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Abstract—Coded Caching is a promising solution to reduce
the peak traffic in broadcast networks by prefetching the pop-
ular content close to end users and using coded transmissions.
One of the chief issues of most coded caching schemes in
literature is the issue of large subpacketization, i.e., they require
each file to be divided into a large number of subfiles. In this
work, we present a coded caching scheme using line graphs of
bipartite graphs in conjunction with projective geometries over
finite fields. The presented scheme achieves a rate Θ( K

logq K
)

(K being the number of users, q is some prime power)

with subexponential subpacketization qO((logq K)2) when cached
fraction is upper bounded by a constant (M

N
≤

1
qα

) for some

positive integer α). Compared to earlier schemes, the presented
scheme has a lower subpacketization (albeit possessing a higher
rate). We also present a new subpacketization dependent lower
bound on the rate for caching schemes in which each subfile is
cached in the same number of users. Compared to the previously
known bounds, this bound seems to perform better for a range
of parameters of the caching system.

I. INTRODUCTION

The key performance challenges that next generation wire-

less networks (5G) face are low latency, high throughput and

energy efficiency [1]. Content delivery networks have been

estimated to carry 72% of the global internet traffic by 2022
[2]. Coded caching was proposed recently in a landmark

paper by Maddah-Ali and Niesen [3] and has emerged as

an important tool to address major challenges of future com-

munication networks. Since its inception coded caching has

proved as an efficient tool to trade-off expensive bandwidth

with abundantly available and cost-effective memory at the

user/network nodes.

In [3], the setup consists of a single server with N equi-

popular files of same size (divided into F subfiles each of

the same size, where F is known as the subpacketization

parameter), and K users(clients) each having a local memory

called cache that can store MF subfiles. The centralized

coded caching scheme of [3] works in two phases. In the

caching phase (which occurs during off peak times) the cache

of each client is populated with some M
N fraction of each file

in the server. In the delivery phase (which happens during

peak traffic times), the clients demand one file each from the

server, to satisfy which the server sends coded transmissions.

The rate (R) of such a coded caching scheme is defined as

the ratio of the number of bits transmitted to the size of each

file, which can be calculated as

Rate R =
Number of transmissions in the delivery phase

Number of subfiles in a file
,

when each transmission is of the same size as the subfiles.

The Ali-Niesen scheme in [3] achieves R =
K(1−M

N
)

γ ,

where γ = 1 + KM
N is the global caching gain, i.e., the

number of users served by each transmission in the delivery

scheme. This rate was shown to be optimal for uncoded cache

placement [4]. Further, the subpacketization level used by the

Ali-Niesen scheme to achieve this rate is F =
(

K
KM
N

)

. Note

that as K grows large, F ≈ 2KH(M/N), (for constant M
N ,

H(.) being the binary entropy). This means that the files

have to be extremely large for even 50-100 clients, making

the Ali-Niesen scheme impractical for applications.

Since then several new coded caching schemes with lower

subpacketization have been constructed at the cost of increase

in rate, or cache requirement, or the number of users [5]–

[8]. Among these, an important construction was reported

in [6], via a combinatorial object that the authors defined,

known as Placement Delivery Arrays (PDAs). The PDA

constructed in [6] achieved a global caching gain of MK
N (one

less than that of [3]), while improving the subpacketization

by an exponential factor compared to [3]. However, in this

construction, as well as in most others in literature, the

subpacketization required for the caching schemes continues

to be exponential in K
1
r (for some positive integer r) to the

best of our knowledge.

Recently, a line graph based approach to coded caching

was introduced in [9]. Using this framework, a construction

for a caching scheme was given via a projective geometry

over a finite field. The scheme presented in [9] achieves

a constant rate with subpacketization subexponential in K
(

F = qO((logqK)2)
)

for some prime power q). However the

drawback of this scheme is that the uncached fraction of each

file has to be large
(

(1− M
N ) = Θ( 1√

K
)
)

. We remedy this

drawback (to some extent) in this work.

The contributions and organization of this paper are as

follows. In Section II, we review the line graph based coded

caching scheme proposed in [9], while refining it slightly

for our purposes. In Section III, we propose a new lower

bound for the optimal rate R∗ given parameters K,F, and
M
N , for the caching schemes in which each subfile is cached

in the same number of users, which is a property satisfied

by all known centralized caching designs in literature (to the

best of our knowledge). Using some numerical examples,

we see that this lower bound performs better (for a range

of parameters) compared to the previously known bounds

in [4], [7]. In Section IV, we present a new coded caching
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scheme using projective geometries over finite fields in the

line graph framework of [9]. In Section V we give the

asymptotic analysis of the scheme proposed. We show that

the scheme achieves a rate R = Θ
(

K
logqK

)

(q being a

prime power) for a constant cache requirement, which can

be extremely small (MN ≤ 1
qα , for some constant positive

integer α). The subpacketization achieved is subexponential

in K , F = qO((logq K)2). We provide a table in Section V

which compares the parameters of our scheme to that of [6].

Notations and Terminology: Z+ denotes the set of positive

integers. We denote the set {1, . . . , n} by [n] where n ∈ Z+.

We give the basic definitions in graph theory. The sets

V (G), E(G) denote vertex set and edge set of a graph G
respectively, where E(G) ⊆ {{u, v} : u, v ∈ V (G)}. All

graphs considered in this paper are undirected graphs with no

self loops. The neighbourhood of a vertex u ∈ V (G) is given

as N (u) = {v ∈ V (G) : {u, v} ∈ E(G)}. The square of a

graph G is a graph G2 having V (G2) = V (G) and an edge

{u, v} ∈ E(G2) if and only if either {u, v} ∈ E(G) or there

exists some v1 ∈ V (G) such that {u, v1}, {v1, v} ∈ E(G).
The complement of a graph G is denoted as G. A set

H ⊆ V (G) is called a clique of G if every two distinct

vertices in H are adjacent to each other. A single vertex is

also considered as a clique by definition. A clique cover of

G is a collection of disjoint cliques such that each vertex

appears in precisely one clique. A bipartite graph B is a

graph whose vertices can be partitioned into two independent

sets (called left and right vertices of B) such that edges exist

only between left and right vertices. A bipartite graph is (left

or right) regular if the degree of each vertex on (left or right)

is same throughout (left or right) partition. A bipartite graph

is bi-regular if it is both left regular and right regular. For

more information on graph theory the reader is referred to

[10].

II. REVIEW OF LINE GRAPH SCHEME IN [9]

We now review the basic framework and some results of

[9]. Consider a coded caching system consisting of a server

with files {Wi : i ∈ [N ]}. Let K be any set such that |K| =
K . We shall use K to indicate the set of K users. Let F
be any set such that |F| = F . The subfiles of a file Wi are

denoted by Wi,f where f ∈ F and Wi,f takes values in

some Abelian group. Here we consider symmetric caching,

i.e., for any f ∈ F , either a user caches Wi,f , ∀i ∈ [N ] or

the user does not cache Wi,f for any i ∈ [N ]. Any symmetric

caching scheme can be represented as an equivalent D-left

regular bipartite caching graph B(K,D,F ) with left vertices

being K and right vertices being F , and the uncached fraction

1 − M
N = D

F . The uncached subfiles are identified by the

edges of B i.e, for k ∈ K, f ∈ F an edge {k, f} ∈ E(B) if

and only if the subfiles Wi,f , ∀i ∈ [N ] are not present in the

cache of user k. This bipartite coded caching setup was given

in [8]. In [9], a line graph based framework was proposed

to study the coded caching problem. The line graph L(G)
(or simply, L) of an undirected graph G is a graph in which

the vertex set V (L(G)) is the edge set E(G) of G, and two

vertices of V (L(G)) are adjacent if and only if they share a

common vertex in G. The caching scheme was captured via

a line graph L of a bipartite caching graph and the delivery

scheme was obtained as a clique cover of complement of the

square of line graph denoted by L2. The following lemma

proved in [9] presents the conditions under which an arbitrary

graph is a line graph of a left regular bipartite graph. This

enables us to construct a line graph which corresponds to a

coded caching scheme.

Lemma 1. [9] A graph L containing KD vertices is the line

graph of a D-left-regular bipartite graph B(K,D,F ) if and

only if the following conditions are satisfied.

• The vertices of L can be partitioned into K disjoint

cliques containing D vertices each. We denote these

cliques by Uk : k ∈ K and call them as the user-cliques.

• Consider distinct k1, k2 ∈ K. For any vertex v ∈ Uk1 ,

there exists at most one vertex w ∈ Uk2 such that

{v, w} ∈ E(L).
• For any k ∈ K and any vertex v ∈ Uk, the set {v} ∪

N (v) \ Uk (containing v and all adjacent vertices of v
except those in Uk), forms a clique. We refer to these

cliques as the subfile-cliques.

• Let r be the number of subfile-cliques in L and the

subfile-cliques be denoted as Si : i ∈ [r]. Then the

number of right vertices of B is F = r.

Any graph L that satisfies the above conditions for some

K and D is called as a caching line graph. Since there are

r = F subfile cliques, we can denote the subfile-cliques as

Sf : f ∈ F . It also holds by the construction of L that there is

at most one vertex in the intersection of any given user-clique

Uk and a subfile-clique Sf . Further, note that the subfile-

cliques also partition the vertices of L. Thus each vertex of

L lies precisely in one user-clique and one subfile-clique.

Therefore the vertices of L can be indexed using a subset

of K × F , i.e., V (L) = {(k, f) ∈ K × F : Uk ∩ Sf 6= φ}.

With this notation, we have Uk = {(k, f) ∈ V (L) : f ∈ F}
and Sf = {(k, f) ∈ V (L) : k ∈ K}. Furthermore, it follows

that E(L) = {{(k, f), (k′, f ′)} ⊂ V (L) : k = k′ or f =
f ′ but not both }.

Following [9], the delivery scheme follows according to a

clique cover of L2. In order to find the cliques in L2 (called

transmission cliques), first we need to identify the structure

of L2. It is easy to see that V (L2) = V (L). In Lemma

2 we present the conditions under which an edge exist in

L2. We will use this lemma in Section IV to identify such

transmission cliques in the construction we give.

Lemma 2. Let (k1, f1), (k2, f2) ∈ V (L). The edge

{(k1, f1), (k2, f2)} ∈ E(L2) if and only if k1 6= k2, f1 6= f2
and (k1, f2), (k2, f1) /∈ V (L).

Proof: The If part of the lemma follows from the

definition of L2. We prove the only if part here. Let

{(k1, f1), (k2, f2)} ∈ E(L2). Suppose k1 = k2. Then by

the construction of L we have {(k1, f1), (k2, f2)} ∈ E(L).
Therefore {(k1, f1), (k2, f2)} /∈ E(L2) which is a con-

tradiction. Hence k1 6= k2. Similarly f1 6= f2. Suppose

(k1, f2) ∈ V (L). Since (k1, f1), (k2, f2) ∈ V (L). By the

construction of L we have {(k1, f2), (k1, f1)} ∈ E(L) and

{(k1, f2), (k2, f2)} ∈ E(L). By definition of L2, we have



{(k1, f1), (k2, f2)} ∈ E(L2) which is a contradiction. Hence

(k1, f2) /∈ V (L). Similarly (k2, f1) /∈ V (L).
In [9] a particular class of caching line graphs called

(c, d)-caching line graphs was considered. The advantage of

these line graphs is that the corresponding caching scheme

parameters are obtained naturally in a simple fashion. This

is captured in the following definition and theorem. Our

construction in Section IV is also based on such (c, d)-
caching line graphs.

Definition 1. [9] A caching line graph L such that L has a

clique cover consisting of c-sized disjoint subfile cliques and

L2 has a clique cover consisting of d-sized disjoint cliques,

for some c, d ∈ Z+, is called a (c, d)-caching line graph.

Theorem 1. [9] Consider a (c, d)-caching line graph L.

Then there is a coded caching scheme consisting of the

caching scheme given by L with F = KD
c (and thus

M
N = 1− c

K ), and there is an associated transmission scheme

based on the clique cover of L2 having rate R = c
d .

III. A NEW LOWER BOUND ON THE RATE

In this section, we propose a lower bound on rate of

the delivery scheme for symmetric caching schemes where

each subfile is stored in equal number of users. Most known

schemes in literature satisfy this property to best of our

knowledge. From Section II, we know that any symmetric

caching scheme can be represented by a left-regular bipartite

caching graph B(K,D,F ) where 1 − M
N = D

F . As each

subfile is not cached at equal number of users, the equivalent

bipartite graph with KD edges will be right regular as well,

with right degree being K(1− M
N ) for every subfile in B.

We first recall a generic lower bound given in [9] based

on structure of B(K,D,F ) which is used in Theorem 2 to

arrive at our new bound. Let H be the subgraph of B induced

by the vertices K′ ∪ F ′ where K′ ⊆ K and F ′ ⊆ F . Let

N ′ = min(|K′|,K(1 − M
N )). Let U = {kj : j ∈ [N ′]}

be a subset of N ′ vertices of K′ taken in some order. For

j ∈ [N ′], let ρj be the set of right vertices (subfiles) in H
which are adjacent to {ki : i ∈ [j]}. Let R∗ be the infimum

of all achievable rates for coded caching problem defined by

B. Then, from Theorem 2 of [9],

R
∗

F ≥

N′

∑

j=1

ρj . (1)

We now obtain a lower bound for the case of symmet-

ric caching schemes defined by biregular bipartite caching

graphs. The proof for this bound is based on a similar ‘nested’

bound shown in [7].

Theorem 2. Let R∗ be the infimum of all achievable rates for
the coded caching problem defined by a bi-regular bipartite
graph B. Then

R
∗

F ≥ D +

⌈

D(K(1− M
N
)− 1)

K − 1

⌉

+ · · ·

· · ·+

⌈

1
KM
N

+ 1

⌈

2
KM
N

+ 2

⌈

· · ·

⌈

D(K(1− M
N
)− 1)

K − 1

⌉

· · ·

⌉⌉⌉

.

Proof: Every user vertex has degree D = F (1 − M
N )

in B. Consider a user vertex in B and call it as k1. So,

by notations of (1), |ρ1| = D. Consider the graph induced

by K ∪ N (k1) vertices of B. Call it G′. Since B is a

bi-regular graph, degree of each subfile vertex f ∈ F ∈ B
is exactly K(1 − M

N ). So, by pigeon-holing argument, it is

not difficult to see that there exists a user with degree at

least
⌈

(K(1−M
N

)−1)D

K−1

⌉

in G′. Consider such user vertex and

call it as k2. Then |ρ2| ≥
⌈

(K(1−M
N

)−1)D

K−1

⌉

. In general, for

each j ∈ {2, · · · ,K(1 − M
N ) − 1}, for the graph induced

by K ∪ N (k1) ∪ N (k2) · · · ∪ N (kj−1) vertices of B, by

pigeon-holing argument there exists a user with degree

at least
⌈

(K(1−M
N

)−(j−1)

K−(j−1)

⌈

· · ·
⌈

(K(1−M
N

)−1)D

K−1

⌉

· · ·
⌉⌉

.

Call such user vertex as kj . Then, |ρj | ≥
⌈

(K(1−M
N

)−(j−1)

K−(j−1)

⌈

· · ·
⌈

D(K(1−M
N

)−1)

K−1

⌉

· · ·
⌉⌉

. Running

over all j, and using (1), we therefore get the bound in the

theorem.

For a number of parameters we now compare (in Table I)

the above new bound on the number of transmissions (column

4 of Table I) in an optimal scheme, with the lower bound

given in [7] (given in column 5, which holds for PDA based

schemes), as well as the lower bound (column 6) based on

the Ali-Niesen rate (R∗ ≥ K(1−M
N

)

1+MK
N

) as shown in [4]. The

bound given in [7] used in Table I is as follows.

Theorem 3. [7] R∗F ≥
⌈

DK
F

⌉

+
⌈

D−1
F−1

⌈

DK
F

⌉

⌉

+ · · ·
· · ·+

⌈

1
FM
N

+1

⌈

2
FM
N

+2

⌈

· · ·
⌈

DK
F

⌉

· · ·
⌉

⌉⌉

.

It can be seen that for many of the parameters, our bound

is better than those in [7], [4]. Further, the last column of

Table I denotes the rate achieved by the scheme in Section

IV in this work, for whichever parameters are applicable.

K F D [this work] [7] [4] Scheme
[Sec IV]

R∗F ≥ R∗F ≥ R∗F ≥ RF

15 50 30 71 54 65 NA

24 54 36 109 90 96 NA

15 20 12 30 31 26 NA

7 42 24 43 33 42 56

15 210 168 637 444 630 840

13 156 108 285 193 280 468

TABLE I: For some values of K,F,D , we compare the lower
bound of this work with that of [7], [4]. The last column gives the
number of transmissions in the scheme constructed in this paper for
whatever values are applicable.

IV. A NEW PROJECTIVE GEOMETRY BASED SCHEME

In this section we present a new coded caching scheme

using projective geometries over finite fields. We first review

some basic concepts.

A. Review of projective geometries over finite fields [11]

Let k, q ∈ Z+ such that q is a prime power. Consider a

k-dim (we use “dim” for dimensional) vector space Fk
q over

a finite field Fq. Consider an equivalence relation on Fk
q \

{0}(where 0 represents the zero vector) whose equivalence

classes are 1-dim subspaces(without 0) of Fk
q . The set of



these equivalence classes is called the (k−1)-dim projective

space over Fq and is denoted by PGq(k−1). For m ∈ [k], let

PGq(k− 1,m− 1) denote the set of all m-dim subspaces of

Fk
q . It is known that (Chapter 3 in [11]) |PGq(k− 1,m− 1)|

is equal to the q-binomial coefficient

[

k
m

]

q

, where

[

k
m

]

q

=

(qk−1)...(qk−m+1−1)
(qm−1)...(q−1) . The following result is known from [11].

Lemma 3 (Chapter 3 in [11]). Consider a k-dim vector space

Fk
q . Let 1 ≤ r, s, l < k. Then the number of r-dim subspaces

intersecting a fixed s-dim subspace in a fixed l-dim subspace

is q(r−l)(s−l)

[

k − s
r − l

]

q

.

We now proceed to construct a caching line graph using

projective geometry.

B. A new caching line graph using projective geometry

Consider k,m, t ∈ Z+ such that m+ t ≤ k. Let W be a

fixed (t− 1)-dim subspace of the vector space Fk
q .

Let

V , {V ∈ PGq(k − 1, t− 1) : W ⊆ V }.
P , {P ∈ PGq(k − 1,m+ t− 1) : W ⊆ P}.

X ,

{

{V1, V2, · · · , Vm+1} : ∀Vi ∈ V,
m+1
∑

i=1

Vi ∈ P

}

.

We first initialize L by its user-cliques. The user-cliques are

indexed by t-dim subspaces in V. For each V ∈ V create

the vertices corresponding to the user-clique indexed by V

as CV ,

{

(V,X) : X ∈ X, V *
∑

Vi∈X

Vi

}

. Now, for each

X ∈ X we construct the subfile clique of L associated with

X as CX ,

{

(V,X) : V ∈ V, V *
∑

Vi∈X

Vi

}

. By definition,

these subfile cliques partition the set of vertices in L (the

union of all the user cliques). By invoking the notations from

Section II (Lemma 1), we have K = |V| (number of user-

cliques), and subpacketization F = |X| (the number of subfile

cliques). We now find the values of K , and the size of the

subfile cliques and the user cliques.

Lemma 4.

K =

[

k − t+ 1
1

]

q

.

|CX | = qm+1

[

k −m− t
1

]

q

(for any X ∈ X).

|CV | =
[

k − t
m+ 1

]

q

qm+1
m
∏

i=0

(qm+1 − qi)

(q − 1)m+1(m+ 1)!
(for any V ∈ V).

Proof: K = |V| is the number of t-dim subspaces

intersecting the fixed (t − 1)-dim subspace W in the fixed

(t − 1)-dim subspace W . By Lemma 3, we have K =

q(t−t+1)(t−1−t+1)

[

k − t+ 1
t− t+ 1

]

q

=

[

k − t+ 1
1

]

q

.

|CX | (for any X ∈ X) is the number of t-dim subspaces

intersecting the fixed (m + t)-dim subspace
∑

Vi∈X

Vi in the

fixed (t−1)-dim subspace W . By Lemma 3, we have |CX | =
q(t−t+1)(m+t−t+1)

[

k −m− t
t− t+ 1

]

q

= qm+1

[

k −m− t
1

]

q

.

We now obtain |CV | for any V ∈ V. To do this, we

will first find the number (say h) of (m + t)-dim sub-

spaces P ∈ P intersecting the fixed t-dim subspace V
in the fixed (t − 1)-dim space W . By using Lemma 3,

we thus have h = q(m+t−t+1)(t−t+1)

[

k − t
m+ t− t+ 1

]

q

=

qm+1

[

k − t
m+ 1

]

q

. Now, we find the number(say g) of X ∈ X

such that
∑

Vi∈X

Vi = P for some P ∈ P . Then it follows that

|CV | = hg.

Now, to find g, we first prove a few smaller claims.

Claim 1: The number of one dimensional spaces A such

that W ⊕ A = V (V being a fixed t-dimensional subspace,

⊕ representing direct sum) is qt−1.

Proof of Claim 1: To see this, observe that to satisfy W⊕A =
V , we must have A = span(a) for some a ∈ V \W. Thus

there are qt − qt−1 = qt−1(q − 1) choices for a. However

there are precisely q − 1 vectors a whose span is the same

one-dimensional subspace A. Hence we have that the number

of one dimensional spaces A such that W ⊕A = V is qt−1.
Claim 2: Let X = {V1, . . . , Vm+1} be some fixed

element in X. The number N1 of (m + 1)-sized sets

{A1, A2, · · · , Am+1} (where Ai, ∀i ∈ [m+1] are 1-dim sub-

spaces) such that {W ⊕A1,W ⊕A2, · · · ,W ⊕Am+1} = X
is q(t−1)(m+1).
Proof of Claim 2: By Claim 1, the number of Ai such

that W ⊕ Ai = Vi is qt−1. As Ais can be independently

chosen to get the corresponding Vis, we thus have that N1

is q(t−1)(m+1).
Claim 3: The number g′ of (m + 1)-sized sets

{A1, A2, · · · , Am+1} (where Ai, ∀i ∈ [m + 1] are 1-

dim subspaces) such that W ⊕ A1 ⊕ A2 ⊕ · · ·Am+1 = P

(for some fixed P ∈ P) is

m
∏

i=0

(qm+t − qt−1+i)

(q − 1)m+1(m+ 1)!
.

Proof of Claim 3: Firstly, we note that there exists a set

{A1, ..., Am+1} of 1-dim subspaces such that W⊕
m+1
⊕

i=1

Ai =

P , if and only if there exists a (not necessarily unique) set

of vectors ai : i ∈ [m+ 1] such that Ai = span({ai}) and

ai ∈ P\(W ⊕
i−1
⊕

j=1

Aj), for all i ∈ [m + 1]. We call such

a set {ai : i = 1, ..,m + 1} as a generating set of the set

{Ai : i = 1, ..,m+ 1}.

Note that given a set of 1-dim subspaces {Ai : i =
1, ..,m+1}, we can get a generating set {ai : i = 1, ..,m+1}
by choosing any ai ∈ Ai\{0} for each i ∈ [m + 1]. Now,

suppose the set {ai : i ∈ [m + 1]} is a generating set for

{Ai : i ∈ [m+ 1]}, then so is {ciai : i ∈ [m+ 1]}, for any

ci ∈ Fq\{0}. Thus, the number of such distinct generating

sets for any given set of 1-dim subspaces {Ai : i ∈ [m+1]}
is (q − 1)m+1.

Now the number of ways to choose an ordered sets of

vectors {ai : i ∈ [m+ 1]} such that ai ∈ P\(W ⊕
i−1
⊕

j=1

Aj),



for all i ∈ [m+1], is
m
∏

i=0

(qm+t−qt−1+i). Thus, the number of

(unordered) such generating sets {ai : i ∈ [m + 1]} is then
m∏

i=0

(qm+t−qt−1+i)

(m+1)! . By arguments in the previous paragraph,

it can be seen that these unordered generating sets can be

partitioned into groups of (q − 1)m+1, such that each such

group includes precisely the set of all generating sets for a

particular set of 1-dim spaces {Ai : i ∈ [m + 1]} such that

W ⊕
m+1
⊕

i=1

Ai = P .

Thus the number g′ we are looking for is precisely
m
∏

i=0

(qm+t − qt−1+i)

(q − 1)m+1(m+ 1)!
. This proves Claim 3.

We now prove that the number g of X ∈ X such that

∑

Vi∈X

Vi = P for some P ∈ P is

m∏

i=0

(qm+1−qi)

(q−1)m+1(m+1)! . To see

this, note that for each X = {V1, ..., Vm+1} ∈ X such that
∑

Vi∈X

Vi = P , there exists precisely q(t−1)(m+1) sets of 1-dim

subspaces {A1, .., Am+1} such that {W⊕Ai : i ∈ [m+1]} =
{Vi : i ∈ [m + 1]}. By Claim 3, the total number of sets of

1-dim subspaces {A1, .., Am+1} such that W ⊕
m+1
⊕

i=1

Ai = P

is g′, and these can be partitioned into groups each of size

q(t−1)(m+1), such that for each set {A1, .., Am+1} in any

particular group, the set X = {Vi = W ⊕ Ai : i ∈ [m +

1]} ∈ X is the same. Thus we have that g = g′

q(t−1)(m+1) =
m
∏

i=0

(qm+1 − qi)

(q − 1)m+1(m+ 1)!
.

Finally, we see that the expression for |CV | = hg matches

the lemma statement, which proves the lemma.

Note that by Lemma 4, we have the size of the subfile

cliques of L as |CX | (for any X ∈ X). We now show

that L2 has a clique cover with d-sized disjoint cliques for

some d. Therefore L is in fact a (c = |CX |, d)-caching line

graph, giving raise to the main result in this section which

is Theorem 4.

C. Delivery Scheme from a clique cover of L2

We first describe a clique of L2 and show that such equal-

sized cliques partition V (L) = V (L2). This will suffice to

show the delivery scheme as per Theorem 1.

Let Y =
{

{V1, V2, · · · , Vm+2} : Vi ∈ V, ∀i ∈ [m + 2]

such that
m+2
∑

i=1

Vi ∈ PGq(k − 1,m+ t)
}

. We now present a

clique of size (m+ 2) in L2.

Lemma 5. Consider Y = {V1, V2, · · · , Vm+2} ∈ Y. Then

CY = {(Vi, Y \ Vi), ∀Vi ∈ Y } ⊂ V (L2) is a clique in L2.

Proof: First note that CY is well defined as Vi *
m+2
∑

l=1
l 6=i

Vl

(otherwise
m+2
∑

i=1

Vi will not be a (m+ t+ 1)-dim space) and

hence (Vi, Y \ Vi) ∈ V (L). Consider two distinct vertices

(Vi, Y \ Vi), (Vj , Y \ Vj) ∈ CY . It is clear that Vi 6= Vj

and Y \ Vi 6= Y \ Vj . By the construction of CY we have

Vi ⊆
m+2
∑

l=1
l 6=j

Vl and Vj ⊆
m+2
∑

l=1
l 6=i

Vl. Therefore we have (Vi, Y \

Vj), (Vj , Y \ Vi) /∈ V (L2). By invoking Lemma 2, {(Vi, Y \
Vi), (Vj , Y \ Vj)} ∈ E(L2). Hence proved.

Now we show that the cliques {CY : Y ∈ Y} partition

V (L2).

Lemma 6.
⋃

Y ∈Y

CY = V (L), where the union is a disjoint

union.

Proof: Consider Y, Y ′ ∈ Y such that Y 6= Y ′. By

definition of CY , we have CY ∩CY ′ = φ. Now consider an

arbitrary vertex (V1, {V2, V3, · · · , Vm+2}) ∈ V (L). By the

construction of L,
m+2
∑

i=1

Vi ∈ PGq(k − 1,m + t). Therefore

(V1, {V2, V3, · · · , Vm+2}) lies in the clique, C{V1,V2,··· ,Vm+2}
(defined as in Lemma 5). Hence proved.

Finally we present our coded caching scheme using the

caching line graph constructed above.

Theorem 4. The caching line graph L constructed above is a
(

c = qm+1

[

k −m− t
1

]

q

, d = m+ 2

)

-caching line graph

and defines a coded caching scheme with

K =

[

k − t+ 1
1

]

q

,

F =

[

k − t+ 1
m+ 1

]

q

m
∏

i=0

(qm+1 − qi)

(q − 1)m+1(m+ 1)!
,

M
N = 1−

qm+1

[

k − t
m+ 1

]

q
[

k − t+ 1
m+ 1

]

q

, and R =

qm+1

[

k −m− t
1

]

q

m+ 2
.

Proof: From Lemma 4 and the notations in Lemma 1,

we get the expression of K and D = |CV |. Further we see

that the subfile cliques partition the vertices of L by definition

and also c = |CX | for any X ∈ X (the size of each subfile

clique). By Lemma 5 and Lemma 6, the size of the cliques

of L2 is (m+2) and they partition the vertices. Hence L is a
(

c = qm+1

[

k −m− t
1

]

q

, d = m+ 2

)

-caching line graph.

Thus, we have by Theorem 1,

F =
KD

c
=

[

k − t+ 1
m+ 1

]

q

m
∏

i=0

(qm+1 − qi)

(q − 1)m+1(m+ 1)!
.

M

N
= 1− c

K
= 1−

qm+1

[

k − t
m+ 1

]

q
[

k − t+ 1
m+ 1

]

q

.

Since

[

k − t+ 1
1

]

q
[

k −m− t
1

]

q

=

[

k − t+ 1
m+ 1

]

q
[

k − t
m+ 1

]

q

.



R =
c

d
=

qm+1

[

k −m− t
1

]

q

m+ 2
.

This completes the proof.

V. ASYMPTOTIC ANALYSIS OF THE PROPOSED SCHEME

In this section, we analyse the behaviour of R,F for the

coded caching scheme proposed in Section IV as 1 − M
N is

lower bounded by a constant and K → ∞. We show that

F = qO((logqK)2), while R = Θ( K
logqK

). Towards this end,

we first give some bounds on q-binomial coefficients. These

can be easily derived, however a proof is available in [9].

Lemma 7. [9] For non-negative integers a, b, f , for q being

some prime power,

q(a−b)b ≤
[

a
b

]

q

≤ q(a−b+1)b

q(a−f−b−1)δ ≤

[

a
b

]

q
[

a
f

]

q

≤ q(a−f−b+1)δ,

where δ = |b− f |.
We now proceed to analyse the asymptotics of the scheme.

Throughout our analysis we assume q is constant. Consider,

1− M

N
=

qm+1(qk−t−m − 1)

(qk−t+1 − 1)
≥ q(m−k+t)(qk−t−m − 1).

To lower bound 1 − M

N
by a constant, let k −m − t = α,

where α is a constant. Note that α ≥ 0 as m + t ≤ k. We

have K =

[

k − t+ 1
1

]

q

. We analyse our scheme as (k − t)

grows large. By Lemma 7, we have qk−t ≤ K ≤ qk−t+1.

Hence we have

logq K − 1 ≤ (k − t) ≤ logq K. (2)

The rate expression in Theorem 4 can be written as R =
K(1− M

N )

m+ 2
=

K(1− M
N )

k − t− α+ 2
.

Therefore by using (2) we have
K(1−M

N
)

logq K−α+2 ≤ R ≤
K(1−M

N
)

logq K−1−α+2 ,

Consider, R ≤ K(1−M
N

)

logq K−1−α+2 =
K(1−M

N
)

logq K (1 − α−1
logq K )−1.

Now by Taylor’s series expansion we have 1 ≤ (1 −
α−1

logq K )−1 ≤ 2 as K → ∞. Therefore we have R ≤
2K(1−M

N
)

logq K . Hence R = O( K
logq K ).

Consider, R ≥ K(1−M
N

)

logq K−α+2 =
K(1−M

N
)

logq K (1 − α−2
logq K )−1.

Now if α ≥ 2, by Taylor’s series expansion we have

1 ≤ (1 − α−2
logK )−1 ≤ 2 as K → ∞. Therefore we have

R ≥ K
logq K . If α ∈ {0, 1}, then R ≥ K(1−M

N
)

logq K−α+2 ≥ K(1−M
N

)

2 logq K .

Hence R = Ω( K
logq K ). Therefore R = Θ

(

K

logq K

)

.

We now obtain the asymptotics for subpacketization F . By

Lemma 7 and from the expression of F in Theorem 4, we

have

(k,m, t, q) (m′, q′)
K1 K2 U1 U2 F1 F2 γ1 γ2

[6] [6] [6] [6]

(10, 2, 2, 2) (6, 73)
511 511 0.98 0.98 107 1011 4 7

(9, 3, 2, 2) (14, 17)
255 255 0.94 0.94 108 1017 5 15

(8, 3, 2, 2) (13, 9)
127 126 0.88 0.88 106 1012 5 14

(9, 4, 3, 2) (31, 4)
127 128 0.76 0.75 108 1018 6 32

(7, 3, 2, 2) (15, 4)
63 64 0.76 0.75 105 109 5 16

(7, 3, 3, 3) (39,3)

121 120 0.67 0.66 106 1018 5 40

(6, 3, 2, 2) (14, 2)
31 30 0.51 0.50 104 104 5 15

TABLE II: For some specific values of K,U = 1 − M
N , we

compare the results of [6] with this work.

F = K.

[

k − t+ 1
m+ 1

]

q

K
.

m
∏

i=0

(qm+1 − qi)

(q − 1)m+1(m+ 1)!

≤
Kq(k−t−m)m

m
∏

i=0

qi(qm+1−i − 1)

(q − 1)m+1(m+ 1)!

=
Kqαm

(m+ 1)!

m
∏

i=0

qi
[

m+ 1− i
1

]

q

.

Once again, by applying Lemma 7 to the above expression,

we have, F ≤ Kqαm

(m+1)!

m
∏

i=0

qiqm+1−i = qlogq K+αm+(m+1)2

(m+1)! . As

m + t ≤ k, thus qm ≤ qk−t ≤ K (by Lemma 7). Hence

m ≤ logq K . Also by (2) we have, logq K − 1 ≤ (m +
α), which can be written as 1

(m+1)! ≤ 1
⌊logq K−α⌋! . Using

Stirling’s approximation for y! as
√
2πx(ye )

x for large y, and

after some simplifications we see that F = qO((logq K)2).
Finally in Table II, we compare the scheme in Theorem 4

with the scheme in [6] for some choices of K,U = 1−M
N , F

and γ (the global caching gain, i.e.,
K(1−M

N
)

R , where R is the

rate achieved by the scheme). We label the parameters of our

scheme in Theorem 4 as K1, U1, F1, γ1 where γ1 = d. The

parameters of the scheme presented in [6] are K2 = q′(m′+

1), U2 = 1− 1
q′ , F2 = (q′)(m

′), γ2 =
K(1−M

N
)

q′−1 where q′,m′ ∈
Z+. The first column lists (k,m, t, q),K1 according to the

Theorem 4. The second column lists (m′, q′),K2 parameters

of the scheme in [6]. Since we can not match the parameters

from this work and [6] exactly, we choose approximately

equal values. We see from the table that our scheme performs

much better than [6] in terms of the subpacketization, but

pays a price in terms of the rate.
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