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Strong Converse for Hypothesis Testing Against

Independence over a Two-Hop Network
Daming Cao, Lin Zhou and Vincent Y. F. Tan

Abstract

By proving a strong converse, we strengthen the weak converse result by Salehkalaibar, Wigger and Wang (2017) concerning
hypothesis testing against independence over a two-hop network with communication constraints. Our proof follows by judiciously
combining two recently proposed techniques for proving strong converse theorems, namely the strong converse technique via
reverse hypercontractivity by Liu, van Handel, and Verdú (2017) and the strong converse technique by Tyagi and Watanabe (2018),
in which the authors used a change-of-measure technique and replaced hard Markov constraints with soft information costs. The
techniques used in our paper can also be applied to prove strong converse theorems for other multiterminal hypothesis testing
against independence problems.

Index Terms

Strong converse, Hypothesis testing with communication constraints, Testing against independence, Two-hop network, Relay

I. INTRODUCTION

Motivated by situations where the source sequence is not available directly and can only be obtained through limited com-

munication with the data collector, Ahlswede and Csiszár [1] proposed the problem of hypothesis testing with a communication

constraint. In the setting of [1], there is one encoder and one decoder. The encoder has access to one source sequence Xn and

transmits a compressed version of it to the decoder at a limited rate. Given the compressed version and the available source

sequence Y n (side information), the decoder knows that the pair of sequences (Xn, Y n) is generated i.i.d. from one of the

two distributions and needs to determine which distribution the pair of sequences is generated from. The goal in this problem

is to study the tradeoff between the compression rate and the exponent of the type-II error probability under the constraint

that the type-I error probability is either vanishing or non-vanishing. For the special case of testing against independence,

Ahlswede and Csiszár provided an exact characterization of the rate-exponent tradeoff. They also derived the so-called strong

converse theorem for the problem. This states that the rate-exponent tradeoff cannot be improved even when one is allowed a

non-vanishing type-I error probability. However, the characterization the rate-exponent tradeoff for the general case (even in

the absence of a strong converse) remains open till date.

Subsequently, the work of Ahlswede and Csiszár was generalized to the distributed setting by Han in [2] who considered

hypothesis testing over a Slepian-Wolf network. In this setting, there are two encoders, each of which observes one source

sequence and transmits a compressed version of the source to the decoder. The decoder then performs a hypothesis test given

these two compression indices. The goal in this problem is to study the tradeoff between the coding rates and the exponent of

type-II error probability, under the constraint that the type-I error probability is either vanishing or non-vanishing. Han derived

an inner bound to the rate-exponent region. For the special case of zero-rate communication, Shalaby and Papamarcou [3]

applied the blowing-up lemma [4] judiciously to derive the exact rate-exponent region and a strong converse theorem. Further

generalizations of the work of Ahlswede and Csiszár can be categorized into two classes: non-interactive models where encoders

do not communicate with one another [5]–[8] and the interactive models where encoders do communicate [9], [10].

We revisit one such interactive model as shown in Figure 1. This problem was considered by Salehkalaibar, Wigger and

Wang in [11] and we term the problem as hypothesis testing over a two-hop network. The main task in this problem is to

construct two hypothesis tests between two joint distributions PXY Z and QXY Z . One of these two distributions governs the

law of (Xn, Y n, Zn) where each copy (Xi, Yi, Zi) is generated independently either from PXY Z and QXY Z . As shown in

Figure 1, the first terminal has knowledge of a source sequence Xn and sends an index M1 to the second terminal, which we

call the relay; the relay, given side information Y n and compressed index M1, makes a guess of the hypothesis ĤY and sends

another index M2 to the third terminal; the third terminal makes another guess of the hypothesis ĤZ based on M2 and its

own side information Zn. The authors in [11] derived an inner bound for the rate-exponent region and showed that the bound

is tight for several special cases, including the case of testing against independence in which QXY Z = PXPY PZ . However,

even in this simpler case of testing against independence, which is our main concern in this paper, the authors in [11] only

established a weak converse.

In this paper, we strengthen the result by Salehkalaibar, Wigger and Wang in [11] by deriving a strong converse for the case

of testing against independence. Our proof follows by judiciously combining two recently proposed strong converse techniques
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Fig. 1. System model for hypothesis testing over a two-hop network

by Liu et al. in [12] and by Tyagi and Watanabe in [13]. In [12], the authors proposed a framework to prove strong converse

theorems based on functional inequalities and reverse hypercontractivity of Markov semigroups. In particular, they applied their

framework to derive strong converse theorems for a collection of problems including the hypothesis testing with communication

constraints problem in [1]. In [13], the authors proposed another framework for strong converse proofs, where they used a

change-of-measure technique and replaced hard Markov constraints with soft information costs. They also leveraged variational

formulas for various information-theoretic quantities; these formulas were introduced by Oohama in [14], [15].

Notation: Random variables and their realizations are in upper (e.g., X) and lower case (e.g., x) respectively. All sets are

denoted in calligraphic font (e.g., X ). We use X c to denote the complement of X . Let Xn := (X1, . . . , Xn) be a random vector

of length n and xn its realization. Given any xn, we use P̂xn to denote its type (empirical distribution). All logarithms are base

e. We use R+ and N to denote the set of non-negative real numbers and natural numbers respectively. Given any positive integer

a ∈ N, we use [a] to denote {1, · · · , a}. We use 1{·} to denote the indicator function and use standard asymptotic notation such

as O(·). The set of all probability distributions on a finite set X is denoted as P(X ). Given any two random variables (X,Y )
and any realization of x, we use PY |x(·) to denote the conditional distribution PY |X(·|x). Given a distribution P ∈ P(X ) and

a function f : X → R, we use P (f) to denote EP [f(X)]. For information-theoretic quantities, we follow [16]. In particular,

when the joint distribution of (X,Y ) is PXY ∈ P(X ×Y), we use IPXY
(X ;Y ) and I(X ;Y ) interchangeably. Throughout the

paper, for ease of notation, we drop the subscript for distributions when there is no confusion. For example, when the joint

distribution of (X,Y, Z) is PXY Z , we use IP (X ;Y |Z) and IPXY Z
(X ;Y |Z) interchangeably. For ease of notation, for any

(p, q) ∈ [0, 1]2, let Db(p‖q) denote the binary divergence function, i.e., Db(p‖q) = p log(p/q) + (1− p) log((1− p)/(1− q)).

II. PROBLEM FORMULATION AND EXISTING RESULTS

A. Problem Formulation

Fix a joint distribution PXY Z ∈ P(X × Y × Z) satisfying the Markov chain X − Y − Z , i.e.,

PXY Z(x, y, z) = PXY (x, y)PZ|Y (z|y). (1)

Let PX , PY and PZ be induced marginal distributions of PXY Z . As shown in Figure 1, we consider a two-hop hypothesis

testing problem with three terminals. The first terminal, which we term the transmitter, observes a source sequence Xn and

sends a compression index M1 to the second terminal, which we term the relay. Given M1 and side information Y n, the relay

sends another compression index M2 to the third terminal, which we term the receiver. The main task in this problem is to

construct hypothesis tests at both the relay and the receiver to distinguish between

H0 : (Xn, Y n, Zn) ∼ Pn
XY Z = Pn

XY P
n
Z|Y , (2)

H1 : (Xn, Y n, Zn) ∼ Pn
XPn

Y P
n
Z . (3)

For subsequent analyses, we formally define a code for hypothesis testing over a two-hop network as follows.

Definition 1. An (n,N1, N2)-code for hypothesis testing over a two-hop network consists of

• Two encoders:

f1 : Xn → M1 := {1, . . . , N1}, (4)

f2 : M1 × Yn → M2 := {1, . . . , N2}, and (5)

• Two decoders

g1 : M1 × Yn → {H0,H1}, (6)

g2 : M2 ×Zn → {H0,H1}. (7)

Given an (n,N1, N2)-code with encoding and decoding functions (f1, f2, g1, g2), we define acceptance regions for the null

hypothesis H0 at the relay and the receiver as

AY,n := {(m1, y
n) : g1(m1, y

n) = H0}, (8)

AZ,n := {(m2, z
n) : g2(m2, z

n) = H0} (9)
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respectively. We also define conditional distributions

PM1|Xn(m1|xn) := 1{f1(xn
1 ) = m1}, (10)

PM2|Y nM1
(m2|yn,m1) := 1{f2(m1, y

n) = m2}. (11)

Thus, for a (n,N1, N2)-code characterized by (f1, f2, g1, g2), the joint distribution of random variables (Xn, Y n, Zn,M1,M2)
under the null hypothesis H0 is given by

PXnY nZnM1M2(x
n, yn, zn,m1,m2) = Pn

XY Z(x
n, yn, zn)PM1|Xn(m1|xn)PM2|Y nM1

(m2|yn,m1), (12)

and under the alternative hypothesis H1 is given by

P̄XnY nZnM1M2(x
n, yn, zn,m1,m2) = Pn

X(xn)Pn
Y (y

n)Pn
Z (z

n)PM1|Xn(m1|xn)PM2|Y nM1
(m2|yn,m1). (13)

Now, let PY nM1 and PZnM2 be marginal distributions induced by PXnY nZnM1M2 and let P̄Y nM1 and P̄ZnM2 be marginal

distributions induced by P̄XnY nZnM1M2 . Then, we can define the type-I and type-II error probabilities at the relay as

β1 := PM1Y n(Ac
Y,n), (14)

β2 := P̄M1Y n(AY,n) (15)

respectively and at the receiver as

η1 := PM2Zn(Ac
Z,n), (16)

η2 := P̄M2Zn(AZ,n) (17)

respectively. Clearly, β1, β2, η1, and η2 are functions of n but we suppress these dependencies for brevity.

Given above definitions, the achievable rate-exponent region for the hypothesis testing problem in a two-hop network is

defined as follows.

Definition 2. Given any (ε1, ε2) ∈ (0, 1)2, a tuple (R1, R2, E1, E2) is said to be (ε1, ε2)-achievable if there exists a sequence

of (n,N1, N2)-codes such that

lim sup
n→∞

1

n
logNi ≤ Ri, ∀i ∈ {1, 2}, (18)

lim sup
n→∞

β1 ≤ ε1, (19)

lim sup
n→∞

η1 ≤ ε2, (20)

lim inf
n→∞

− 1

n
log β2 ≥ E1, (21)

lim inf
n→∞

− 1

n
log η2 ≥ E2. (22)

The closure of the set of all (ε1, ε2)-achievable rate-exponent tuples is called the (ε1, ε2)-rate-exponent region and is denoted

as R(ε1, ε2). Furthermore, define the rate-exponent region as

R := R(0, 0). (23)

B. Existing Results

In the following, we recall the exact characterization of R given by Salehkalaibar, Wigger and Wang [11, Prop. 2]. For this

purpose, define the following set of joint distributions

Q := {QXY ZUV ∈ P(X × Y × Z × U × V) : QXY Z = PXY Z , U −X − Y, V − Y − Z}. (24)

Given QXY ZUV ∈ Q, define the following set

R(QXY ZUV ) :=
{

(R1, R2, E1, E2) : R1 ≥ IQ(U ;X), R2 ≥ IQ(V ;Y ),

E1 ≤ IQ(U ;Y ), E2 ≤ IQ(U ;Y ) + IQ(V ;Z)
}

(25)

Finally, let

R∗ :=
⋃

QXY ZUV ∈Q

R(QXY ZUV ). (26)

Theorem 1. The rate-exponent region R for the hypothesis testing over a two-hop network problem satisfies

R = R∗. (27)
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In the following, inspired by Oohama’s variational characterization of rate regions for multiuser information theory [14],

[15], we provide an alternative characterization of R∗. For this purpose, given any (b, c, d) ∈ R
3
+ and any QXY ZUV ∈ Q, let

Rb,c,d(QXY ZUV ) := −IQ(U ;Y ) + bIQ(U ;X)− c(IQ(U ;Y ) + IQ(V ;Z)) + dIQ(V ;Y ). (28)

be a linear combination of the mutual information terms in (25). Furthermore, define

Rb,c,d := min
QXY ZUV ∈Q

Rb,c,d(QXY ZUV ). (29)

An alternative characterization of R∗ is given by

R∗ =
⋂

(b,c,d)∈R
3
+

{

(R1, R2, E1, E2) : −E1 + bR1 − cE2 + dR2 ≥ Rb,c,d

}

. (30)

III. STRONG CONVERSE THEOREM

A. The case ε1 + ε2 < 1

Theorem 2. Given any (ε1, ε2) ∈ (0, 1)2 such that ε1 + ε2 < 1 and any (b, c, d) ∈ R
3
+, for any (n,N1, N2)-code such that

β1 ≤ ε1, η1 ≤ ε2, we have

log β2 + b logN1 + c log η2 + d logN2 ≥ nRb,c,d +Θ(n3/4 logn). (31)

The proof of Theorem 2 is given in Section IV. Several remarks are in order.

First, using the alternative expression of the rate-exponent region in (30), we conclude that for any (ε1, ε2) ∈ (0, 1)2 such

that ε1 + ε2 < 1, we have R(ε1, ε2) = R∗. This result significantly strengthens the weak converse result in [11, Prop. 2] in

which it was shown that R(0, 0) = R∗.

Second, it appears difficult to establish the strong converse result in Theorem 2 using existing classical techniques including

image-size characterizations (a consequence of the blowing-up lemma) [4], [6] and the perturbation approach [17]. In Section IV,

we judiciously combine two recently proposed strong converse techniques by Liu, van Handel, and Verdú [12] and by Tyagi

and Watanabe [13]. In particular, we use the strong converse technique based on reverse hypercontractivity in [12] to bound the

exponent of the type-II error probability at the receiver and the strong converse technique in [13], which leverages an appropriate

change-of-measure technique and replaces hard Markov constraints with soft information costs, to analyze the exponent of type-

II error probability at the relay. Finally, inspired by the single-letterization steps in [18, Lemma C.2] and [13], we single-letterize

the derived multi-letter bounds from the previous steps to obtain the desired result in Theorem 2.

Third, we briefly comment on the apparent necessity of combining the two techniques in [12] and [13] instead of applying just

one of them to obtain Theorem 2. The first step to apply the technique in [13] is to construct a “truncated source distribution”

which is supported on a smaller set (often defined in terms of the decoding region) and is not too far away from the true source

distribution in terms of the relative entropy. For our problem, the source satisfies the Markov chain Xn − Y n − Zn. If we

naı̈vely apply the techniques in [13], the Markovian property would not hold for the truncated source (X̃n, Ỹ n, Z̃n). On the

other hand, it appears rather challenging to extend the techniques in [12] to the hypothesis testing over a multi-hop network

problem since the techniques therein rely heavily on constructing semi-groups and it is difficult to devise appropriate forms

of such semi-groups to be used and analyzed in this multi-hop setting. Therefore, we carefully combine the two techniques

in [12] and [13] to ameliorate the aforementioned problems. In particular, we first use the technique in [13] to construct a

truncated source (X̃n, Ỹ n) and then let the conditional distribution of Z̃n given (X̃n, Ỹ n) be given by the true conditional

source distribution Pn
Z|Y to maintain the Markovian property of the source (see (56)). Subsequently, in the analysis of error

exponents, we use the technique in [12] to analyze the exponent of type-II error probability at the receiver to circumvent the

need to construct new semi-groups.

Finally, we remark that the techniques (or a subset of the techniques) used to prove Theorem 2 can also be used to establish

a strong converse result for other multiterminal hypothesis testing against independence problems, e.g., hypothesis testing over

the Gray-Wyner network [7], the interactive hypothesis testing problem [9] and the cascaded hypothesis testing problem [10].

In particular, for the testing against independence case in [10] (as shown in Figure 2), a strong converse result was established

by a subset of the present authors in [19].

B. The case ε1 + ε2 > 1

In this subsection, we consider the case where the sum of type-I error probabilities at the relay and the receiver is upper

bounded by a quantity strictly greater than one. For ease of presentation of our results, let

Q2 := {QXYZU1U2V ∈ Q(X × Y × Z × U1 × U2 × V) :
QXY Z = PXY Z , U1 −X − Y, U2 −X − Y, V − Y − Z}. (32)
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Fig. 2. Cascaded hypothesis testing against independence by Zhao and Lai [10].

Given any QXY ZU1U2V ∈ Q2, define the following set of rate-exponent tuples

R̃(QXY ZU1U2V ) :=
{

(R1, R2, E1, E2) :R1 ≥ max{IQ(U1;X), IQ(U2;X)}, R2 ≥ IQ(V ;X),

E1 ≤ IQ(U1;Y ), E2 ≤ IQ(U2;Y ) + IQ(V ;Z)
}

. (33)

Furthermore, define

R̃ :=
⋃

QXY ZU1U2V

R̃(QXY ZU1U2V ). (34)

Given any QXY ZU1U2V ∈ Q2 and (b1, b2, c, d) ∈ R
4
+, define the following linear combination of the mutual information terms

R̃b1,b2,c,d(QXY ZU1U2V ) := −IQ(U1;Y ) + b1IQ(U1;X) + b2IQ(U2;X)− c(IQ(U2;Y ) + IQ(V ;Z)) + dIQ(V ;Y ), (35)

and let

R̃b1,b2,c,d := min
QXY ZU1U2V

R̃b1,b2,c,d(QXY ZU1U2V ). (36)

Then, based on [14], [15], an alternative characterization of R̃ is given by

R̃ =
⋃

(b1,b2,c,d)∈R
4
+

{

(R1, R2, E1, E2) : −E1 + b1R1 + b2R1 − cE2 + dR2 ≥ R̃b1,b2,c,d

}

. (37)

Analogously to Theorem 2, we obtain the following result.

Theorem 3. Given any (ε1, ε2) ∈ (0, 1)2 such that ε1 + ε2 > 1 and any (b1, b2, c, d) ∈ R
4
+, for any (n,N1, N2)-code such

that β1 ≤ ε1, η1 ≤ ε2, we have

log β2 + b1 logN1 + b2 logN1 + c log η2 + d logN2 ≥ nR̃b1,b2,c,d +Θ(n3/4 logn). (38)

The proof of Theorem 3 involves applying the proof of Theorem 2 to two special cases of the problem in Figure 1: i)

hypothesis testing with communication constraint where the receiver does not exist, and ii) the relay is not required to output

a decision. Thus, the proof of Theorem 3 is omitted for brevity.

Using Theorem 3, we obtain the following proposition, which together with the first remark of Theorem 2 provides a strong

converse theorem for the problem of hypothesis testing against independence over a two-hop network when ε1 + ε2 6= 1.

Proposition 4. For any (ε1, ε2) ∈ (0, 1)2 such that ε1 + ε2 > 1, we have

R(ε1, ε2) = R̃. (39)

The converse proof of Proposition 4 follows from Theorem 3 and the alternative characterization of R̃ in (37). The

achievability proof is inspired by [6, Theorem 5] and is provided in Appendix A. The main idea is that we can time-share

between two close-to optimal coding schemes, each of which corresponds to one special case of the current problem as

mentioned after Theorem 3.

Finally, we remark that the case when ε1 + ε2 = 1 is not included. See [6, Sec. III.D] for a discussion of this subtle case.

IV. PROOF OF THEOREM 2

We present the proof of strong converse theorem for the hypothesis testing over the two-hop network in this section. The

proof follows by judiciously combing the techniques in [12] and [13] and is separated into three main steps. First, we construct

a truncated source distribution PX̃nỸ nZ̃n and show that this truncated distribution is not too different from Pn
XY Z in terms of

the relative entropy. Subsequently, we analyze the exponents of type-II error probabilities at the relay and the receiver under

the constraint that their type-I error probabilities are non-vanishing. Finally, we single-letterize the constraints on rate and error

exponents to obtain desired result in Theorem 2.



6

To begin with, let us fix an (n,N1, N2)-code with functions (f1, f2, g1, g2) such that the type-I error probabilities are bounded

above by ε1 ∈ (0, 1) and ε2 ∈ (0, 1) respectively, i.e., β1 ≤ ε1 and η1 ≤ ε2.1

A. Construction of A Truncated Distribution

Paralleling the definitions of acceptance regions in (8) and (9), we define the following acceptance regions at the relay and

the receiver as

DY,n = {(xn, yn) : g1(y
n, f1(x

n)) = H0}, (40)

DZ,n = {(xn, yn, zn) : g2(z
n, f2(f1(x

n), yn)) = H0}, (41)

respectively. Note that the only difference between AY,n and DY,n lies in whether we consider the compression index m1 or

the original source sequence xn. Recalling the definitions of the type-I error probabilities for the relay denoted by β1 in (14)

and for the receiver denoted by η1 in (16), and using (40) and (41), we conclude that

Pn
XY (DY,n) = 1− β1, (42)

Pn
XY Z(DZ,n) = 1− η1. (43)

For further analysis, given any m2 ∈ M2, define a conditional acceptance region at the receiver (conditioned on m2) as

G(m2) := {zn : g2(z
n,m2) = H0}. (44)

For ease of notation, given any (xn, yn) ∈ Xn ×Yn, we use G(xn, yn) and G(f2(f1(xn), yn)) (here f2(f1(x
n), yn) plays the

role of m2 in (44)) interchangeably and define the following set

Bn :=
{

(xn, yn) : Pn
Z|Y (G(xn, yn)|yn) ≥ 1− ε1 − ε2

1 + 3ε2 − ε1

}

. (45)

Combining (41), (43) and (44), we obtain

1− ε2 ≤ Pn
XY Z(DZ,n) (46)

=
∑

(xn,yn)∈Bn

Pn
XY (x

n, yn)Pn
Z|Y (G(xn, yn)|yn) +

∑

(xn,yn) 6∈Bn

Pn
XY (x

n, yn)Pn
Z|Y (G(xn, yn)|yn) (47)

≤ Pn
XY (Bn) + (1− Pn

XY (Bn))
1− ε1 − ε2
1 + 3ε2 − ε1

. (48)

Thus, we have

Pn
XY (Bn) ≥

3− 3ε2 + ε1
4

. (49)

For subsequent analyses, let

µ :=
(

min
y:PY (y)>0

PY (y)
)−1

, (50)

θn :=

√

3µ

n
log

8|Y|
1− ε1 − ε2

, (51)

and define the typical set Tn(PY ) as

Tn(PY ) = {yn : |P̂yn(y)− PY (y)| ≤ θnPY (y) ∀y ∈ Y}. (52)

Using the Chernoff bound, we conclude that when n is sufficiently large,

Pn
Y (Tn(PY )) ≥ 1− 1− ε1 − ε2

4
. (53)

Now, define the following set

Cn := Bn ∩ DY,n ∩ (Xn × Tn(PY )). (54)

Then, combining (42), (49) and (53), we conclude that when n is sufficiently large,

Pn
XY (Cn) ≥ 1− Pn

XY (Bc
n)− Pn

XY (Dc
Y,n)− Pn

Y (T c
n (PY )) ≥

1− ε1 − ε2
2

. (55)

1We note from (19) and (20) that β1 ≤ ε1 + o(1) and β2 ≤ ε2 + o(1). Since the o(1) terms are immaterial in the subsequent analyses, they are omitted
for brevity.
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Let the truncated distribution PX̃nỸ nZ̃n be defined as

PX̃nỸ nZ̃n(x
n, yn, zn) :=

Pn
XY (x

n, yn)1{(xn, yn) ∈ Cn}
Pn
XY (Cn)

Pn
Z|Y (z

n|yn). (56)

Using the result in (55), we have that the marginal distribution PX̃n satisfies that for any xn ∈ XN ,

PX̃n(x
n) =

∑

yn,zn

PX̃nỸ nZ̃n(x
n, yn, zn) (57)

≤ Pn
X(xn)

Pn
XY (Cn)

≤ 2Pn
X(xn)

1− ε1 − ε2
. (58)

Analogously to (58), we obtain that

PỸ n(y
n) ≤ 2Pn

Y (y
n)

1− ε1 − ε2
, ∀ yn ∈ Yn, (59)

PZ̃n(z
n) ≤ 2Pn

Z (z
n)

1− ε1 − ε2
, ∀ zn ∈ Zn. (60)

Finally, note that

D(PX̃nỸ nZ̃n‖Pn
XY Z) = D(PX̃nỸ n‖Pn

XY ) (61)

= log
1

Pn
XY (Cn)

(62)

≤ log
2

1− ε1 − ε2
. (63)

B. Analyses of the Error Exponents of Type-II Error Probabilities

1) Type-II error probability β2 at the relay: Let M̃1 and M̃2 be the outputs of encoders f1 and f2 respectively when the

tuple of source sequences (X̃n, Ỹ n, Z̃n) is distributed according to PX̃nỸ nZ̃n defined in (56). Thus, recalling the definitions

in (10), (11) and (56), we find that the joint distribution of (X̃n, Ỹ n, Z̃n, M̃1, M̃2) is given by

PX̃nỸ nZ̃nM̃1M̃2
(xn, yn, zn,m1,m2) = PX̃nỸ nZ̃n(x

n, yn, zn)PM1|Xn(m1|xn)PM2|Y nM1
(m2|yn,m1). (64)

Let PM̃1Ỹ n be induced by PX̃nỸ nZ̃nM̃1M̃2
. Combining (8) and (56), we conclude that

PM̃1Ỹ n(AY,n) =
∑

xn,yn,zn,m1,m2:
g1(m1,y

n)=H0

PX̃nỸ nZ̃nM̃1M̃2
(xn, yn, zn,m1,m2) (65)

=
∑

xn,yn:g1(f1(xn),yn)=H0

Pn
XY (x

n, yn)1{(xn, yn) ∈ Cn}
Pn
XY (Cn)

(66)

=
∑

xn,yn

Pn
XY (x

n, yn)1{(xn, yn) ∈ Cn}
Pn
XY (Cn)

(67)

= 1. (68)

where (67) follows from the definition of DY,n in (40) and the fact that DY,n ⊆ Cn.

Thus, using the data processing inequality for the relative entropy and the definition of β2 in (15), we obtain that

D(PM̃1Ỹ n‖PM1P
n
Y ) ≥ Db(PM̃1Ỹ n(AY,n)‖PM1P

n
Y (AY,n)) (69)

= − log
(

PM1P
n
Y (AY,n)

)

(70)

= − logβ2. (71)

Furthermore, recalling that M1 denotes the output of encoder f1 when (Xn, Y n, Zn) ∼ Pn
XY Z and M̃1 denotes the output

of encoder f1 when (Xn, Y n, Zn) ∼ PX̃nỸ nZ̃n , and using the result in (58), we conclude that

PM̃1
(m1) =

∑

xn,yn,zn:f1(xn)=m1

PX̃nỸ nZ̃n(x
n, yn, zn) (72)

=
∑

xn:f1(xn)=m1

PX̃n(x
n) (73)

≤
∑

xn:f1(xn)=m1

2Pn
X(xn)

1− ε1 − ε2
(74)

≤ 2PM1(m1)

1− ε1 − ε2
, (75)
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for any m1 ∈ M1. Thus, combining (59), (71) and (75), we have

− logβ2 ≤ D(PM̃1Ỹ n‖PM1P
n
Y ) (76)

= D(PM̃1Ỹ n‖PM̃1
PỸ n) + EPM̃1Ỹ n

[

log
PM̃1

(M̃1)PỸ n(Ỹ n)

PM1(M̃1)Pn
Y (Ỹ

n)

]

(77)

≤ D(PM̃1Ỹ n‖PM̃1
PỸ n) + EPM̃1Ỹ n



log

2PM1 (M̃1)

1−ε1−ε2

2Pn
Y (Ỹ n)

1−ε1−ε2

PM1(M̃1)Pn
Y (Ỹ

n)



 (78)

= I(M̃ ; Ỹ n) + 2 log
2

1− ε1 − ε2
. (79)

2) Type-II error probability η2 at the receiver: In this subsection, we analyze the error exponent of the type-II error

probability at the receiver. For this purpose, we make use of the method introduced in [12] based on reverse hypercontractivity.

We define the following additional notation:

• Give PY Z ∈ P(Y × Z), define2

α := max
y,z

PZ|Y (z|y)
PZ(z)

∈ (1,∞). (80)

• Given any (ε1, ε2) ∈ (0, 1)2 such that ε1 + ε2 < 1, let

Ψ(n, ε1, ε2) := 2

√

n(α− 1) log
1 + 3ε2 − ε1
1− ε1 − ε2

. (81)

• Give any m2 ∈ M2 and zn ∈ Zn, let

h(m2, z
n) := 1{zn ∈ G(m2)}. (82)

• Two operators in [12, Eqns. (25), (26), (29)]

Λα,t = (exp(−t) + α(1 − exp(−t))PZ)
⊗n, (83)

Tyn,t =

n
∏

i=1

(exp(−t) + (1− exp(−t))PZ|yi
). (84)

Note that in (84), we use the convenient notation PZ|y(z) = PZ|Y (z|y). The two operators in (83) and (84) will be used to

lower bound D(PZ̃nM̃2
‖Pn

Z P̄M2) via a variational formula of the relative entropy (cf. [12, Section 4]).

Let PZ̃nM̃2
, PZ̃n|M̃2

, PZ̃n|Ỹ n be induced by the joint distribution PX̃nỸ nZ̃nM̃1M̃2
in (64) and let P̄M2 be induced by the

joint distribution P̄XnY nZnM1M2 in (13). Invoking the variational formula for the relative entropy [20, Eqn. (2.4.67)] and

recalling the notation P (f) = EP [f ], we have

D(PZ̃nM̃2
‖Pn

Z P̄M2 ) ≥ PZ̃nM̃2

(

log Λα,th(M̃2, Z̃
n)
)

− log
(

(Pn
Z P̄M2)

(

Λα,th(M2, Z
n)
))

. (85)

Given any m2 ∈ M2, similar to [12, Eqns. (18)–(21)], we obtain

Pn
Z (Λα,th(m2, Z

n))

= Pn
Z

(

(exp(−t) + α(1 − exp(−t))PZ)
⊗nh(m2, Z

n)
)

(86)

=
(

exp(−t) + α(1− exp(−t))
)n

Pn
Z

(

h(m2, Z
n)
)

(87)

≤ exp((α − 1)nt)Pn
Z

(

h(m2, Z
n)
)

. (88)

Thus, averaging over m2 with distribution P̄M2 on both sides of (88), we have

(Pn
Z P̄M2 )(Λα,th(M2, Z

n))

≤ exp((α− 1)nt)(P̄M2P
n
Z )
(

h(M2, Z
n)
)

(89)

= exp((α− 1)nt)η2, (90)

where (90) follows from the definition of η2 in (17).

2In the subsequent analysis, we only consider the case α > 1. When α = 1, choosing t = 1
√

n
instead of the choice in (101), we can obtain a similar

upper bound for − log η2 as in (102), where the only difference is that Ψ(n, ε1, ε2) should be replaced by another term scaling in order Θ(
√
n).
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Furthermore, given any m̃2 ∈ M2, we obtain

PZ̃n|m̃2
(log Λα,th(m̃2, Z̃

n)) (91)

=
(

∑

ỹn

PZ̃n|ỹnPỸ n|M̃2
(ỹn|m̃2)

)

(log Λα,th(m̃2, Z̃
n)) (92)

=
∑

ỹn

PỸ n|M̃2
(ỹn|m̃2)PZ̃n|ỹn(log Λα,th(m̃2, Z̃

n)) (93)

≥
∑

ỹn

PỸ n|M̃2
(ỹn|m̃2)PZ̃n|ỹn(log Tyn,th(m̃2, Z̃

n)) (94)

≥
∑

ỹn

PỸ n|M̃2
(ỹn|m̃2)

(

1 +
1

t

)

logPZ̃n|ỹn

(

h(m̃2, Z̃
n)
)

(95)

=

(

1 +
1

t

)

(

∑

ỹn

PỸ n|M̃2
(ỹn|m̃2) logPZ̃n|ỹn(G(m̃2))

)

. (96)

where (94) follows from [12, Lemma 4] and (95) follows similarly to [12, Eqns. (14)-(17)].

Thus, averaging on both sides of (96) over m̃2 with distribution PM̃2
and using the definition of the joint distribution

PX̃nỸ nZ̃nM̃1M̃2
in (64), we obtain that

PZ̃nM̃2
(log Λα,th(M̃2, Z̃

n))

≥
(

1 +
1

t

)

(

∑

ỹn,m̃2

PỸ nM̃2
(ỹn, m̃2) logPZ̃n|ỹn(G(m̃2))

)

(97)

=

(

1 +
1

t

)

∑

x̃n,ỹn,m̃1,m̃2

(

PX̃nỸ n(x̃
n, ỹn)1{m̃1 = f1(x̃

n), m̃2 = f2(m̃1, ỹ
n)} log

(

∑

z̃n:g2(z̃n,m̃2)=H0

Pn
Z|Y (z̃

n|ỹn)
)

)

(98)

=

(

1 +
1

t

)(

∑

x̃n,ỹn

Pn
XY (x̃

n, ỹn)1{(x̃n, ỹn) ∈ Cn}
Pn
XY (Cn)

logPn
Z|Y (G(x̃n, ỹn)|ỹn)

)

(99)

≥
(

1 +
1

t

)

log
1− ε1 − ε2
1 + 3ε2 − ε1

, (100)

where (100) follows from the definitions of Bn in (45) and Cn in (54).

Therefore, combining (85), (90) and (100) and choosing

t =

√

1

n(α− 1)
log

1 + 3ε2 − ε1
1− ε1 − ε2

, (101)

via simple algebra, we obtain that

− log η2 ≤ D(PZ̃nM̃2
‖PZn P̄M2) + Ψ(n, ε1, ε2)− log

1− ε1 − ε2
1 + 3ε2 − ε1

. (102)

In the following, we further upper bound D(PZ̃nM̃2
‖PZn P̄M2 ). For this purpose, define the following distribution

P̄M̃2
(m2) :=

∑

yn,m1

PM̃1
(m1)PỸ n(y

n)1{m2 = f2(m1, y
n)}. (103)

Combining the results in (59) and (75), and recalling that P̄M2 is induced by joint distribution P̄XnY nZnM1M2 in (13), for any

m2 ∈ M2, we have

P̄M̃2
(m2) ≤

( 2

1− ε1 − ε2

)2
(

∑

yn,m1

PM1(m1)P
n
Y (y

n)1{m2 = f2(f1(x
n), yn)}

)

(104)

=
4P̄M2(m2)

(1− ε1 − ε2)2
. (105)
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Thus, combining (60) and (105), we have

D(PZ̃nM̃2
‖Pn

Z P̄M2)

= D(PZ̃nM̃2
‖PZ̃n P̄M̃2

) + EPZ̃nM̃2

[

log
PZ̃n(Z̃n)P̄M̃2

(M̃2)

Pn
Z (Z̃

n)P̄M2 (M̃2)

]

(106)

≤ D(PZ̃nM̃2
‖PZ̃n P̄M̃2

) + EPZ̃nM̃2

[

log

2Pn
Z (Z̃n)

1−ε1−ε2

4P̄M2 (M̃2)

(1−ε1−ε2)2

Pn
Z (Z̃

n)P̄M2 (M̃2)

]

(107)

= D(PZ̃nM̃2
‖PZ̃n P̄M̃2

) + 3 log
2

1− ε1 − ε2
. (108)

Therefore, combining (102) and (108), we have

− log η2 ≤ D(PZ̃nM̃2
‖PZ̃n P̄M̃2

) + Ψ(n, ε1, ε2)− log
1− ε1 − ε2
1 + 3ε2 − ε1

− 3 log
1− ε1 − ε2

2
. (109)

C. Analyses of Communication Constraints and Single-Letterization Steps

For any (n,N1, N2)-code, since M̃i ∈ Mi for i ∈ {1, 2}, we have that

logN1 ≥ H(M̃1) ≥ I(M̃1; X̃
nỸ n), (110)

logN2 ≥ H(M̃2) ≥ I(M̃2; Ỹ
n). (111)

Furthermore, from the problem setting (see (64)), we have

I(M̃1; Ỹ
n|X̃n) = 0, (112)

For subsequent analyses, given any (b, c, d, γ) ∈ R
4
+, define

R
(n)
b,c,d,γ := −I(M̃1; Ỹ

n) + bI(M̃1; X̃
nỸ n)− cD(PZ̃nM̃2

‖PZ̃n P̄M̃2
) + dI(M̃2; Ỹ

n) + γI(M̃1; Ỹ
n|X̃n)

+ (b+ d+ γ)D(PX̃nỸ n‖PXnY n). (113)

Combining the results in (63), (79), (109) to (112), for any γ ∈ R+, we obtain

log β2 + b logN1 + c log η2 + d logN2 + cΨ(n, ε1, ε2)

≥ R
(n)
b,c,d,γ + log

1− ε1 − ε2
1 + 3ε2 − ε1

+ (b+ d+ γ + 5) log
1− ε1 − ε2

2
. (114)

The proof of Theorem 2 is complete by the two following lemmas which provide a single-letterized lower bound for R
(n)
b,c,d,γ

and relate the derived lower bound to Rb,c,d. For this purpose, recalling the definition of θn in (51), we define the following

set of joint distributions

Q1 :=
{

QXY ZUV ∈ P(X × Y × Z × U × V) :
QZ|Y = PZ|Y , X − Y − Z, V − Y − Z,

|QY (y)− PY (y)| ≤ θnPY (y), ∀y ∈ Y
}

. (115)

Given QXY ZUV ∈ Q1, define

∆b,d,γ(QXY ZUV ) := (b + γ)D(QXY ‖PXY ) + dD(QY ‖PY ) + γIQ(U ;Y |X). (116)

Recall the definition of Rb,c,d(QXY ZUV ) in (28). Define

Rb,c,d,γ := min
QXY ZUV ∈Q1

(

Rb,c,d(QXY ZUV ) + ∆b,d,γ(QXY ZUV )
)

. (117)

The following lemma presents a single-letterized lower bound for R
(n)
b,c,d,γ.

Lemma 5. For any (b, c, d, γ) ∈ R
4
+,

R
(n)
b,c,d,γ ≥ nRb,c,d,γ. (118)

The proof of Lemma 5 is inspired by [13, Prop. 2] and provided in Appendix B.

Combining the results in (114) and Lemma 5, we obtain the desired result and this completes the proof of Theorem 2.

Lemma 6. Choosing γ =
√
n, we have

nRb,c,d,γ + log
1− ε1 − ε2
1 + 3ε2 − ε1

+ (b + d+ γ + 5) log
1− ε1 − ε2

2
≥ nRb,c,d +Θ(n3/4 logn). (119)

The proof of Lemma 6 is inspired by [18, Lemma C.2] and provided in Appendix C.
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V. DISCUSSION AND FUTURE WORK

We strengthened the result in [11, Prop. 2] by deriving a strong converse theorem for hypothesis testing against independence

over a two-hop network with communication constraints (see Figure 1). In our proof, we judiciously combined two recently

proposed strong converse techniques [12], [13]. The apparent necessity of doing so comes from the Markovian requirement

in the source distribution (recall (1)) and is reflected in the construction of a truncated distribution in (56) to ensure the

Markovian structure of the source sequences is preserved. Subsequently, due to this constraint, the application the strong

converse technique by Tyagi and Watanabe in [13] was only amenable in analyzing the type-II error exponent at the relay. On

the other hand, to analyze the type-II error exponent at the receiver, we need to carefully adapt the strong converse technique

based on reverse hypercontractivity by Liu, van Handel and Verdú in [12]. Furthermore, to complete the proof, we carefully

combine the single-letterization techniques in [12], [13].

Another important take-home message is the techniques (or a subset of the techniques) used in this paper can be applied to

strengthen the results of other multiterminal hypothesis testing against independence problems. If the source distribution has no

Markov structure, it is usually the case that one can directly apply the technique by Tyagi and Watanabe [13] to obtain strong

converse theorems. Such examples include [7]–[9]. On the other hand, if the source sequences admit Markovian structure, then

it appears necessary to combine techniques in [12], [13] to obtain strong converse theorems, just as it was done in this paper.

Finally, we discuss some avenues for future research. In this paper, we only derived the strong converse but not a second-

order converse result as was done in [12, Section 4.4] for the problem of hypothesis testing against independence with

a communication constraint [1]. Thus, in the future, one may refine the proof in the current paper by deriving second-

order converse or exact second-order asymptotics. Furthermore, one may also consider deriving strong converse theorems or

simplifying existing strong converse proofs for hypothesis testing problems with both communication and privacy constraints

such as that in [21] by using the techniques in the current paper. It is also interesting to explore whether the current techniques

can be applied to obtain strong converse theorems for hypothesis testing with zero-rate compression problems [3].

APPENDIX

A. Achievability Proof of Proposition 4

Fix any joint distribution QXYZU1U2V ∈ Q2. Let (f ′
1, g

′
1) be an encoder-decoder pair with rate R1 = IQ(U1;X) for

the hypothesis testing with communication constraint problem [1] (i.e., no receiver in Figure 1) such that the type-II error

probability decays exponentially fast at speed no smaller than E1 = IQ(U1;Y ) and the type-I error probability is vanishing,

i.e., logN ′
1 ≤ nR1, β′

2 ≤ exp(−nE1) and β′
1 ≤ ε′1 for any ε′1 > 0. Furthermore, let (f ′′

1 , f
′′
2 , g

′′
1 , g

′′
2 ) be a tuple of encoders

and decoders with rates (R1, R2) = (IQ(U2;X), IQ(V ;Y )) for the problem in Figure 1 such that the type-II error probability

at the receiver decays exponentially fast at speed no smaller E2 = IQ(V ;Z) and type-I error probability at the receiver is

vanishing, i.e., logN ′′
1 ≤ nR1, logN ′′

2 ≤ nR2, η′′2 ≤ exp(−nE2) and η′′1 ≤ ε′2 for any ε′2 > 0. Such tuples of encoders and

decoders exist as proved in [1] and [11]. Furthermore, let A′
1 ⊆ Xn × Yn be the acceptance region associated with (f ′

1, g
′
1)

at the relay and let A′
2 ⊆ Xn × Yn ×Zn be the acceptance region associated with (f ′′

1 , f
′′
2 , g

′′
1 , g

′′
2 ) at the receiver.

Now, let us partition the source space Xn into two disjoint sets Xn
1 and Xn

2 such that Xn
1 ∪ Xn

2 = Xn, Pn
X(Xn

1 ) > 1− ε1
and Pn

X(Xn
2 ) > 1− ε2. We construct an (n,N1, N2)-code as follows. Given a source sequence Xn, if Xn ∈ Xn

1 , then encoder

f ′
1 is used; and if otherwise, the encoder f ′′

1 is used. Furthermore, an additional bit indicating whether Xn ∈ Xn
1 is also sent

to the relay and further forwarded to the receiver by the relay. Given encoded index M1, if Xn ∈ Xn
1 , the relay uses decoder

g′1 to make the decision; otherwise, if Xn ∈ Xn
2 , the relay declares hypothesis H1 to be true. Furthermore, in both cases, the

relay transmits an index M2 using encoder f ′′
2 . Given the index M2, if Xn ∈ Xn

1 , the receiver declares hypothesis H1 to be

true; otherwise, the receiver uses decoder g′′2 to make the decision.

The performance of the constructed (n,N1, N2)-code is as follows. In terms of rates, we have

logN1 ≤ nR1 + 1, (120)

logN2 ≤ nR2 + 1. (121)

The type-I error probability at the relay satisfies that

1− β1 = Pn
XY {A′

1 ∩ (Xn
1 × Yn)} (122)

≥ Pn
X{Xn

1 } − Pn
XY {(A′

1)
c} (123)

≥ 1− ε1, (124)

where (124) follows when n is sufficiently large and thus ε′1 can be made arbitrarily close to zero. Furthermore, the type-II

error probability at the relay can be upper bounded as follows

β2 = Pn
XPn

Y {A′
1 ∩ (Xn

1 × Yn)} (125)

≤ Pn
XPn

Y {A′
1} (126)

= β′
2 (127)

≤ exp(−nE′
1). (128)
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Similarly, for n sufficiently large, the error probabilities at the receiver can be upper bounded as follows

η1 = 1− Pn
XY Z{A′′

2 ∩ (Xn
2 × Yn ×Zn)} (129)

≤ 1− Pn
X(Xn

2 ) + Pn
XY Z

(

(A′
2)

c
)

(130)

≤ ε2, (131)

and

η2 = Pn
XPn

Y P
n
Z{A′′

2 ∩ (Xn
2 × Yn ×Zn)} (132)

≤ Pn
XPn

Y P
n
Z{A′′

2} (133)

≤ exp(−nE′′
2 ). (134)

The achievability proof of Proposition 4 is now complete.

B. Proof of Lemma 5

Recall the definition of distribution P̄M̃2
(see (103)). Noting that PM̃2

is the marginal distribution induced by PX̃nỸ nZ̃nM̃1M̃2

(see (64)), we have that for any m̃2 ∈ M2

PM̃2
(m̃2) =

∑

yn,m1

PỸ nM̃1
(yn,m1)1{m̃2 = f2(m1, y

n)}. (135)

Thus, applying the data processing inequality for the relative entropy, we have that

I(M̃1; Ỹ
n) = D(PỸ nM̃1

‖PỸ nPM̃1
) (136)

≥ D(PM̃2
‖P̄M̃2

). (137)

Using (137) and following similar steps to the proof of weak converse in [11, Eq. (186)], we obtain

D(PZ̃nM̃2
‖PZ̃n P̄M̃2

) = I(M̃2; Z̃
n) +D(PM̃2

‖P̄M̃2
) (138)

≤ I(M̃2; Z̃
n) + I(M̃1; Ỹ

n). (139)

Using (139) and the definition of R
(n)
b,c,d,γ in (113), we have the following lower bound for R

(n)
b,c,d,γ

R
(n)
b,c,d,γ ≥ −I(M̃1; Ỹ

n) + b
(

D(PX̃nỸ n‖PXnY n) +H(X̃nỸ n)−H(X̃nỸ n|M̃1)
)

− c
(

I(M̃2;Z
n) + I(M̃1; Ỹ

n)
)

+ d
(

D(PX̃nỸ n‖PXnY n) +H(Ỹ n)− h(Ỹ n|M̃2)
)

+ γ
(

D(PX̃nỸ n‖PXnY n) +H(Ỹ n|X̃n)−H(Ỹ n|X̃nM̃1)
)

. (140)

The rest of the proof concerns single-letterizing each term in (140). For this purpose, for each j ∈ [n], we define two auxiliary

random variables Uj := (M̃1, X̃
j−1, Ỹ j−1) and Vj := (M̃2, Ỹ

j−1) and let J be a random variable which is distributed

uniformly over the set [n] and is independent of all other random variables.

Using standard single-letterization techniques as in [22], we obtain

I(M̃1; Ỹ
n) =

∑

j∈[n]

I(M̃1; Ỹj |Ỹ j−1) (141)

≤
∑

j∈[n]

I(M̃1, Ỹ
j−1; Ỹj) (142)

≤
∑

j∈[n]

I(M̃1, X̃
j−1, Ỹ j−1; Ỹj) (143)

= nI(UJ , J ; ỸJ), (144)

and

H(X̃nỸ n|M̃1) = nH(X̃J ỸJ |UJ , J). (145)
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Furthermore, analogous to [13, Prop. 1], we obtain that

H(X̃nỸ n) +D(PX̃nỸ n‖Pn
XY ) =

∑

xn,yn

PX̃nỸ n(x
n, yn) log

1

Pn
XY (x

n, yn)
(146)

=
∑

xn,yn

PX̃nỸ n(x
n, yn)

∑

j∈[n]

log
1

PXY (xj , yj)
(147)

=
∑

j∈[n]

PX̃j Ỹj
(xj , yj) log

1

PXY (xj , yj)
(148)

= n
(

H(X̃J , ỸJ ) +D(PX̃JYJ
‖PXY )

)

. (149)

Subsequently, we can single-letterize I(M̃2; Z̃
n) as follows:

I(M̃2; Z̃
n) =

∑

j∈[n]

I(M̃2; Z̃j|Z̃j−1) (150)

≤
∑

j∈[n]

I(M̃2Z̃
j−1Ỹ j−1; Z̃j) (151)

=
∑

j∈[n]

I(M̃2Ỹ
j−1; Z̃j) (152)

= nI(VJ , J ; Z̃J), (153)

where (152) follows from the Markov chain Z̃j−1− M̃2Ỹ
j−1 − Z̃j implied by the joint distribution of (X̃n, Ỹ n, Z̃n, M̃1, M̃2)

in (64). Furthermore, using similar proof techniques to [13, Prop. 1] and standard single-letterization techniques (e.g., in [4]

or [22]), we obtain that

H(Ỹ n|X̃n) +D(PX̃nỸ n‖Pn
XY ) ≥ n

(

H(ỸJ |X̃J) +D(PX̃J ỸJ
‖PXY )

)

, (154)

H(Ỹ n) +D(PX̃nỸ n‖Pn
XY ) ≥ n

(

H(ỸJ ) +D(PYJ
‖PY )

)

, (155)

H(Ỹ n|M̃2) = nH(ỸJ |VJ , J), (156)

H(Ỹ n|M̃1X̃
n) ≤ nH(ỸJ |XJ , UJ , J). (157)

Let U := (UJ , J), V := (VJ , J), X
′ := X̃J , Y ′ := ỸJ and Z ′ := Z̃J . Using the joint distribution PX̃nỸ nZ̃nM̃1M̃2

in (64),

we conclude that the joint distribution of random variables (X ′, Y ′, Z ′, U, V ), denoted by QX′Y ′Z′UV , belongs to the set Q1

defined in (115). The proof of Lemma 5 is complete by combining (140) to (157) and noting that IQ(X
′, Y ′;U) ≥ IQ(X

′;U).

C. Proof of Lemma 6

Given any γ ∈ R+, let Q
(γ)
XY ZUV achieve the minimum in (117). Recall the definition of θn in (51) and define a new alphabet

Ṽ := V ∪ {v∗}. We then define a joint distribution P
(γ)

Y Ṽ
by specifying the following (conditional) marginal distributions

P
(γ)

Ṽ
(v) :=

1

1 + θn
Q

(γ)
V (v)1{v 6= v∗}+ θn

1 + θn
1{v = v∗}, (158)

P
(γ)

Y |Ṽ
(y|v) := Q

(γ)
Y |V (y|v)1{v 6= v∗}+

(

1 + θn
θn

PY (y)−
1

θn
Q

(γ)
Y (y)

)

1{v = v∗}. (159)

Thus, the induced marginal distribution P
(γ)
Y satisfies

P
(γ)
Y (y) =

∑

v∈Ṽ

P
(γ)

Ṽ
(v)P

(γ)

Y |Ṽ
(y|v) (160)

=

(

∑

v∈V

1

1 + θn
Q

(γ)
V (v)Q

(γ)
Y |V (y|v)

)

+

(

PY (y)−
1

1 + θn
Q

(γ)
Y (y)

)

(161)

= PY (y). (162)

Furthermore, let P
(γ)

Ṽ |Y
be induced by P

(γ)

Y Ṽ
and define the following distribution

P
(γ)

XY ZUṼ
= PXY ZQ

(γ)
U|XP

(γ)

Ṽ |Y
. (163)

Recall the definition of Rb,c,d(·) in (28). The following lemma lower bounds the difference between Rb,c,d(Q
(γ)
XY ZUV ) and

Rb,c,d(P
(γ)

XY ZUṼ
) and is critical in the proof of Lemma 6.
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Lemma 7. When γ =
√
n, we have

Rb,c,d(Q
(γ)
XY ZUV )− Rb,c,d(P

(γ)

XY ZUṼ
) ≥ Θ

(

logn

n1/4

)

. (164)

The proof of Lemma 7 is deferred to Appendix D.

Now, using the assumption that Q
(γ)
XY ZUV is a minimizer for Rb,c,d,γ in (117), the fact that ∆b,d,γ(Q

(γ)
XY ZUV ) ≥ 0 (see (116))

and the result in (164), we conclude that when γ =
√
n,

Rb,c,d,γ = Rb,c,d(Q
(γ)
XY ZUV ) + ∆b,d,γ(Q

(γ)
XY ZUV ) (165)

≥ Rb,c,d(P
(γ)

XY ZUṼ
) + Θ

(

logn

n1/4

)

(166)

≥ Rb,c,d +Θ

(

logn

n1/4

)

, (167)

where (167) follows from the definition of Rb,c,d in (29) and the fact that P
(γ)

XY ZUṼ
∈ Q (see (24)).

The proof of Lemma 6 is complete by using (167) and noting that when γ =
√
n,

log
1− ε1 − ε2
1 + 3ε2 − ε1

+ (b + d+ γ + 5) log
1− ε1 − ε2

2
= Θ(

√
n). (168)

D. Proof of Lemma 7

In subsequent analyses, all distributions indicated by P (γ) are induced by P
(γ)

XY ZUṼ
. We have

D(Q
(γ)
XY U‖P

(γ)
XY U ) = D(Q

(γ)
XY ‖P

(γ)
XY ) + IQ(γ)(U ;Y |X). (169)

Recalling the definitions of Rb,c,d in (29) and Rb,c,d,γ in (117), we conclude that for any γ ∈ R+,

Rb,c,d,γ ≤ Rb,c,d ≤ b log |X |+ d log |Y| =: a′. (170)

Using the definition of ∆b,d,γ(QXY ZUV ) in (116) and recalling that Q
(γ)
XY ZUV is a minimizer for Rb,c,d,γ, we have

γD(Q
(γ)
XY U‖P

(γ)
XY U ) ≤ ∆b,d,γ(Q

(γ)
XY ZUV ) (171)

= Rb,c,d,γ − Rb,c,d(Q
(γ)
XY ZUV ) (172)

≤ a′ + (c+ 1) log |Y|+ c log |Z| =: a. (173)

We can now upper bound IPγ (Ṽ ;Y ) as follows:

IP (γ)(Ṽ ;Y ) = D(P
(γ)

Y |Ṽ
‖P (γ)

Y |P (γ)

Ṽ
) (174)

= D(P
(γ)

Y |Ṽ
‖PY |P (γ)

Ṽ
) (175)

=
1

1 + θn
D(Q

(γ)
Y |V ‖PY |Q(γ)

V ) +
θn

1 + θn
D

(

1 + θn
θn

PY − 1

θn
Q

(γ)
Y

∥

∥

∥

∥

PY

)

(176)

=
1

1 + θn

(

D(Q
(γ)
Y |V ‖Q

(γ)
Y |Q(γ)

V ) +D(Q
(γ)
Y ‖PY )

)

+
θn

1 + θn
D

(

1 + θn
θn

PY − 1

θn
Q

(γ)
Y

∥

∥

∥

∥

PY

)

(177)

≤ 1

1 + θn
IQ(γ)(V ;Y ) +

1

1 + θn

a

γ
+

θn
1 + θn

logµ, (178)

where (175) follows from (162), and (178) follows from the result in (173), the fact that D(Q
(γ)
Y ‖PY ) ≤ D(Q

(γ)
XY U‖P

(γ)
XY U )

and the definition of µ in (50). Thus, when γ =
√
n, recalling the definition of θn in (51), we have

IQ(γ)(V ;Y ) ≥ IP (γ)(Ṽ ;Y )− a

γ
− θn log µ (179)

= IP (γ)(Ṽ ;Y ) + Θ

(

1√
n

)

. (180)
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Similar to (178), we obtain

IP (γ)(Ṽ ;Z) = D(P
(γ)

Z|Ṽ
‖P (γ)

Z |P (γ)

Ṽ
) (181)

= D(P
(γ)

Z|Ṽ
‖PZ |P (γ)

Ṽ
) (182)

=
1

1 + θn
D(Q

(γ)
Z|V ‖PZ |Q(γ)

V ) +
θn

1 + θn
D

(

1 + θn
θn

PZ − 1

θn
Q

(γ)
Z

∥

∥

∥

∥

PZ

)

(183)

=
1

1 + θn

(

D(Q
(γ)
Z|V ‖Q

(γ)
Z |Q(γ)

V ) +D(Q
(γ)
Z ‖PZ)

)

+
θn

1 + θn
D

(

1 + θn
θn

PZ − 1

θn
Q

(γ)
Z

∥

∥

∥

∥

PZ

)

(184)

≥ 1

1 + θn
IQ(γ)(V ;Z), (185)

where (183) follows since Q(γ) ∈ Q1 (see (115)) implies that Q
(γ)
Z|Y = PZ|Y and the Markov chains Z−Y −X and V −Y −Z

holds and thus using (158) to (159), we have

P
(γ)

Z|Ṽ
(z|v) =

∑

y PZ|Y (z|y)PṼ (v)PY |Ṽ (y|v)
PṼ (v)

(186)

=

∑

y Q
(γ)
Z|Y (z|y)Q

(γ)
V (v)Q

(γ)
Y |V (y|v)

Q
(γ)
V (v)

(187)

= Q
(γ)
Z|V (z|v), (188)

and

P
(γ)

Z|Ṽ
(z|v∗) =

∑

y PZ|Y (z|y)PṼ (v
∗)PY |Ṽ (y|v∗)

PṼ (v
∗)

(189)

=
∑

y

Q
(γ)
Z|Y (z|y)

(1 + θn
θn

PY (y)−
1

θn
Q

(γ)
Y (y)

)

(190)

=
1 + θn
θn

PZ(z)−
1

θn
Q

(γ)
Z (z), (191)

Therefore, we have

IQ(γ)(V ;Z) ≤ (1 + θn)IP (γ)(Ṽ ;Z) (192)

≤ IP (γ)(Ṽ ;Z) + θn log |Z| (193)

= IP (γ)(Ṽ ;Z) + Θ

(

1√
n

)

. (194)

Let ‖P −Q‖ be the ℓ1 norm between P and Q regarded as vectors. Using Pinsker’s inequality, the result in (105), and the

data processing inequality for the relative entropy [16], we obtain

‖Q(γ)
UX − P

(γ)
UX‖ ≤

√

2 log 2 ·D(Q
(γ)
UX‖P (γ)

UX) (195)

≤
√

2 log 2 ·D(Q
(γ)
XY U‖P

(γ)
XY U ) (196)

≤
√

2a log 2

γ
. (197)

From the support lemma [22, Appendix C], we conclude that the cardinality of U can be upper bounded by a function

depending only on |X |, |Y| and |Z| (these alphabets are all finite). Thus, when γ =
√
n, invoking [4, Lemma 2.2.7], we have

|H(Q
(γ)
UX)−H(P

(γ)
UX)| ≤

√

2a log 2

γ
log

|U||X |
√

2a log 2
γ

= Θ

(

logn

n1/4

)

. (198)

Similar to (198), we have

|IQ(γ)(U ;X)− IP (γ)(U ;X)| ≤ Θ

(

logn

n1/4

)

, (199)

|IQ(γ)(U ;Y )− IP (γ)(U ;Y )| ≤ Θ

(

logn

n1/4

)

. (200)
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Combining (180), (194), (199) and (200), when γ =
√
n, using the definition of Rb,c,d(·) in (28), we have

Rb,c,d(Q
(γ)
XY ZUV ) ≥ −(c+ 1)IQ(γ)(U ;Y ) + bIQ(γ)(U ;X)− cIQ(γ)(V ;Z) + dIQ(γ)

(V ;Y ) (201)

≥ −(c+ 1)IP (γ)(U ;Y ) + bIP (γ)(U ;X)− cIP (γ)(Ṽ ;Z) + dIP (γ)(Ṽ ;Y ) + Θ

(

logn

n1/4

)

(202)

= Rb,c,d(P
(γ)

XY ZUṼ
) + Θ

(

logn

n1/4

)

. (203)

The proof of Lemma 7 is now complete.
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[12] J. Liu, R. van Handel, and S. Verdú, “Beyond the blowing-up lemma: Sharp converses via reverse hypercontractivity,” in IEEE Intl. Symp. on Inf. Theory,

2017, pp. 943–947.
[13] H. Tyagi and S. Watanabe, “Strong converse using change of measure,” arXiv:1805.04625, 2018.
[14] Y. Oohama, “Exponent function for source coding with side information at the decoder at rates below the rate distortion function,” arXiv:1601.05650,

2016.
[15] ——, “Exponent function for one helper source coding problem at rates outside the rate region,” in IEEE Intl. Symp. on Inf. Theory, 2015, pp. 1575–1579.
[16] T. M. Cover and J. A. Thomas, Elements of Information Theory. John Wiley & Sons, 2012.
[17] W. Gu and M. Effros, “A strong converse for a collection of network source coding problems,” in IEEE Intl. Symp. on Inf. Theory, 2009, pp. 2316–2320.
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