
4 . Comparing to the state-of-the-art SC-PIR scheme

1We impose the following notation: a⊕N b = (a + b− 1 mod N) + 1
and [a1 : a2]⊕N b = {a′ ⊕N b : a′ ∈ [a1 : a2]}.

of [2], the rate is the same, but L has been reduced from
(

N

t

)

tK =
(

5
3

)

32 = 90 to NtK−1 = 5 · 32−1 = 15.

B. General Achievable SC-PIR Scheme When N
t

/∈ Z
+

1) Storage Placement Scheme: For each k ∈ [K], mes-

sage Wk is split into N disjoint equal-size sub-messages

Wk,1, . . . ,Wk,N . For all f ∈ [N ], define a set of sub-messages

Mf = ∪k∈[K]Wk,f which is locally stored at the set of

databases Nf = [−(t− 1) : 0]⊕N f .

2) PIR Scheme: A user desires to privately download

message Wθ for some θ ∈ [K]. For each f ∈ [N ], the

user generates a query using the scheme of [8], to privately

download Wθ,f from the t databases in Nf . The user combines

the downloaded sub-messages, Wθ,1, . . . ,Wθ,N
t

to recover

the desired message Wθ . Furthermore, if desired, to obtain

symmetry across the databases, i.e., each database sends the

same amount of coded bit combinations from each file, the

user can choose database f to start the query process when

privately downloading Wθ,f . For more details on the query

generation process, see [8].

3) Achievable Rate: The achievable rate of this SC-PIR

scheme is summarized in the following theorem.

Theorem 3: Given N,K, and µ ∈
[

1
N
, 1
]

, such that

t = µN ∈ [N ] and L = NtK−1, for a user to privately

download one of K L-bit messages from N databases, each

with a storage capacity of µKL bits, the rate is

R =

(

1 +
1

t
+

1

t2
+ · · ·+

1

tK−1

)−1

. (19)

The results of Section V demonstrate that this SC-PIR

scheme satisfies the sufficient conditions to meet the capacity.

This proves Theorem 3.

V. SUFFICIENT CONDITIONS TO ACHIEVE CAPACITY FOR

SC-PIR

In this section, we provide two sufficient conditions for a

storage placement scheme to achieve the SC-PIR capacity.

Theorem 4: Given N,K,F ∈ Z
+ and α, split each

of the L-bit messages W1, . . . ,WK into F sub-messages

of size α1L, . . . , αFL and store them at sets of databases

N1, . . . ,NF ⊆ [N ] according to equations (10)-(12). Each

database has a storage capacity of µKL bits, 1
N

≤ µ ≤ 1,

where t = µN ∈ [1, N ]. Assume that a user requests file Wθ

for some θ ∈ [K]. A SC-PIR scheme is obtained if for all

f ∈ [F ], the user generates a query to privately download

Wθ,f from the databases in Nf using a capacity-achieving

FS-PIR scheme. The resulting SC-PIR scheme is capacity-

achieving if the sub-message storage placement satisfies one

of the following two conditions:

(1) If t ∈ Z
+, |Nf | = t for all f ∈ [F ]

(2) If t /∈ Z
+, |Nf | ∈ {⌊t⌋, ⌈t⌉} for all f ∈ [F ] such that

∑

f :|Nf |=⌊t⌋

αf = ⌈t⌉ − t (20)

and
∑

f :|Nf |=⌈t⌉

αf = t− ⌊t⌋. (21)



Proof: Define RFS(x) as the rate of a capacity achieving

FS-PIR scheme to privately download one of K messages from

x nodes. Furthermore,

RFS(x) =

(

1 +
1

x
+ · · ·+

1

xK−1

)−1

(22)

as was shown in [1].

For t ∈ Z
+, it follows from Theorem 1 that the rate of the

SC-PIR scheme is

R =

(

α1

RFS(t)
+ · · ·+

αF

RFS(t)

)−1

= RFS(t) (23)

=

(

1 +
1

t
+ · · ·+

1

tK−1

)−1

(24)

which is the capacity of SC-PIR [2].

For t /∈ Z
+, it follows from Theorem 1 that

R =





1

RFS(⌊t⌋)

∑

f :|Nf |=⌊t⌋

αf +
1

RFS(⌈t⌉)

∑

f :|Nf |=⌈t⌉

αf





−1

(25)

=

(

⌈t⌉ − t

RFS(⌊t⌋)
+

t− ⌊t⌋

RFS(⌈t⌉)

)−1

(26)

and thus

R−1 = (⌈t⌉ − t)R−1
FS (⌊t⌋) + (t− ⌊t⌋)R−1

FS (⌈t⌉). (27)

Note that the point
(

t, R−1
)

is simply an linear interpolation of

the two points
(

⌊t⌋, R−1
FS(⌊t⌋)

)

and
(

⌈t⌉, R−1
FS (⌈t⌉)

)

where the

capacity of SC-PIR for t = x is precisely RFS(x). Moreover,

it was shown in [2] that the set of achievable points
(

t, R−1
)

,

is the lower convex hull of the set points
{(

t, C−1
t

)

: t ∈ [N ]
}

.

Therefore, (26) meets the SC-PIR capacity.

VI. DISCUSSION AND FUTURE WORK

Recent works on SC-PIR suggest that coded caching meets

PIR [2], [9]; that is, the file placement solutions of coded

caching [5] are useful for the SC-PIR sub-message placement

problem. In this work, we show that coded caching placement

techniques are not necessary for SC-PIR by proposing two

novel sub-message placement schemes which achieve the ca-

pacity. In the coded caching problem, assigning different files

to an exponentially large number of overlapping user groups is

necessary to create multicasting opportunities such that a user

can cancel “interference” from a received coded transmission

which also serves other users. The SC-PIR problem is less

complex in that only one user is being served. In fact, as

was demonstrated with our first proposed scheme, it is not

necessary for the sub-message placement groups to overlap at

all. Moreover, the file (or sub-message) placement paradigms

of coded caching and SC-PIR are inherently different. In

coded caching, files are being placed among users that wish to

download content, while in SC-PIR, sub-messages are being

placed among databases which are serving one user’s request.

Therefore, it is not surprising the two problems could have

different solutions for the storage/file placement problem.

The results of Section V show that there exists simple SC-

PIR solutions for non-integer t. For example, the databases

could be split into two disjoint groups, one in which sub-

messages are assigned to sub-groups of size ⌊t⌋ databases, and

another where sub-messages are assigned to sub-groups of size

⌈t⌉ databases. This is contrary to the solution for non-integer t
of the coded caching problem where the storage of every user

is split into two parts to essentially create two coded caching

networks that both span across all users [5]. While this coded

caching method was proposed to solve the non-integer t SC-

PIR problem in [2], we have shown that this is not necessary.

This work presents several interesting directions for future

work. First, it remains an open problem to determine the min-

imum message size L for a given set of SC-PIR parameters.

Using a definition of the retrieval rate that is slightly different

from that of [8], it was shown in [10] that the minimum

L of an FS-PIR problem can be reduced significantly from

NK−1 in [8] to N − 1. The new FS-PIR scheme [10] can be

readily adapted to our proposed SC-PIR to reduce the message

size. Furthermore, the proof techniques therein may be useful

to derive the minimum L for a SC-PIR problem. Second,

another work [6] has considered random placement among

databases where a database stores a bit of a given message

with probability µ. Interestingly, this placement method was

also used in [11] for the coded caching problem. It will be

meaningful to examine alternative random placement strategies

for the SC-PIR problem where messages are split into a finite

number of sub-messages.
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