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Abstract

We consider the problem of covert communication over continuous-time additive white Gaussian noise (AWGN)

channels under spectral mask constraints, wherein two legitimate parties attempt to communicate reliably in the

presence of an eavesdropper that should be unable to estimate if communication takes place. The spectral mask

constraint is imposed to restrict excessive radiation beyond the bandwidth of interest. We develop a communication

scheme with theoretical reliability and covertness guarantees based on pulse amplitude modulation (PAM) with Binary

Phase Shift Keying (BPSK) and root raised cosine (RRC) carrier pulses. Given a fixed transmission duration T and

a spectral mask with bandwidth parameter W , we show that one can reliably and covertly transmit O(
√
WT ) bits

of information. We characterize the constant behind the O and show that it is tight under some conditions.

Index Terms

Covert communication, Low probability of detection, Continuous-time channels, Binary Phase Shift Keying.

I. INTRODUCTION

Covert communication considers the scenario in which a transmitter, Alice, wishes to reliably communicate with a

legitimate receiver, Bob, while simultaneously hiding the presence of communication from an eavesdropping adver-

sary, referred to as the warden, Willie. Building upon the formalization of the problem in [1], subsequent studies have

progressively refined the information-theoretic analysis of covert communication by considering binary symmetric

channels [2], discrete memoryless channels (DMCs) and additive white Gaussian noise (AWGN) channels [3]–[5],

multiple-access channels [6], broadcast channels [7]–[9], channels with state [10], [11], compound channels [12],

and adversarially jammed channels [13]. The aforementioned works have not only identified a square-root law

(SRL) for covert communication — only O(
√
n) bits of information can be transmitted reliably and covertly over

n channel uses — but also characterized the constant behind the O, which can be interpreted as the covert capacity.

While most covert communication studies have focused on discrete-time models, analyzing continuous-time

models is legitimate to ensure that all relevant engineering aspects got captured. Perhaps not surprisingly, [1],

[14] showed that, for strictly band-limited models and with random Gaussian codebooks, the SRL extends to such

models, in the sense that O(
√
T ) covert bits can be sent over a transmission duration of T . When the bandwidth
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W is infinite or grows large with time T and with random codebooks, [15]–[17] showed that the covert capacity

is infinite for both AWGN and Poisson channel, i.e., communication is not restricted to the SRL.

The objective of the present work is to investigate covert communication over continuous-time AWGN channels

in a formal and slightly different model, with the following distinctions compared to previous work [1], [14], [15].

1) We require the input signals to be strictly time-limited and approximately band-limited, as we aim to clearly

characterize the relation between covert throughput and time. The band-limited property is characterized through

a spectral mask with bandwidth parameter W at the transmitter, which restricts excessive radiation beyond the

bandwidth of interest. As precisely defined in Section II-D, both peak power and integrated power constraints

are imposed on out-of-band emissions.

2) Although the transmission is time-limited, the warden is allowed to monitor the entire timeline t ∈ (−∞,∞).

3) We adopt Gallager’s definition of White Gaussian Noise (WGN) [18, Chapter 7.7] which assumes that the

noise is spread over infinite bandwidth. We elaborate on the rationale behind the model in a supplemental

document [19]. When analyzing the covertness in this model, a sufficient statistic is formally established to

preclude any unexpected manipulations of signals by the warden.

4) Our results hold for fixed codebooks instead of random ones.

Under this model, we then develop a communication scheme with theoretical reliability and covertness guarantees

based on pulse amplitude modulation (PAM) with Binary Phase Shift Keying (BPSK) and root raised cosine (RRC)

carrier pulses. We show that one can reliably and covertly transmit O(
√
WT ) bits of information and exactly

characterize the pre-constant of the scaling. As expected, no shared key between Alice and Bob is needed if

Willie’s channel is noisier than Bob’s channel, while O(
√
WT ) bits of shared key are needed otherwise. We finally

highlight some of the key technical contributions of the present work.

1) The key step to analyze reliability is to convert continuous-time signals to discrete-time signals by applying

a matched filter, after which it suffices to apply relatively standard techniques for discrete-time models.

However, it is not a priori clear that merely considering the converted discrete-time signals is sufficient from

a covertness perspective. In fact, the warden may process continuous-time signals in an arbitrary way (e.g.,

perform nonuniform sampling, search for discontinuities, etc.) and extract information beyond that contained

in the discrete-time signals. Directly analyzing continuous-time signals is, however, rather intricate. We show

as part of our analysis (Section IV-A) that such concerns may be dismissed by proving that the set of converted

discrete-time signals forms a sufficient statistic for detection. Hence, in order to analyze covertness, it suffices

to study the variational distance between the distributions of discrete-time random variables.

2) Our initial analysis shows that, with high probability (w.h.p.), a randomly chosen code C (a) satisfies the spectral

mask constraints, (b) forms a resolvability code for Willie’s channel (which further implies covertness), and

(c) ensures a vanishing average probability of error (averaged over both message and shared key). We then

develop a key result (Lemma 9) showing that, upon carefully rearranging the codewords in C, the resulting

code ensures a vanishing max-average probability of error (maximized over the shared key and averaged over

the message) while preserving the other two properties.

3) Because of technical challenges related to the spectral mask constraints (Section V), we have not been able to

develop a converse for continuous-time AWGN channels; however, if we restrict ourself to the discrete-time

model, our converse shows that the BPSK scheme used in this work is optimal.1

1The optimality of BPSK for covert communication under KL-divergence metric is attributed to [16].
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II. PRELIMINARIES AND SYSTEM MODEL

A. Notation

Random variables are denoted by upper-case letters (e.g., X) while their realizations are denoted by lower-case

letters (e.g., x). Vectors are implicitly of length n and are denoted by boldface letters (e.g., X = [X1, X2, . . . , Xn]

and x = [x1, x2, . . . , xn]). Sets are denoted by calligraphic letters (e.g., X ).

For any x ∈ R, [x]+ represents max{x, 0}, while for any integers a, b such that a < b, Ja, bK represents

the set of integers {a, a + 1, . . . , b}. All the logarithms log and exponentials exp are base e. Let Q(λ) ,

(1/
√
2π)

∫∞
λ

exp
(
−u2/2

)
du be the tail distribution function of the standard normal distribution. For two continuous

probability distributions P and Q over the same set X , we respectively define their KL-divergence and variational

distance as D(P‖Q) ,
∫
X P (x) log

P (x)
Q(x)dx and V(P,Q) , 1

2

∫
X |P (x) −Q(x)|dx.

B. Root Raised Cosine (RRC) Pulses

In the time domain, an RRC pulse is defined by

φT0,β(t) ,





√
1+β
T0
, 0 ≤ |t| ≤ 1−β

1+β
T0

2 ;√
1+cos

[
π(1+β)

T0β (|t|− 1−β
1+β

T0
2 )

]

2T0/(1+β) , 1−β
1+β

T0

2 < |t| ≤ T0

2 .

Note that φT0,β(t) is uniquely determined by the pulse duration T0 and roll-off factor β ∈ [0, 1]. The pulse duration

T0 controls the length of the support of φT0,β(t), i.e., it is non-zero only when t ∈ [−T0/2, T0/2]. Also, note that

φT0,β(t) is flat when 0 ≤ |t| ≤ 1−β
1+β

T0

2 , and the length and height of this flat interval depend on the roll-off factor

β (a smaller β implies a longer and lower flat interval). Correspondingly, the spectrum [20, Chapter 11.3] of an

RRC is given by

φ̂T0,β(f) ,





√
T0(4β+(1−β)π)

2π
√
1+β

, f = 0;

4β
√
T0

π
√
1+β

· cos(πT0f)+
(1+β) sin( 1−β

1+β
πT0f)

4βT0f

1−( 4βT0f
1+β )

2 , f 6= 0.

Note that we swap the roles of time and frequency domain compared to standard use of RRC pulses. The advantages

are two-fold: (a) pulses are strictly time-limited; and (b) the energy/power decays fast enough in the frequency

domain. One may design alternative carrier pulses that outperform RRC pulses but this optimization is outside the

scope of the present paper. RRC pulses with different values of β are illustrated in Fig. 1.

t

φT0,β(t)

β = 0.0
β = 0.5
β = 1.0

−T0

2
T0

2

f

φ̂T0,β(f)

β = 0.0
β = 0.5
β = 1.0

Fig. 1: RRC pulses with different values of roll-off factor β.
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AWGN(Nw/2)

Z(t)
Φ Λ̂

W (t)

AWGN(Nb/2)

X(t) Y (t)
Ψ Γ M̂

M

Λ

B(t)

S

Fig. 2: System diagram.

C. White Gaussian Noise (WGN)

Given an L2 function g(t) (i.e.,
∫∞
−∞ |g(t)|2dt < ∞), and a stochastic process {W (t), t ∈ R} which sample

functions are real-valued L2 functions, the random variable V ,
∫∞
−∞W (t)g(t)dt is called a linear functional of

{W (t), t ∈ R}.

Definition 1 (WGN [18]). The WGN {W (t), t ∈ R} with intensity N0/2 is a generalized zero-mean Gaussian

process such that (a) for any t1, t2 ∈ R, the autocovariance E(W (t1)W (t2)) is (N0/2)δ(t2 − t1), where δ(·) is

the impulse function, and (b) for any set of L2 functions {gi(t)}, the linear functionals {Vi =
∫∞
−∞W (t)gi(t)dt}

are jointly Gaussian, and satisfy E(ViVj) =
N0

2

∫∞
−∞ gi(t)gj(t)dt, ∀i, j.

Remark 1. The WGN at any time t is a Gaussian variable with infinite variance; that is, the WGN is not a

well-defined random process. However, as discussed in [18, Chapter 7.7], “WGN is not viewed in terms of random

variables at each epoch of time. Rather, it is viewed as a generalized zero-mean random process (in the same sense

as δ(t) is viewed as a generalized function) for which the properties (a) and (b) in Definition 1 are satisfied.”

If {gi(t)} is a set of orthonormal functions, we have E(ViVj) =
N0

2 1{i = j} and each Vi is a Gaussian random

variable with zero mean and variance N0/2. Hence, the linear functionals {Vi} are independent and identically

distributed (i.i.d.). This property is critical in our achievability scheme — we construct the transmitted signals in

terms of an orthonormal basis (e.g., time-shifted RRC pulses), thus we can represent the WGN in terms of the

same orthonormal basis, and the resulting “noise variables” are i.i.d. Gaussian variables.

D. System Model

1) Shared key: Prior to communication, Alice and Bob share a secret key S, which is uniformly distributed in

J1,KK and unknown to Willie.

2) Encoder: Given a fixed and publicly known T > 0, Alice uses her encoder Ψ(·) to encode the transmission

status Λ ∈ {0, 1}, the message2 M ∈ {0} ∪ J1,MK, and the shared key S ∈ J1,KK into a continuous-time signal

X(t), t ∈ [0, T ]. When Alice is silent (Λ = 0), her message is required to be 0 and her transmission must satisfy

X(t) = 0, t ∈ [0, T ]. When Alice is active (Λ = 1), her message is uniformly distributed in J1,MK. For each

message m and key s, she encodes the message-key pair (m, s) into a codeword Xms(t). The sub-codebook index

by s is the collection of codewords Cs , {Xms(t)}Mm=1. The codebook C is the union of all the sub-codebooks,

i.e., C = ∪s∈J1,KKCs.

2With a small abuse of notation, we denote the size of the message by M as well.
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3) Noise: The channel noise from Alice to Bob is modeled as an additive white Gaussian noise (AWGN) B(t)

with intensity Nb/2 while the channel noise from Alice to Willie is modeled as another independent AWGN W (t)

with intensity Nw/2.

4) Willie’s estimator: Willie observes Z(t) = X(t)+W (t) and uses an estimator Φ(·) to perform a hypothesis test

on Z(t). The null hypothesis H0 corresponds to Λ = 0 while the alternative hypothesis H1 corresponds to Λ = 1.

Willie’s estimation is denoted Λ̂ = Φ(Z(t)). Let PFA(Φ) , P(Λ̂ = 1|Λ = 0) and PMD(Φ) , P(Λ̂ = 0|Λ = 1)

denote the probability of false alarm and the probability of missed detection of the estimator Φ, respectively. We

use a hypothesis testing metric to measure covertness.

Definition 2 (Covertness). The communication is guaranteed to be (1 − δ)-covert if

min
Φ

{PFA(Φ) + PMD(Φ)} ≥ 1− δ, (1)

where Φ is minimized over all possible estimators.

5) Decoder: Bob observes Y (t) = X(t) + B(t). His decoder Γ(·) takes Y (t) and the shared key S as input and

produces a message reconstruction M̂ . The max-average probability of error (maximized over the shared key and

averaged over the message) is defined as

Perr , max
s∈J1,KK

P(M 6= M̂ |S = s,Λ = 1) + P(M̂ 6= 0|Λ = 0). (2)

6) Spectral mask: The spectral mask at the transmitter is provided a priori, and the code C must fit into the spectral

mask. Let Exms(t)(f) = |x̂ms(f)|2 be the Energy Spectral Density (ESD) of the codeword xms(t), and Ê(f) be

the ESD of the code C, where

Ê(f) ,
1

MK

M∑

m=1

K∑

s=1

Exms(t)(f). (3)

Definition 3 (Spectral mask). Let l ∈ N
∗ be the number of constraints, W > 0 be the bandwidth of interest,

{Ui}li=1, {αi}li=1, and {ηi}li=1 be non-decreasing real-valued sequences, and Vi = 10−
Ui
10 for each i. A code C

with ESD Ê(f) is said to fit into the spectral mask S(W, {Ui}li=1, {αi}li=1, {ηi}li=1) if for every i ∈ J1, lK:

1) its Ui-dB bandwidth is at most αiW , i.e., ∀f ≥ αiW, Ê(f) < Vi
[
Ê(f)

]
max

;

2) the energy allocated in f ∈ [−αiW,αiW ] satisfies
∫ αiW

−αiW
Ê(f)df ≥ ηi

∫ +∞
−∞ Ê(f)df .

For example, if (U1, α1, η1) = (3, 1, 0.8), the 3-dB bandwidth should be at most W and
∫W

−W Ê(f)df should be at

least 0.8
( ∫ +∞

−∞ Ê(f)df
)
. For notational convenience, we abbreviate the spectral mask S(W, {Ui}li=1, {αi}li=1, {ηi}li=1)

as SW , when the arguments are clear from the context.

7) Throughput pair and covert capacity: For any spectral mask SW , noise parameters Nw, Nb > 0, and covertness

parameter δ, a throughput pair (r, rK) is said to be achievable if there exists a sequence of code with increasing

support T such that

lim inf
T→∞

logM√
T

≥ r, lim sup
T→∞

logK√
T

≤ rK ,

lim
T→∞

Perr = 0, lim
T→∞

min
Φ

{PFA(Φ) + PMD(Φ)} ≥ 1− δ,

and the ESD Ê(f) of the code fits into the spectral mask SW . The covert capacity is the supremum of r over all

achievable throughput pairs.
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III. ACHIEVABILITY SCHEMES AND MAIN RESULTS

Our communication scheme relies on a PAM scheme, wherein the information bits are carried over a train

of RRC pulses. Recall that the duration of the RRC pulse φT0,β(t) equals T0, thus the effective blocklength of

the transmission is n , ⌊T/T0⌋. Without loss of generality, we drop the floor operator for simplicity, and write

n = T/T0 by assuming T0 divides T . We specify the exact choice of n in Lemma 4. The sequence of n RRC

carrier pulses used for PAM is given by {gi(t)}ni=1, where

gi(t) , φT0,β (t− (i− 0.5)T0) (4)

is the time-shifted version of φT0,β(t), and is non-zero only when t ∈ [(i− 1)T0, iT0]. For a length-n discrete-time

codeword (DT-codeword) x = [x1, x2, . . . , xn], the corresponding continuous-time codeword (CT-codeword) x(t)

takes the form

x(t) =

n∑

i=1

xigi(t). (5)

We use a random coding argument with BPSK to show the existence of good codes. Each xi is chosen from

{−an, an}, where an scales as O(n−1/4) for covert communication and the exact value will be specified in

Section IV. For n ∈ N
∗, let PX be the distribution on X = {−an, an} such that

PX(an) = PX(−an) = 1/2, (6)

and P⊗n
X =

∏n
i=1 PX be the n-letter product distribution of PX . For each message-key pair (m, s), its DT-codeword

xms = [xms,1, xms,2, . . . , xms,n] is generated independently according to P⊗n
X , and its CT-codeword xms(t) equals

∑n
i=1 xms,igi(t).

A. Optimal Effective Blocklength

One important step in the analysis is to convert continuous-time AWGN channels to discrete-time AWGN

channels. We wish to maximize the number of discrete-time channel uses to achieve the highest possible throughput;

however, the spectral mask SW imposes constraints on the ESD Ê(f) of the code C. These constraints imply that

the pulse duration T0 of {gi(t)} cannot be arbitrarily small, hence the blocklength n cannot be arbitrarily large.

Though the ESD Ê(f) has intricate dependencies with respect to the codewords in the code (as defined in (3)),

the ensemble-averaged ESD Ẽ(f), which is averaged over the codeword generation process P⊗n
X , has a relatively

simple form, i.e.,

Ẽ(f) , EP⊗n
X

(EX(t)(f)) = a2nn · |φ̂T0,β(f)|2. (7)

In fact, Lemma 1 below shows that, with high probability over the code design, the ESD Ê(f) of a randomly

chosen code C is tightly concentrated around Ẽ(f). The proofs of (7) and Lemma 1 are provided in Appendix A.

Lemma 1. With probability at least 1− 2n2e−
√
MK/2 over the code design, a randomly chosen code C satisfies

∀f ∈ R,
∣∣∣Ẽ(f)− Ê(f)

∣∣∣ ≤ Ẽ(f) · n
(MK)1/4

.
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Suppose the code C, which is required to fit into the spectral mask SW , is such that its ESD Ê(f) exactly equals

the ensemble-averaged ESD Ẽ(f). Then, the minimum value of T0 is given by the optimal value T ∗
0 (SW ) of the

optimization problem (P1) defined as follows:

(P1) min
T0,β

T0

s.t. ∀f ≥ αiW, |φ̂T0,β(f)|2 < Vi|φ̂T0,β(0)|2, i ∈ J1, lK;
∫ αiW

−αiW

|φ̂T0,β(f)|2df ≥ ηi, i ∈ J1, lK;

T0 > 0, 0 ≤ β ≤ 1.

The optimization in (P1) is over both the pulse duration T0 and roll-off factor β, while the constraints follow from

the definition of the spectral mask SW , the expression of Ẽ(f) in (7), and the fact that
∫ ∞

−∞
|φ̂T0,β(f)|2df =

∫ ∞

−∞
|φT0,β(t)|2dt = 1. (8)

In general, the ESD Ê(f) of a specific code may not be equal to Ẽ(f) but Lemma 1 ensures that, with high

probability, it does not deviate from Ẽ(f) by a factor of (1±n/(MK)1/4). Note that MK is a function of n, and

n depends on the time T and pulse duration T0. We denote MK = f(n), and let

u(T, T0) ,
T/T0

[f(T/T0)]1/4
=

n

(MK)1/4
(9)

be the slackness parameter. The optimization problem (P2), which is obtained by adding slackness u(T, T0) to (P1),

takes the form
(P2) min

T0,β
T0

s.t. ∀f ≥ αiW,
|φ̂T0,β(f)|2(1− u(T, T0))

|φ̂T0,β(0)|2(1 + u(T, T0))
< Vi, i ∈ J1, lK;

∫ αiW

−αiW

|φ̂T0,β(f)|2df ≥ ηi
1− u(T, T0)

, i ∈ J1, lK;

T0 > 0, 0 ≤ β ≤ 1.

The optimal value of (P2) is denoted by T̂ ∗
0 (SW , T ) and explicitly depends on T . By choosing T0 = T̂ ∗

0 (SW , T ),

Lemma 1 implies that w.h.p., a randomly chosen code C fits into the spectral mask. Since (P1) and (P2) only differ

in the slackness u(T, T0) (which goes to zero as T goes to infinity), we have the following lemma.

Lemma 2. For sufficiently large T , we have

lim
T→∞

T̂ ∗
0 (SW , T ) = T ∗

0 (SW ). (10)

The proof of Lemma 2 is provided in Appendix B. We now take a detour to establish connections between

T ∗
0 (SW ) and the bandwidth parameter W . Given any β ∈ [0, 1], the optimization problem (P1β), which differs

from (P1) only in the third constraint, i.e., only T0 > 0 (without 0 ≤ β ≤ 1) is active, is defined as follows:

(P1β) min
T0

T0

s.t. ∀f ≥ αiW, |φ̂T0,β(f)|2 < Vi|φ̂T0,β(0)|2, i ∈ J1, lK;
∫ αiW

−αiW

|φ̂T0,β(f)|2df ≥ ηi, i ∈ J1, lK;

T0 > 0.
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Let T ∗
0 (SW , β) be the optimal value of (P1β), and it operationally represents the minimum value of T0 if the RRC

carrier pulses are restricted to a fixed roll-off factor β. If we merely increase the bandwidth W (with the other

arguments {Ui}li=1, {αi}li=1, {ηi}li=1 invariant), the value of T ∗
0 (SW , β) decreases since the spectral mask with a

broader range of frequency typically allows a faster change of signals in the time domain. Lemma 3, which is

formally proved in Appendix C, formalizes this intuition by proving that the product of W and T ∗
0 (SW , β) is a

constant.

Lemma 3. For any roll-off factor β ∈ [0, 1] and any W1,W2 > 0, we have

W1 · T ∗
0 (SW1 , β) =W2 · T ∗

0 (SW2 , β). (11)

Thus, we define a constant c(β) as

c(β) ,W · T ∗
0 (SW , β), (12)

where W can be chosen as an arbitrary positive value. Therefore, we have

T ∗
0 (SW ) = min

β∈[0,1]
T ∗
0 (SW , β) =

1

W
min

β∈[0,1]
c(β). (13)

By combining (10), (13), and the fact that n = T/T̂ ∗
0 (SW , T ), we have the following Lemma, which establishes

a bridge connecting the continuous-time channel (characterized by the time T and the spectral mask SW ) and the

discrete-time channel (characterized by the blocklength n).

Lemma 4. For every ξ > 0, there exists T (ξ) such that for all T > T (ξ), by setting the blocklength n =

(1 − ξ) · WT
minβ∈[0,1] c(β)

, the probability of a randomly chosen code fitting into the spectral mask SW is at least

1− exp
(
− exp(O(

√
WT ))

)
. Further, as T goes to infinity,

lim
T→∞

n = lim
T→∞

(1 − ξ) ·WT

minβ∈[0,1] c(β)
=

WT

minβ∈[0,1] c(β)
. (14)

Proof: Equations (10) and (13) imply that for every ξ′ > 0, there exists a T ′(ξ′) such that for all T > T ′(ξ′),

1

W
min

β∈[0,1]
c(β) ≤ T̂ ∗

0 (SW , T ) ≤ 1

W
min

β∈[0,1]
c(β) + ξ′,

hence we can set

n =
T

1
W minβ∈[0,1] c(β) + ξ′

=
WT

minβ∈[0,1] c(β)

(
1− ξ′W

minβ∈[0,1] c(β) + ξ′W

)
. (15)

We simplify (15) by choosing ξ = ξ′W
minβ∈[0,1] c(β)+ξ′W . For every ξ > 0, there exists a T (ξ), where T (ξ) =

T ′
(

ξ′W
minβ∈[0,1] c(β)+ξ′W

)
, such that for all T > T (ξ), if we set n = (1−ξ)·WT

minβ∈[0,1] c(β)
, the probability of a randomly

chosen code fitting into the spectral mask is at least

1− 2n2 exp(−
√
MK/2) = 1− exp

(
− exp(O(

√
n))
)
= 1− exp

(
− exp(O(

√
WT ))

)
.

This completes the proof of Lemma 4.

Remark 2. One may define the power spectral density (PSD) averaged over the distribution P⊗n
X as

SX(f) , lim
T→∞

EP⊗n
X

(
|X̂(f)|2
T

)
= lim

T→∞

Ẽ(f)

T

T=nT0= lim
n→∞

a2n · |φ̂T0,β(f)|2
T0

. (16)

However, SX(f) = limn→∞
a2
n·|φ̂T0,β

(f)|2
T0

= 0 for every f ∈ R since the amplitude an is a decaying function of n

in the covert setting. This is not surprising since the time-averaged power P of any CT-codeword x(t) goes to zero
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as T goes to infinity, i.e., P , limT→∞
1
T

∫ T

0 |x(t)|2dt = limT→∞
a2
nn
T = limn→∞

a2
n

T0
= 0. Since the objective

of analyzing the frequency domain is to concentrate the energy of transmissions in the spectral mask, it suffices to

study the distribution of energy through the ESD.

B. Main Results

Based on the coding and modulation scheme above, we present a lower bound on the covert capacity by proving

an achievable throughput pair.

Theorem 1. For any spectral mask SW , noise parameters Nw, Nb > 0, and covertness parameter δ ∈ (0, 1), the

throughput pair (r, rK) with

r =
Nw

Nb

√
2W

minβ∈[0,1] c(β)
·Q−1

(
1− δ

2

)
, rK =

(
1− Nw

Nb

)+
√

2W

minβ∈[0,1] c(β)
·Q−1

(
1− δ

2

)
, (17)

is achievable.

IV. PROOF OF THEOREM 1

We set the blocklength to be

n = (1 − ξ) · WT

minβ∈[0,1] c(β)
, (18)

for an arbitrarily small ξ > 0. Furthermore, we set the amplitude an to be

( 2
n

)1/4√
Q−1

(1− δ

2

)
Nw ·

(
1− n−1/8

)
, (19)

and the message size and key size to satisfy

logM =
(
1− 1

logn

)a2nn
Nb

, logK =
[(

1 +
1

logn

)
−
(
1− 1

logn

)Nw

Nb

]+ a2nn
Nw

. (20)

The above choices of n, an, logM , and logK lead to the achievable throughput pair in Theorem 1. Recall that

with the value of n chosen as per (18), Lemma 4 ensures that, for sufficiently large T , a random code C fits into

the spectral mask with high probability. In Sub-sections IV-A and IV-B, we prove that, with high probability, a

randomly chosen code C guarantees covertness and a small probability of error Perr, respectively.

A. Analysis of Covertness

1) Hypothesis testing and sufficient statistics: Recall that if we map the noise W (t) to any set of orthonormal

basis, the resulting coefficients are i.i.d. Gaussian variables. A specific orthonormal basis can be chosen in such

a way that the first n functions are time-shifted RRC pulses {gi(t)}ni=1, and the remaining ones form a set of

orthonormal functions {gi(t)}Li=n+1 that satisfy3

• Each of the function in {gi(t)}Li=n+1 is orthogonal to the space spanned by {gi(t)}ni=1.

• {gi(t)}ni=1 together with {gi(t)}Li=n+1 span the L2 space.

Therefore, we have

W (t) =

L∑

i=1

Wigi(t), (21)

3Note that the total number of functions L in this orthonormal basis can be either finite or infinite.
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where {Wi}Li=1 are i.i.d. random variables distributed according to N (0, Nw/2). The channel input X(t) =
∑n

i=1Xigi(t), where Xi = 0 under the null hypothesis H0, and Xi ∈ {−an, an} under the alternative hypothesis

H1. By mapping Willie’s received signal Z(t) = X(t) + W (t) to the orthonormal basis {gi(t)}Li=1, we have

Z(t) =
∑L

i=1 Zigi(t), where

Zi ,

∫ ∞

−∞
Z(t)gi(t)dt =




Xi +Wi, i ∈ J1, nK,

Wi, i ∈ Jn+ 1, LK.
(22)

Let Z be the length-n random vector consisting of (Z1, . . . , Zn), and Zc be the random vector consisting of

(Zn+1, . . . , ZL). Intuitively, Zc does not play any role in the hypothesis test, since the probability densities of

Zc only depend on the i.i.d. Gaussian noise (Wn+1, . . . ,WL). Lemma 5 below formalizes the above intuition by

showing that the random vector Z forms a sufficient statistic for Willie to determine H0 or H1. The definition of

sufficient statistics when observing a stochastic process, which is adapted from [20, Chapter 26.3], is provided here

for reference.

Definition 4 (Sufficient Statistics). The random vector Z is a sufficient statistic for estimating the transmission

status Λ ∈ {0, 1} based on the stochastic process Z(t) if:

1) Z is computable from the stochastic process Z(t);

2) For any finite number of samples d ∈ N of the observations Z̄d = (Z(t1), . . . , Z(td)), Λ − Z − Z̄d forms a

Markov chain for any prior on Λ.

Lemma 5. The random vector Z = (Z1, . . . , Zn) forms a sufficient statistic for determining H0 and H1.

Proof: The first condition in Definition 4 is satisfied since each element of Z can be computed via

Zi =

∫ ∞

−∞
Z(t)gi(t)dt, ∀i ∈ J1, nK. (23)

For any finite number of samples d ∈ N of the observations Z̄d = z̄d, any realization z of the random vector Z,

and any transmission status Λ ∈ {0, 1}, we have

fZ̄d|Z,Λ

(
z̄d|z,Λ

)
=

∫
fZc|Z,Λ (zc|z,Λ) fZ̄d|Z,Zc,Λ

(
z̄d|z, zc,Λ

)
dzc (24)

=

∫
fZc|Z (zc|z) fZ̄d|Z,Zc,Λ

(
z̄d|z, zc,Λ

)
dzc (25)

=

∫
fZc|Z (zc|z) fZ̄d|Z,Zc

(
z̄d|z, zc

)
dzc (26)

= fZ̄d|Z
(
z̄d|z

)
, (27)

which implies Λ−Z− Z̄d forms a Markov chain. Equation (25) holds since Zc = (Zn+1, . . . , ZL) is independent

of the channel inputs {Xi}ni=1, hence, independent of the transmission status Λ. Equation (26) holds since Z(t) is

completely determined by z and zc, and z̄d = (z(t1), . . . , z(td)) only depends on Z(t).

2) Distributions of Interest: The fact that Z is a sufficient statistic for determining H0 or H1 implies that there

exists a hypothesis test based on Z that is as good as4 the optimal hypothesis test based on Z(t) [20, Proposition

20.12.3]. We denote the optimal test based on Z by Φ∗(Z). A classical result in hypothesis testing [21, Theorem

13.1.1] shows that the optimal test Φ∗(Z) satisfies

PFA(Φ
∗) + PMD(Φ

∗) = 1− V
(
QZ|H1

, QZ|H0

)
, (28)

4Also, no hypothesis test based on Z outperforms the optimal hypothesis test based on Z(t) [20, Theorem 20.11.5].
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where QZ|H1
and QZ|H0

are distributions on Z conditioned on H1 and H0 respectively. Hence, by recalling the

definition of covertness (Definition 2), the communication is said to be (1 − δ)-covert if

V(QZ|H1
, QZ|H0

) ≤ δ. (29)

From now on, it suffices to study the converted discrete-time Gaussian channels instead of the continuous-time

AWGN channels. The discrete-time Gaussian channels is described by (X ,WZ|X ,Z), where X is chosen to be

{−an, 0, an}, Z = R, and WZ|X is the channel transition probability given by

WZ|X(z|x) = 1√
πNw

exp

(
− (z − x)2

Nw

)
, (30)

since Zi = Xi +Wi for every i ∈ J1, nK, and Wi ∼ N (0, Nw/2). We respectively define the output distributions

of Z when X is equal to 0, an,−an, as

Q0(z) ,WZ|X(z|0), Qa(z) ,WZ|X(z|an), Q−a(z) ,WZ|X(z| − an), ∀z ∈ R. (31)

Further, we define the output distribution of Z induced by PX (defined in (6)) and WZ|X as

Q̃(z) ,
∑

x∈{−an,an}
PX(x)WZ|X(z|x) = 1

2
√
πNw

exp

(
− (z − an)

2

Nw

)
+

1

2
√
πNw

exp

(
− (z + an)

2

Nw

)
, ∀z ∈ R.

The channel transition probability corresponding to n channel uses is denoted by W⊗n
Z|X ,

∏n
i=1WZ|X while

the n-letter product distributions corresponding to Q0 and Q̃ are respectively denoted by Q⊗n
0 ,

∏n
i=1Q0 and

Q̃⊗n ,
∏n

i=1 Q̃.

Note that QZ|H0
— the distribution of Z under H0 — equals Q⊗n

0 , since the channel inputs Xi = 0 for every

channel use when Alice is silent. On the other hand, the distribution of Z under H1 depends on the specific code

C used by Alice and Bob, and is given by

QZ|H1
(z) ,

1

MK

M∑

m=1

K∑

s=1

W⊗n
Z|X(z|xms), ∀z ∈ R

n. (32)

For notational convenience we use Q̂(z) to represent the distribution of Z under H1, i.e.,

Q̂(z) , QZ|H1
(z), ∀z ∈ R

n. (33)

3) Bounding V(Q̂,Q⊗n
0 ): In the following, we show that with high probability over the code design, V(Q̂,Q⊗n

0 ) ≤
δ, hence the communication is (1− δ)-covert. By the triangle inequality, we have

V(Q̂,Q⊗n
0 ) ≤ V(Q̃⊗n, Q⊗n

0 ) + V(Q̂, Q̃⊗n). (34)

Lemmas 6 and 7 below bound the two terms V(Q̃⊗n, Q⊗n
0 ) and V(Q̂, Q̃⊗n) respectively. The proof of Lemma 6

relies on the Berry-Esseen Theorem, and we recall the theorem below for completeness.

Theorem 2 (Berry-Esseen Theorem). Suppose X1, . . . , Xn are n independent random variables, then we have
∣∣∣∣∣P
(

n∑

i=1

(Xi − E(Xi)) ≥ λσ

)
−Q(λ)

∣∣∣∣∣ ≤
6S

σ3
, (35)

where λ > 0, σ2 =
∑n

i=1 Var(Xi), and S =
∑n

i=1 E(|Xi − E(Xi)|3).

Lemma 6. By setting an =
(
2
n

)1/4√
Q−1

(
1−δ
2

)
Nw ·

(
1− n−1/8

)
, for large enough n, we have

V(Q̃⊗n, Q⊗n
0 ) = δ −O(n−1/8). (36)
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Proof: The proof techniques are adapted from [5, Lemma 8] for DMCs but are specialized to Gaussian channels.

Note that

V

(
Q̃⊗n, Q⊗n

0

)
= PQ̃⊗n

(
Q̃⊗n(Z) ≥ Q⊗n

0 (Z)
)
− PQ⊗n

0

(
Q̃⊗n(Z) ≥ Q⊗n

0 (Z)
)

(37)

= PQ̃⊗n

(
n∑

i=1

log
Q̃(Zi)

Q0(Zi)
≥ 0

)
− PQ⊗n

0

(
n∑

i=1

log
Q̃(Zi)

Q0(Zi)
≥ 0

)
. (38)

As proved in Appendix D, for every i ∈ J1, nK,

µ0 , EQ0

(
log

Q̃(Zi)

Q0(Zi)

)
= − a4n

N2
w

+O(a6n), (39)

σ2
0 , VarQ0

(
log

Q̃(Zi)

Q0(Zi)

)
=

2a4n
N2

w

+O(a6n), (40)

s0 , EQ0



∣∣∣∣∣log

Q̃(Z)

Q0(Z)
− µ0

∣∣∣∣∣

3

 = O(a6n), (41)

hence,

σ2
Q0

,

n∑

i=1

σ2
0 =

2a4nn

N2
w

+O
(
n−1/2

)
, SQ0 ,

n∑

i=1

s0 = O
(
n−1/2

)
. (42)

By the Berry-Esseen Theorem, we have

PQ⊗n
0

(
n∑

i=1

log
Q̃(Zi)

Q0(Zi)
≥ 0

)
= PQ⊗n

0

(
n∑

i=1

log
Q̃(Zi)

Q0(Zi)
≥ nµ0 + σQ0

(
−nµ0

σQ0

))
(43)

≤ Q

(
−nµ0

σQ0

)
+

6SQ0

σ3
Q0

= Q

(
a2n
Nw

√
n

2

)
+O

(
n−1/4

)
. (44)

Similarly, we also show in Appendix D that for every i ∈ J1, nK,

µ̃ , EQ̃

(
log

Q̃(Zi)

Q0(Zi)

)
=

a4n
N2

w

+O(a6n), (45)

σ̃2 , VarQ̃

(
log

Q̃(Zi)

Q0(Zi)

)
=

2a4n
N2

w

+O(a6n), (46)

s̃ , EQ̃



∣∣∣∣∣log

Q̃(Z)

Q0(Z)
− µ̃

∣∣∣∣∣

3

 = O(a6n). (47)

By defining

σ2
Q̃
,

n∑

i=1

σ̃2 =
2a4nn

N2
w

+O
(
n−1/2

)
, SQ̃ ,

n∑

i=1

s̃ = O
(
n−1/2

)
, (48)

the Berry-Esseen Theorem yields

PQ̃⊗n

(
n∑

i=1

log
Q̃(Zi)

Q0(Zi)
≥ 0

)
= PQ̃⊗n

(
n∑

i=1

log
Q̃(Zi)

Q0(Zi)
≥ nµ̃+ σQ̃

(
−nµ̃
σQ̃

))
(49)

≤ Q

(
−nµ̃
σQ̃

)
+

6SQ̃

σ3
Q̃

= 1−Q

(
a2n
Nw

√
n

2

)
+O

(
n−1/4

)
. (50)

Finally, by setting an =
(
2
n

)1/4√
Q−1

(
1−δ
2

)
Nw ·

(
1− n−1/8

)
, for large enough n, we have

V

(
Q̃⊗n, Q⊗n

0

)
= 1− 2Q

(
a2n
Nw

√
n

2

)
+O

(
n−1/4

)
(51)
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= 1− 2Q

(
Q−1

(
1− δ

2

)(
1− 1

logn

)2
)

+O
(
n−1/4

)
(52)

= 1− 2Q

(
Q−1

(
1− δ

2

))
−
√

2

π

∫ Q−1( 1−δ
2 )

Q−1( 1−δ
2 )(1−n−1/8)2

exp

(
−u

2

2

)
du+O

(
n−1/4

)
(53)

= δ −O(n−1/8), (54)

where (53) follows from the definition of the Q-function.

Lemma 7. With probability at least 1−exp
(
−O

(
n−1/4

))
over the code design, a randomly chosen code C satisfies

V(Q̂, Q̃⊗n) ≤ n−1/4.

Proof: Our proof directly follows from [3, Lemma 5] and [22, Theorem VII.1], which states that for any channel

(X ,WZ|X ,Z) and any τ > 0,

E

(
V

(
Q̂, Q̃⊗n

))
≤ PW⊗n

Z|X
P⊗n

X

(
log

W⊗n
Z|X(Z|X)

Q⊗n
0 (Z)

> τ

)
+

1

2

√
eτ

MK
. (55)

WhenX = an, the random variable log
WZ|X (Z|an)

Q0(Z) with Z ∼ N (an, Nw/2) is distributed according to N
(

a2
n

Nw
,
2a2

n

Nw

)
,

since

log
WZ|X(Z|an)

Q0(Z)
=

2an
Nw

Z − a2n
Nw

. (56)

Similarly, when X = −an, the random variable log
WZ|X(Z|−an)

Q0(Z) with Z ∼ N (−an, Nw/2) is also distributed

according to N
(

a2
n

Nw
,
2a2

n

Nw

)
, since

log
WZ|X(Z| − an)

Q0(Z)
= −2an

Nw
Z − a2n

Nw
. (57)

Note that both random variables are sub-Gaussian with parameter 2a2n/Nw. We now consider the first term of (55)

as follows.

PW⊗n
Z|X

P⊗n
X

(
log

W⊗n
Z|X(Z|X)

Q⊗n
0 (Z)

> τ

)
=

∑

x∈{−an,an}n

P⊗n
X (x) · PW⊗n

Z|X

(
n∑

i=1

log
WZ|X(Zi|xi)
Q0(Zi)

> τ

)
(58)

For any x ∈ {−an, an}n, because of (56) and (57), we have

EW⊗n
Z|X

(
n∑

i=1

log
WZ|X(Zi|xi)
Q0(Zi)

)
=

n∑

i=1

EWZ|X=xi

(
log

WZ|X(Zi|xi)
Q0(Zi)

)
=

a2n
Nw

, (59)

and by setting τ = (1 + n−1/8)a2nn/Nw, the Hoeffding’s inequality guarantees

P

(
n∑

i=1

log
WZ|X(Zi|xi)
Q0(Zi)

> (1 + n−1/8)
a2nn

Nw

)
≤ exp

(
−a

2
nn

3/4

4Nw

)
. (60)

By plugging (60) into (58), the first term of (55) can be bounded from above as

PW⊗n
Z|X

P⊗n
X

(
log

W⊗n
Z|X(Z|X)

Q⊗n
0 (Z)

> (1 + n−1/8)
a2nn

Nw

)
≤ exp

(
−a

2
nn

3/4

4Nw

)
= exp

(
−O

(
n1/4

))
. (61)

Since logM + logK ≥
(
1 + 1

log n

)
a2
nn
Nw

(regardless of the ratio Nw/Nb), the second term of (55) satisfies

1

2

√
eτ

MK
≤ 1

2

√√√√√
exp

(
(1 + n−1/8)

a2
nn
Nw

)

exp
((

1 + 1
logn

)
a2
nn
Nw

) = exp

(
−O

( √
n

logn

))
. (62)
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Combining (61) and (62), we have

E

(
V

(
Q̂, Q̃⊗n

))
≤ PW⊗n

Z|X
P⊗n

X

(
log

W⊗n
Z|X(Z|X)

Q⊗n
0 (Z)

> τ

)
+

1

2

√
eτ

MK
≤ exp

(
−O

(
n1/4

))
. (63)

Finally, by the Markov’s inequality, with probability at least 1 − exp
(
−O(n1/4)

)
, a randomly chosen code C

satisfies V(Q̂, Q̃⊗n) ≤ n−1/4.

Combining Lemmas 6 and 7, we prove that for sufficiently large n,

V(Q̂,Q⊗n
0 ) ≤ δ −O(n−1/8) + n−1/4 ≤ δ. (64)

By converting n to T via Lemma 4, we conclude that with probability at least 1−exp
(
−O

(
(WT )1/4

))
, a randomly

chosen code C satisfies V(Q̂,Q⊗n
0 ) ≤ δ.

B. Analysis of Reliability

The legitimate receiver Bob receives Y (t) = X(t) + B(t). Recall that X(t) =
∑n

i=1Xigi(t) and B(t) =
∑n

i=1Bigi(t) +
∑L

i=n+1Bigi(t), where {Bi}Li=1 are i.i.d. random variables distributed according to N (0, Nb/2).

By mapping Y (t) to {gi(t)}ni=1, Bob obtains

Yi ,

∫ ∞

−∞
Y (t)gi(t)dt =

∫ ∞

−∞
X(t)gi(t)dt+

∫ ∞

−∞
B(t)gi(t)dt = Xi +Bi, ∀i ∈ J1, nK, (65)

and thus, he converts the continuous-time AWGN channel to a discrete-time Gaussian channel with n channel

uses. We denote the corresponding discrete-time Gaussian channel by (X ,WY |X ,Y), where X is chosen to be

{−an, 0, an}, Y = R, and

WY |X(y|x) = 1√
πNb

exp

(
− (y − x)2

Nb

)
. (66)

When X is equal to 0, an,−an, we respectively define the output distributions of Y as

P0(y) ,WY |X(y|0), Pa(y) ,WY |X(y|an), P−a(y) ,WY |X(y| − an), ∀y ∈ R. (67)

Also, we define the distribution of Y induced by PX and WY |X as

P̃ (y) ,
∑

x∈{−an,an}
PX(x)WY |X(y|x) = 1

2
√
πNb

exp

(
− (y − an)

2

Nb

)
+

1

2
√
πNb

exp

(
− (y + an)

2

Nb

)
, ∀y ∈ R.

Similar to Section IV-A, we use W⊗n
Y |X , P⊗n

0 , and P̃⊗n to denote the n-letter product distributions
∏n

i=1WY |X ,
∏n

i=1 P0, and
∏n

i=1 P̃ , respectively.

We now turn to analyze the reliability of our achievability scheme. Let

An
γ ,

{
(x,y) : log

W⊗n
Y |X(y|x)
P⊗n
0 (y)

> γ

}
, (68)

where γ > 0 will be specified later. Based on the length-n vector y and the shared key s, Bob’s decoder operates

as follows:

• if there exists a unique codeword xms such that (xms,y) ∈ An
γ , output M̂ = m and Λ̂ = 1,

• if no codeword in {xms}Mm=1 satisfies (xms,y) ∈ An
γ , output M̂ = 0 and Λ̂ = 0,

• otherwise, declare an error.
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Instead of studying the desired max-average probability of error Perr (defined as per (2)) directly, we first show that

with high probability, a randomly chosen code ensures a decaying average probability of error

P (avg)
err , ES

{
P(M 6= M̂ |S,Λ = 1) + P(M̂ 6= 0|Λ = 0)

}
,

which is averaged over both the message and the shared key.

Lemma 8. For any γ > 0, there exists a constant C1 > 0 such that

E
(
P (avg)

err

)
≤ PW⊗n

Y |X
P⊗n

X

(
log

W⊗n
Y |X(Y|X)

P⊗n
0 (Y)

≤ γ

)
+ C1Me−γ (69)

Lemma 8 is adapted from [3, Lemma 3] for DMCs, and the proof can be found in Appendix E. Similar to (56)

and (57) in Sub-section IV-A, when X = an and X = −an, the corresponding random variables log
WY |X(Y |an)

P0(Y )

with Y ∼ N (an, Nb) and log
WY |X(Y |−an)

P0(Y ) with Y ∼ N (−an, Nb) are both distributed according to N
(

a2
n

Nb
,
2a2

n

Nb

)
.

Hence, both random variables are sub-Gaussian with parameter 2a2n/Nb. Note that

PW⊗n
Y |X

P⊗n
X

(
log

W⊗n
Y |X(Y|X)

P⊗n
0 (Y)

≤ γ

)
=

∑

x∈{−an,an}n

P⊗n
X (x) · PW⊗n

Y |X

(
n∑

i=1

log
WY |X(Yi|xi)

P0(Yi)
≤ γ

)
(70)

For any x ∈ {−an, an}n, we have

EW⊗n
Y |X

(
n∑

i=1

log
WY |X(Yi|xi)

P0(Yi)

)
=

n∑

i=1

EWY |X=xi

(
log

WY |X(Yi|xi)
P0(Yi)

)
=
a2nn

Nb
, (71)

and by setting γ = (1− n−1/8)
a2
nn
Nb

, the Hoeffding’s inequality guarantees

PW⊗n
Y |X

(
n∑

i=1

log
WY |X(Yi|xi)

P0(Yi)
≤ (1− n−1/8)

a2nn

Nb

)
≤ exp

(
−a

2
nn

3/4

4Nb

)
. (72)

By plugging (72) into (70), we have

PW⊗n
Y |X

P⊗n
X

(
log

W⊗n
Y |X(Y|X)

P⊗n
0 (Y)

≤ (1− n−1/8)
a2nn

Nb

)
≤ exp

(
−a

2
nn

3/4

4Nb

)
= exp

(
−O(n1/4)

)
. (73)

Since the value of logM is set to be
(
1− 1

logn

)
a2
nn
Nb

, the second term of (69) is given by

C1Me−γ = C1 exp

((
1− 1

logn

)
a2nn

Nb
−
(
1− n−1/8

) a2nn
Nb

)
= exp

(
−O

( √
n

logn

))
. (74)

Therefore, we have

E
(
P (avg)

err

)
≤ PW⊗n

Y |X
P⊗n

X

(
log

W⊗n
Y |X(Y|X)

P⊗n
0 (Y)

≤ γ

)
+Me−γ(1 + 2n) ≤ exp

(
−O(n1/4)

)
. (75)

The Markov’s inequality ensures that with probability at least 1 − exp
(
−O(n1/4)

)
, a randomly chosen code C

guarantees

P (avg)
err ≤ exp

(
−O(n1/4)

)
. (76)

Though (76) is weak in the sense that it only guarantees a small P (avg)
err , we also develop a novel result showing

that given a code C with small P (avg)
err and covertness guarantee, we can construct another code C′ with small Perr

and simultaneously preserve the covertness property by merely rearranging the codewords in C (without expurgating

existing codewords or adding new codewords).
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Lemma 9. Suppose a code C contains K sub-codes of size M , and guarantees V(Q̂,Q⊗n
0 ) ≤ δ, and P

(avg)
err (C) ≤ ǫn.

Then, there exists a code C′ containing K ′ sub-codes of size M ′ such that V(Q̂,Q⊗n
0 ) ≤ δ, and Perr(C′) ≤ ǫ′n. In

particular, limn→∞ ǫn = limn→∞ ǫ′n = 0, limn→∞
M ′

M = 1, and limn→∞
K′

K = 1.

Proof: We partition the K sub-codes of the code C into two groups — good sub-codes and bad sub-codes. A

sub-code Cs is good if its probability of error satisfies

Perr(Cs) , P(M 6= M̂ |S = s,Λ = 1) + P(M̂ 6= 0|Λ = 0) ≤ √
ǫn, (77)

and is bad otherwise. Note that P
(avg)
err (C) = ES (Perr(CS)). Since ES (Perr(CS)) ≤ ǫn, the Markov’s inequality

guarantees that the number of bad sub-codes is at most
√
ǫnK . Let

K ′ , (1−√
ǫn)K. (78)

Without loss of generality, we assume the first K ′ sub-codes C1, C2, . . . , CK′ are good, and the last (K − K ′)

sub-codes CK′+1, . . . , CK are bad. Let CB , ∪s∈JK′+1,KKCs be the union of the codewords in the bad sub-codes.

The size of CB is
√
ǫnMK .

We now construct a new code C′ that contains K ′ sub-codes C′
1, C′

2, . . . , C′
K′ .

1) Let ǫ̂n =
√
ǫn

1−√
ǫn

. We arbitrarily partition CB into K ′ disjoint subsets C(1)
B , . . . , C(K′)

B of equal size. The size

of each C(s)
B (s ∈ J1,K ′K) is

|CB|
K ′ =

√
ǫnMK

(1−√
ǫn)K

, ǫ̂nM. (79)

2) Let C′
s = Cs ∪ C(s)

B for every s ∈ J1,K ′K; hence, the size of each sub-code C′
s is

M ′ , (1 + ǫ̂n)M. (80)

3) For every s ∈ J1,K ′K, the decoding region for C′
s is exactly the same as that for Cs. We do not assign any

decoding region for codewords from C(s)
B , thus the probability of decoding error when x ∈ C(s)

B is transmitted

equals one. However, since the probability of transmitting a codeword from C(s)
B is negligible, the average

probability of error of C′
s is bounded from above as

Perr(C′
s) ≤

|Cs|
|C′

s|
· Perr(Cs) +

|C(s)
B |
|C′

s|
· 1 ≤ Perr(Cs) +

ǫ̂nM

(1 + ǫ̂n)M
(81)

≤ √
ǫn + ǫ̂n, (82)

where (82) holds since Cs (for s ∈ J1,K ′K) is a good sub-code with probability of error at most
√
ǫn. By

setting ǫ′n ,
√
ǫn + ǫ̂n, we have

Perr(C′) = max
s∈J1,K′K

Perr(C′
s) ≤

√
ǫn + ǫ̂n = ǫ′n. (83)

We construct C′ by merely rearranging the codewords in C, without expurgating existing codewords or adding new

codewords. Hence, if the code C satisfies V(Q̂,Q⊗n
0 ) ≤ δ, the new code C′ also ensures V(Q̂,Q⊗n

0 ) ≤ δ.

V. CONVERSE

In order to establish the necessity of a square-root law, one needs to show how the covertness constraint implies

that the energies (spread over all the frequencies) of a substantial fraction of codewords are at most O(
√
WT ).

However, it is difficult for Willie to directly measure the energy of the transmitted codeword since it is perturbed
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by additive noise with infinite energy. Instead, a plausible approach for Willie is to focus on a specific bandwidth

over which the energy of noise is finite (e.g., f ∈ [−αiW,αiW ]), and show that

(a) there exists a substantial fraction of codewords satisfying the property that the energy allocated in the bandwidth

of interest is at most O(
√
WT ) (due to the covertness constraint);

(b) for codewords satisfying the property in (a), their energies (spread over all the frequencies) are also upper

bounded by O(
√
WT ) since the spectral mask requires the energy of the codebook to be concentrated.

While one can prove statement (a), statement (b) may not hold since (i) the spectral mask defined in Definition 3

only imposes an energy concentration constraint on the codebook instead of every single codeword; and (ii) the

energy of each codeword may significantly differ.5

Consequently, we have not been able to provide a full converse for the continuous-time channel. Nevertheless,

upon introducing the additional constraint that the ratio between the maximum energy and minimum energy of

codewords is bounded in the definition of spectral mask, we are able to verify that our achievability6 is order-

optimal by proving a converse for this continuous-time channel. The result is provided in Appendix ?? and its

proof relies on the use of prolate spheroidal wave functions [23]. Alternatively, we restrict ourselves here to the

converted discrete-time AWGN channels characterized by N (0, Nw/2) and N (0, Nb/2), and show that the BPSK

scheme used in Section III is optimal.

Theorem 3. Let δ ∈ (0, 1). For any sequence of codes with lim
n→∞

Perr = 0 and lim
n→∞

V(Q̂,Q⊗n
0 ) ≤ δ, we have

lim
n→∞

logM√
n

≤
√
2Nw

Nb
Q−1

(1− δ

2

)
. (84)

Replacing WT
minβ∈[0,1] c(β)

by n in Theorems 1, one can verify that equation (84) implies that BPSK is optimal

under the variational distance metric. The proof techniques are leveraged from [5], [13] — in particular, Lemmas 10

and 11 below are analogous to Lemmas 11 and 12 in [5] (which are derived for DMCs). We provide the detailed

proofs in the following.

Consider any code C consisting of |C| length-n codewords x. For any codeword x ∈ C, let ||x||22 ,
∑n

i=1 x
2
i be

the power of x, and Pmin , minx∈C ||x||22 be the minimum power among the code C.

Lemma 10. For any code C with minimum power Pmin, the variational distance between Q̂ and Q⊗n
0 is bounded

from below as

V

(
Q̂,Q⊗n

0

)
≥ 1− 2Q

(
Pmin√
2nNw

)
− P 2

min√
πN2

wn
3/2

− ν1 + ν2√
n

, (85)

where ν1 and ν2 are constants specified later.

Proof: Willie uses a power detector Φτ with threshold τ to produce an estimation Λ̂ of Alice’s transmission status.

The decision rule is given by

Λ̂ = Φτ (Z(t)) =




1, if

∑n
i=1 Z

2
i ≥ τ,

0, if
∑n

i=1 Z
2
i < τ,

(86)

5Indeed, suppose one codeword in the codebook has infinite energy and its energy is completely allocated in the bandwidth of interest, and

all the remaining codewords satisfy the property in (a). In this case, statement (b) may not be true since, regardless of the energy allocations of

other codewords, the single “very heavy” codeword ensures the codebook satisfies the energy concentration constraint imposed by the spectral

mask.
6Note that our achievability is still valid since all the codewords have the same energy.
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where Zi =
∫∞
−∞ Z(t)gi(t)dt, ∀i ∈ J1, nK. Under the null hypothesis H0, for every i ∈ J1, nK, Zi = Wi is a

Gaussian random variable with zero mean and variance Nw/2, hence

EH0(Z
2
i ) = EH0 (W

2
i ) =

Nw

2
, (87)

VarH0(Z
2
i ) = EH0(W

4
i )−

(
EH0(W

2
i )
)2

=
3

4
N2

w − 1

4
N2

w =
N2

w

2
, (88)

SH0 =
n∑

i=1

EH0

(∣∣Z2
i − EH0(Z

2
i )
∣∣3
)
= O(n). (89)

By using the Berry-Esseen Theorem, the probability of false alarm of Φτ is bounded from above as

PFA(Φτ ) = PH0

(
n∑

i=1

Z2
i ≥ τ

)
≤ Q

(
τ − nEH0(Z

2
i )√

nVarH0(Z
2
i )

)
+

6SH0

(nVarH0(Z
2
i ))

3/2
(90)

≤ Q

(
τ − nNw/2

Nw

√
n/2

)
+

ν1√
n
, (91)

for some properly chosen constant ν1. Under the alternative hypothesis H1, we have Zi = Xi +Wi. For any given

Xi = x (x ∈ R), the expectation and variance of Zi are respectively given by

Ex(Z
2
i ) = E(Z2

i |Xi = x) = x2 +
Nw

2
, (92)

Varx(Z
2
i ) = Var(Z2

i |Xi = x) = Ex(Z
4
i )−

(
Ex(Z

2
i )
)2

= 2x2Nw +
N2

w

2
, (93)

Sx =
n∑

i=1

Ex

(∣∣Z2
i − Ex(Z

2
i )
∣∣3
)
= O(n). (94)

By using the Berry-Esseen Theorem, we can also bound the probability of missed detection from above as

PMD(Φτ ) = PH1

(
n∑

i=1

Z2
i < τ

)
=

1

|C|
∑

x∈C
P

(
n∑

i=1

Z2
i < τ |X = x

)
(95)

≤ 1

|C|
∑

x∈C
Q

(
−τ +∑n

i=1 Exi

(
Z2
i

)
√∑n

i=1 Varxi (Z
2
i )

)
+

6Sx

(
∑n

i=1 Varxi (Z
2
i ))

3/2
(96)

≤ 1

|C|
∑

x∈C
Q


 −τ + nNw

2 + ||x||22√
nN2

w

2 + 2||x||22Nw


+

ν2√
n

(97)

≤ Q


 −τ + nNw

2 + Pmin√
nN2

w

2 + 2PminNw


+

ν2√
n
, (98)

for some properly chosen constant ν2. By choosing the threshold τ to be nNw

2 + Pmin

2 , we have

PFA(Φτ ) ≤ Q

(
Pmin√
2nNw

)
+

ν1√
n

and PMD(Φτ ) ≤ Q

(
Pmin√
2nNw

)
+

P 2
min√

πN2
wn

3/2
+

ν2√
n
. (99)

Therefore, the variational distance between Q̂ and Q⊗n
0 is bounded from below as

V

(
Q̂,Q⊗n

0

)
≥ 1− PFA(Φτ )− PMD(Φτ ) ≥ 1− 2Q

(
Pmin√
2nNw

)
− P 2

min√
πN2

wn
3/2

− ν1 + ν2√
n

. (100)

Lemma 11. Let A =
√
2NwQ

−1
(

1−δ
2 − 2ν2

√
πnN2

w
− γ
)

, where γ ∈ [0, 1] and ν > 0 is a constant specified later.

For any code C (of size |C|) satisfying V(Q̂,Q⊗n
0 ) ≤ δ, there exists a “low-power” sub-code C(l) ⊆ C satisfying

(i) |C(l)| ≥ γ|C|, and (ii) ∀x ∈ C(l), ||x||22 ≤ A
√
n.
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Proof: We first partition the code C into “low-power” sub-code C(l) and “high-power” sub-code C(h), where

C(l) , {x ∈ C :

n∑

i=1

x2i ≤ A
√
n}, C(h) , {x ∈ C :

n∑

i=1

x2i > A
√
n} = C \ C(l). (101)

The output distributions induced by C(l) and C(h) are respectively denoted by

Q̂(l)(z) =
1∣∣C(l)
∣∣
∑

x∈C(l)

W⊗n
Z|X(z|x), Q̂(h)(z) =

1∣∣C(h)
∣∣
∑

x∈C(h)

W⊗n
Z|X(z|x). (102)

By the triangle inequality, we have

V

(
Q̂,Q⊗n

0

)
≥
∣∣C(h)

∣∣
|C| V

(
Q̂(h), Q⊗n

0

)
−
∣∣C(l)

∣∣
|C| V

(
Q̂(l), Q⊗n

0

)
. (103)

Since the code C guarantees V(Q̂,Q⊗n
0 ) ≤ δ, one can show that

δ ≥ V

(
Q̂,Q⊗n

0

)
≥
∣∣C(h)

∣∣
|C| V

(
Q̂(h), Q⊗n

0

)
−
∣∣C(l)

∣∣
|C| V

(
Q̂(l), Q⊗n

0

)
(104)

= V

(
Q̂(h), Q⊗n

0

)
−
∣∣C(l)

∣∣
|C|

(
V

(
Q̂(h), Q⊗n

0

)
+ V

(
Q̂(l), Q⊗n

0

))
(105)

≥ V

(
Q̂(h), Q⊗n

0

)
− 2

∣∣C(l)
∣∣

|C| (106)

≥
(
1− 2Q

(
A
√
n√

2nNw

)
− A2n√

πN2
wn

3/2
− ν1 + ν2√

n

)
− 2

∣∣C(l)
∣∣

|C| (107)

≥ δ + 2γ +
4ν2√
πnN2

w

− A2

√
πnN2

w

− ν1 + ν2√
n

− 2
∣∣C(l)

∣∣
|C| (108)

≥ δ + 2γ − 2
∣∣C(l)

∣∣
|C| , (109)

where (106) holds since the variational distance between any two distributions is upper bounded by one, and (107)

follows from Lemma 10. Inequality (109) is obtained by choosing ν to satisfy 4ν2
√
πnN2

w
− A2

√
πnN2

w
− ν1+ν2√

n
≥ 0.

Hence, the size of C(l) is bounded from below as |C(l)| ≥ γ|C|.
We now consider any code C consisting of K sub-codes Cs (s ∈ J1,KK, each of size M ) that ensures

• (covertness) V(Q̂,Q⊗n
0 ) ≤ δ,

• (reliability) Perr(C) = max
s∈J1,KK

{
P(M 6= M̂ |S = s,Λ = 1) + P(M̂ 6= 0|Λ = 0)

}
≤ ǫn, where lim

n→∞
ǫn = 0.

From Lemma 11, there exists a “low-power” sub-code C(l) ⊆ C satisfying (i) |C(l)| ≥ γMK , and (ii) every codeword

x in C(l) satisfies ||x||22 ≤
√
2nNwQ

−1
(

1−δ
2 − 2ν2

√
πnN2

w
− γ
)

. For every s ∈ J1,KK, we define the intersection

between Cs and C(l) as

C(l)
s , Cs ∩ C(l). (110)

Note that there must exist a sub-code Cs (s ∈ J1,KK) satisfying C(l)
s ≥ γM . Since the average probability of

error for Cs is at most ǫn, the Markov’s inequality yields that for C(l)
s , the average probability of error satisfies

Perr(C(l)
s ) ≤ ǫn/γ. We choose γ = max{√ǫn, exp(−n

1
2−ǫ)}, for any sufficiently small ǫ > 0, to guarantee that

Perr(C(l)
s ) goes to zero asymptotically as n grows without bound. Let M̃ be the (uniformly distributed) random

variable that corresponds to the message in C(l)
s . By standard information inequalities, we have

log(|C(l)
s |) = H(M̃) = I(M̃ ;YS) +H(M̃ |YS) (111)

= I(M̃ ;Y|S) +H(M̃ |YS) (112)
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≤ I(M̃S;Y) +H(M̃ |YS) (113)

≤ I(X;Y) + (ǫn/γ) log(|C(l)
s |) +Hb(ǫn/γ) (114)

≤
n∑

i=1

I(Xi;Yi) + (ǫn/γ)
√
ǫn log(|C(l)

s |) + 1 (115)

≤ nI(X̃; Ỹ ) + (ǫn/γ) log(|C(l)
s |) + 1, (116)

where PX̃(a) = 1
n

n∑
i=1

PXi(a) =
1
n

n∑
i=1

1

|C(l)
s |

∑
x∈C(l)

s

1 {xi = a} and PX̃Ỹ (a, b) = PX̃(a)WZ|X(b|a). Note that

I(X̃ ; Ỹ ) = h(Ỹ )− h(Ỹ |X̃) = h(Ỹ )− h(B̃), (117)

where B̃ is a Gaussian random variable with zero mean and variance Nb/2. Since

E(Ỹ 2) = E(X̃2) + E(B̃2) + 2E(X̃)E(B̃) = E(X̃2) +
Nb

2
≤ A√

n
+
Nb

2
, (118)

we have

I(X̃ ; Ỹ ) = h(Ỹ )− h(B̃) ≤ 1

2
log

(
2πe

(
A√
n
+
Nb

2

))
− 1

2
log

(
2πe

Nb

2

)
(119)

=

√
2

n

Nw

Nb
Q−1

(
1− δ

2

)
+ o(n−1/2). (120)

Therefore,

log(|C(l)
s |) ≤

√
2nNw

Nb
Q−1

(
1−δ
2

)
+ o(

√
n) + 1

1− (ǫn/γ)
. (121)

Note that log(1/γ) = o(
√
n) since we set γ = max{√ǫn, exp(−n 1

2−ǫ)}. Since logM + log γ = log(γM) ≤
log(|C(l)

s |), we obtain

lim
n→∞

logM√
n

≤ lim
n→∞

log(|C(l)
s |)− log γ√

n
≤

√
2Nw

Nb
Q−1

(
1− δ

2

)
, (122)

which matches the achievability result.

VI. EXTENSION TO KL-DIVERGENCE METRIC

In addition to variational distance, another widely used covertness metric in the literature is the KL-divergence.

For completeness, we also consider covert communication under KL-divergence metric, in which the code C is

required to satisfy

D(Q̂||Q⊗n
0 ) ≤ δ. (123)

For any spectral mask SW , noise parameters Nw, Nb > 0, and covertness parameter δ, a throughput pair (r, rK)

is said to be achievable under KL-divergence metric if there exists a sequence of code with increasing support T

such that

lim inf
T→∞

logM√
T

≥ r, lim sup
T→∞

logK√
T

≤ rK ,

lim
T→∞

Perr = 0, lim
T→∞

D(Q̂||Q⊗n
0 ) ≤ δ,

and the ESD Ê(f) fits into the spectral mask. Theorem 4 below presents a lower bound on the covert capacity

under KL-divergence metric, based on a PAM scheme with BPSK and RRC carrier pulses.
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Theorem 4. For any spectral mask SW , noise parameters Nw, Nb > 0, and covertness parameter δ ∈ (0, 1), the

throughput pair (r, rK) with

r =
Nw

Nb

√
δW

minβ∈[0,1] c(β)
, rK =

(
1− Nw

Nb

)+
√

δW

minβ∈[0,1] c(β)
, (124)

is achievable under KL-divergence metric.

Again, if we consider the converted discrete-time AWGN channels characterized by N (0, Nw/2) and N (0, Nb/2),

we have the following converse result. Substituting n by WT
minβ∈[0,1] c(β)

, one can verify the optimality of BPSK under

KL-divergence metric.

Theorem 5. Let δ ∈ (0, 1). For any sequence of codes with lim
n→∞

Perr = 0 and lim
n→∞

D(Q̂||Q⊗n
0 ) ≤ δ, we have

lim
n→∞

logM√
n

≤
√
δNw

Nb
. (125)

We provide detailed proofs of Theorems 4 and 5 in Subsections VI-A and VI-B, respectively.

A. Proof of Theorem 4

In the following, the blocklength n is kept the same as in Section IV, hence Lemma 4 guarantees that a randomly

chosen code C fits in the spectral mask with high probability. The value of an is chosen differently from (19) in

Section IV, and is given by

an =

(
δN2

w

n

)1/4 (
1− n−1/9

)
. (126)

The sizes of message and shared key are given by

logM =

(
1− 1

logn

)
a2nn

Nb
, (127)

logK =

((
1 +

1

logn

)
−
(
1− 1

logn

)
Nw

Nb

)+
a2nn

Nw
. (128)

The analysis of reliability is independent of the covertness metric, hence the reliability part can be proved by applying

Lemmas 8 and 9 in Section IV-B directly, and we omit the details here. We now turn to analyze covertness. Note

that unlike variational distance, KL-divergence does not satisfy triangle inequality. Instead, we have

D(Q̂||Q⊗n
0 ) = D(Q̃⊗n||Q⊗n

0 ) + D(Q̂||Q̃⊗n) +

∫

z

(
Q̂(z)− Q̃⊗n(z)

)
log

Q̃⊗n(z)

Q⊗n
0 (z)

dz. (129)

With the help of Lemmas 12-14 below, one can show that there exists a code C satisfying D(Q̂||Q⊗n
0 ) ≤ δ. We

prove Lemmas 12 and 13 in the following, and defer the proof of Lemma 14 to Appendix H.

Lemma 12. By setting an =
(

δN2
w

n

)1/4 (
1− n−1/9

)
, for large enough n, we have

D(Q̃⊗n||Q⊗n
0 ) ≤ δ −O

(
n−1/9

)
. (130)

Lemma 13. For sufficiently large n, there exists a code C such that

D(Q̂||Q̃⊗n) ≤ exp

(
−O

(
n1/8

logn

))
. (131)

Lemma 14. With high probability over code design, a randomly chosen code C satisfies

∫

z

(
Q̂(z)− Q̃⊗n(z)

)
log

Q̃⊗n(z)

Q⊗n
0 (z)

dz ≤ exp
(
−O(

√
n)
)
. (132)
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1) Proof of Lemma 12: The proof of Lemma 12 is initially developed by Wang [16], and we repeat the details

here for completeness. By the chain rule of KL-divergence and the fact that both Q̃⊗n and Q⊗n
0 are product

distributions, we have

D(Q̃⊗n||Q⊗n
0 ) = nD(Q̃||Q0). (133)

We now calculate the KL-divergence between two single-letter distributions as follows:

D(Q̃||Q0) =

∫ ∞

−∞
Q̃(z) log

Q̃(z)

Q0(z)
dz (134)

=

∫ ∞

−∞
Q̃(z) log

(
1

2
exp

(
−a

2
n − 2anz

Nw

)
+

1

2
exp

(
−a

2
n + 2anz

Nw

))
dz (135)

= − a2n
Nw

+

∫ ∞

−∞
Q̃(z) log

(
1

2
exp

(
2anz

Nw

)
+

1

2
exp

(−2anz

Nw

))
dz (136)

≤ − a2n
Nw

+

∫ ∞

−∞
Q̃(z)

[
1

2

(
2anz

Nw

)2

− 1

12

(
2anz

Nw

)4

+
1

45

(
2anz

Nw

)6
]
dz, (137)

where the last step follows from Taylor series expansion. With some calculations, we obtain

1

2

∫ ∞

−∞
Q̃(z)

(
2anz

Nw

)2

dz =
a2n
Nw

+
2a4n
N2

w

, (138)

− 1

12

∫ ∞

−∞
Q̃(z)

(
2anz

Nw

)4

dz = − a4n
N2

w

− 4a6n
N3

w

− 4a8n
3N4

w

, (139)

1

45

∫ ∞

−∞
Q̃(z)

(
2anz

Nw

)6

dz =
8a6n
3N3

w

+
16a8n
N4

w

+
32a10n
3N5

w

+
64a12n
45N6

w

. (140)

Since an is set to
(

δN2
w

n

)1/4 (
1− n−1/9

)
, for sufficiently large n, we have

D(Q̃⊗n||Q⊗n
0 ) = nD(Q̃||Q0) ≤

na4n
N2

w

≤ δ −O
(
n−1/9

)
. (141)

2) Proof of Lemma 13: The technique of bounding D(Q̂||Q̃⊗n) used in [3] does not work for Gaussian channels,

since it requires the output alphabet to be finite. To circumvent this challenge, we turn to study the largest exponent

of D(Q̂||Q̃⊗n) which is induced by a code generated according to P⊗n
X . We define the largest exponent as

EKL(PX ,WZ|X , R) , lim
n→∞

max
Cn:logMn=nR

− 1

n
logD(Q̂||Q̃⊗n), (142)

where PX andWZ|X are defined in (6) and (30) respectively. Hayashi [24] provides a lower bound on EKL(PX ,WZ|X , R),

based on Renyi-divergence of order ρ and an optimization over all ρ ∈ [0, 1], which is repeated as follows.

Claim 1. Let

f(ρ) , ρR− log


 ∑

x∈{−an,an}
PX(x)

∫ ∞

−∞
WZ|X(z|x)1+ρQ̃(z)−ρdz


 . (143)

For any R > 0,

EKL(PX ,WZ|X , R) ≥ max
ρ∈[0,1]

f(ρ). (144)

By the Taylor Theorem, we have

f(ρ) = f(0) + f ′(0) · ρ+ f ′′(0)

2
ρ2 +

f ′′′(b)

6
ρ3 for some 0 ≤ b ≤ ρ. (145)
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Note that

f ′(ρ) = R−
∑

x PX(x)
∫∞
−∞WZ|X(z|x)1+ρQ̃(z)−ρ log

(
WZ|X (z|x)

Q̃(z)

)
dz

∑
x PX(x)

∫∞
−∞WZ|X(z|x)1+ρQ̃(z)−ρdz

, (146)

f ′′(ρ) = (f ′(ρ))
2 −

∑
x PX(x)

∫∞
−∞WZ|X(z|x)1+ρQ̃(z)−ρ log2

(
WZ|X (z|x)

Q̃(z)

)
dz

∑
x PX(x)

∫∞
−∞WZ|X(z|x)1+ρQ̃(z)−ρdz

, (147)

and one can then show that

f(0) = 0, (148)

f ′(0) = R− I(X ;Z), (149)

f ′′(0) = I(X ;Z)2 − EPXWZ|X

(
log2

(
WZ|X(Z|X)

Q̃(Z)

))
, (150)

where random variables (X,Z) ∼ PXWZ|X in I(X ;Z). By the symmetry of Qa(Z) and Q−a(Z), we have

I(X ;Z) = D(Qa||Q̃) ≤
a2n
Nw

= O(a2n). (151)

Moreover, we have

EPXWZ|X

(
log2

(
WZ|X(Z|X)

Q̃(Z)

))
= O(a2n). (152)

The proof of (151) and (152) can be found in Appendix G. One can also check that f ′′′(ρ) is a continuous function

from [0, 1] 7→ R, hence there exists a constant B such that |f ′′′(b)| < B for all b ∈ [0, 1]. We fix ρ = n−3/8 in the

following analysis.

• Case 1: When Nw ≥ Nb, we set R = (1 + 1
logn )

a2
n

Nw
. Hence, we have

EKL(PX ,WZ|X , R) ≥ f(ρ = n−3/8) (153)

= [R− I(X ;Z)]ρ+
ρ2

2

[
I(X ;Z)2 − EPXWZ|X

(
log2

(
WZ|X(Z|X)

Q̃(Z)

))]
+
f ′′′(b)

6
ρ3

(154)

= O
(

1

n7/8(logn)

)
, (155)

which implies for sufficiently large n, there exists a code C of size logM + logK = (1+ 1
logn )

na2
n

Nw
such that

D(Q̂||Q̃⊗n) ≤ exp
(
−nEKL(PX ,WZ|X , R)

)
= exp

(
−O

(
n1/8

logn

))
. (156)

• Case 2: When Nw < Nb, we set R = (1− 1
logn )

a2
n

Nb
. Similar to equations (153)-(155), we have

EKL(PX ,WZ|X , R) ≥ O
(
n−7/8

)
. (157)

Hence, for sufficiently large n, there exists a code of size logM = (1− 1
logn )

a2
n

Nb
such that

D(Q̂||Q̃⊗n) ≤ exp
(
−nEKL(PX ,WZ|X , R)

)
= exp

(
−O(n1/8)

)
. (158)

Combining case 1 and case 2, we complete the proof of Lemma 13.
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B. Proof of Theorem 5

As shown in [3], [4], [25], the KL-divergence between Q̂ and Q⊗n
0 is bounded from below as

D(Q̂||Q⊗n
0 ) ≥ nD(Q̄||Q0), where Q̄(z) =

1

nMK

M∑

m=1

K∑

s=1

n∑

i=1

Qxms,i(z), ∀z ∈ R. (159)

Hence, for any code C satisfying D(Q̂||Q⊗n
0 ) ≤ δ, we have

δ

n
≥ D(Q̂||Q⊗n

0 )

n
≥ D(Q̄||Q0) =

∫ ∞

−∞
Q̄(z) log

Q̄(z)

Q0(z)
dz (160)

= −h(Q̄) + EQ̄

(
log

1

Q0(Z)

)
(161)

= −h(Q̄) + 1

2
log(πNw) + EQ̄

(
Z2

Nw

)
(162)

= −h(Q̄) + 1

2
log(πNw) +

E(X̄2)

Nw
+

1

2
, (163)

where the last step follows since EQ̄(Z
2) = E(X̄2) + E(W 2) + 2E(X̄)E(W ) = E(X̄2) + Nw/2, where X̄ is

distributed according to

PX̄(x) =
1

nMK

M∑

m=1

K∑

s=1

n∑

i=1

1 {xms,i = x} , ∀x ∈ R. (164)

Given E(Z2), the differential entropy h(Q̄) is bounded from above as

h(Q̄) ≤ 1

2
log

[
2πe

(
E(X̄2) +

Nw

2

)]
. (165)

By combining (163) and (165), we obtain

δ

n
≥ −1

2
log

[
2πeE(X̄2) + πeNw

πNw

]
+

E(X̄2)

Nw
+

1

2
(166)

= −1

2
log

(
2E(X̄2) +Nw

Nw

)
− 1

2
+

E(X̄2)

Nw
+

1

2
(167)

=
E(X̄2)

Nw
− 1

2
log

(
1 +

2E(X̄2)

Nw

)
(168)

≥ E(X̄2)

Nw
− 1

2

(
2E(X̄2)

Nw
− 4(E(X̄2))2

2N2
w

+
8(E(X̄2))3

3N3
w

)
(169)

=
(E(X̄2))2

N2
w

− 4(E(X̄2))3

3N3
w

, (170)

which implies

E(X̄2) ≤ Nw

√
δ

n
+ o(n−1/2). (171)

We now turn to analyze the channel WY |X (between Alice and Bob) with Gaussian noise Bi ∼ N (0, Nb/2). Let

Ȳ be the random variable distributed according to

PȲ (y) =
∑

x

PX̄(x)WY |X(y|x), ∀y ∈ R. (172)

Note that

E(Ȳ 2) = E(X̄2) + E(B2) + 2E(X̄)E(B) ≤ Nw

√
δ

n
+
Nb

2
+ o(n−1/2), (173)
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hence the mutual information I(X ;Y ) is bounded from above as

I(X̄ ; Ȳ ) = h(Ȳ )− h(B) ≤ 1

2
log

(
2πe

(
Nw

√
δ

n
+
Nb

2
+ o(n−1/2)

))
− 1

2
log

(
2πe

Nb

2

)
(174)

=
1

2
log

(
1 +

2Nw

Nb

√
δ

n
+ o(n−1/2)

)
(175)

=
Nw

Nb

√
δ

n
+ o

(
n−1/2

)
. (176)

For a sequence of codes with Perr = ǫn and D(Q̂||Q⊗n
0 ) ≤ δ, we use standard information inequalities (similar to

equations (111) to (116)) to bound logM from above as

logM ≤ I(X;Y) +Hb(ǫn) + ǫn logM (177)

≤ nI(X̄ ; Ȳ ) +Hb(ǫn) + ǫn logM, (178)

which further implies that as n goes to infinity,

lim
n→∞

logM√
n

≤ √
n · I(X̄ ; Ȳ ) ≤

√
δNw

Nb
. (179)

VII. CONCLUSION

This work studies covert communication over continuous-time AWGN channels under spectral mask constraints.

We develop a PAM communication scheme with BPSK and RRC carrier pulses, which is proved to be capable to

transmit O(
√
WT ) bits of information (with pre-constant exactly characterized) reliably and covertly, given a fixed

time T and a spectral mask with bandwidth parameter W . The critical step of analyzing covertness and reliability

is to convert the continuous-time AWGN channels to discrete-time AWGN channels via matched filters.

In addition, we have also provided tight converse results under discrete-time models, while the converse under

continuous-time AWGN channels with spectral mask constraints is still missing. One fertile avenue for future

research is to show that the throughput of our scheme is order-optimal (i.e., one cannot transmit ω(
√
WT ) bits

reliably and covertly), by providing an upper bound on covert capacity under the continuous-time models.

ACKNOWLEDGEMENT

Qiaosheng (Eric) Zhang would like to thank Mehrdad Tahmasbi, Vincent Y. F. Tan, and Lei Yu for their valuable

suggestions.

APPENDIX A

Let j be the imaginary unit such that j2 = −1. For any x(t) =
∑n

i=1 xigi(t), the Fourier Transform and ESD of

x(t) are respectively given by

x̂(f) ,

∫ T

0

x(t)e−j2πftdt = φ̂T0,β(f) ·
n∑

i=1

xie
−j2π(i− 1

2 )T0f ,

Ex(t)(f) , |x̂(f)|2 = |φ̂T0,β(f)|2 ·
∣∣∣∣∣

n∑

i=1

xie
−j2π(i− 1

2 )T0f

∣∣∣∣∣

2

= |φ̂T0,β(f)|2 ·


a2nn+ a2n

∑

i1 6=i2

cos(2π(i1 − i2)T0f)
xi1
xi2


 .

Hence, the ensemble-averaged ESD Ẽ(f) is given by

Ẽ(f) = EP⊗n
X

(
EX(t)(f)

)
=

∑

x∈{−an,an}n

P⊗n
X (x) · |φ̂T0,β(f)|2


a2nn+ a2n

∑

i1 6=i2

cos(2π(i1 − i2)T0f)
xi1
xi2
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= |φ̂T0,β(f)|2

a2nn+ a2n

∑

i1 6=i2

cos(2π(i1 − i2)T0f) ·
1

2n


 ∑

x:xi1=xi2

xi1
xi2

+
∑

x:xi1 6=xi2

xi1
xi2






= a2nn · |φ̂T0,β(f)|2.

For a specific code C, the ESD Ê(f), first defined in (3), is

Ê(f) =
1

MK

M∑

m=1

K∑

s=1

Exms(t)(f)

= a2nn|φ̂T0,β(f)|2 +
a2n
MK

|φ̂T0,β(f)|2
∑

i1 6=i2

cos(2π(i1 − i2)T0f)

M∑

m=1

K∑

s=1

xms,i1

xms,i2

.

Proof of Lemma 1: Since

∣∣∣Xms,i1

Xms,i2

∣∣∣ ≤ 1 by our code construction, and

E

(
M∑

m=1

K∑

s=1

Xms,i1

Xms,i2

)
=

M∑

m=1

K∑

s=1

EP⊗n
X

(
Xms,i1

Xms,i2

)
= 0, (180)

the Hoeffding’s inequality yields that for any t ≥ 0,

P

(∣∣∣∣∣
1

MK

M∑

m=1

K∑

s=1

Xms,i1

Xms,i2

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−MKt2

2

)
. (181)

By setting t = (MK)−1/4 and taking a union bound over all (i1, i2)-pairs, where i1, i2 ∈ J1, nK and i1 6= i2, one

can show that with probability at least 1− 2n2 exp(−
√
MK/2), a randomly chosen code C satisfies

∣∣∣∣∣
M∑

m=1

K∑

s=1

xms,i1

xms,i2

∣∣∣∣∣ ≤ (MK)3/4, ∀i1, i2 ∈ J1, nK, i1 6= i2. (182)

Therefore, the ESD Ê(f) of the code C satisfying (182) is tightly concentrated around Ẽ(f), i.e.,

Ê(f) ≤ a2nn|φ̂T0,β(f)|2 +
a2n
MK

|φ̂T0,β(f)|2
∑

i1 6=i2

cos(2π(i1 − i2)T0f) · (MK)3/4 (183)

≤ a2nn|φ̂T0,β(f)|2 +
a2n
MK

|φ̂T0,β(f)|2n2 · (MK)3/4 (184)

= Ẽ(f)

(
1 +

n

(MK)1/4

)
, ∀f ∈ R; (185)

Ê(f) ≥ a2nn|φ̂T0,β(f)|2
(
1− n

(MK)1/4

)
= Ẽ(f)

(
1− n

(MK)1/4

)
, ∀f ∈ R. (186)

APPENDIX B

PROOF OF LEMMA 2

Similar to the relationship between the optimization problems (P1) and (P1β), we also define an optimization

problem (P2β) for each β ∈ [0, 1], which differs from (P2) only in the third constraint, as

(P2β) min
T0

T0

s.t. ∀f ≥ αiW,
|φ̂T0,β(f)|2(1− u(T, T0))

|φ̂T0,β(0)|2(1 + u(T, T0))
< Vi, i ∈ J1, lK;

∫ αiW

−αiW

|φ̂T0,β(f)|2df ≥ ηi
1− u(T, T0)

, i ∈ J1, lK;

T0 > 0.
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The optimal value of (P2β) is denoted by T̂ ∗
0 (SW , β, T ), and note that T̂ ∗

0 (SW , T ) = minβ∈[0,1] T̂
∗
0 (SW , β, T ).

Claim 2. Let β ∈ [0, 1]. For every ε > 0, there exists a T ′
ε,β > 0 such that for all T > T ′

ε,β ,
∣∣∣T̂ ∗

0 (SW , β, T )− T ∗
0 (SW , β)

∣∣∣ < ε. (187)

Proof: We first note that T̂ ∗
0 (SW , β, T ) ≥ T ∗

0 (SW , β), since u(T, T0) > 0 and T̂ ∗
0 (SW , β, T ) is always a feasible

solution in (P1β). As a consequence, the statement in (187) is equivalent to the following statements:
∣∣∣T̂ ∗

0 (SW , β, T )− T ∗
0 (SW , β)

∣∣∣ < ε ⇐⇒ T̂ ∗
0 (SW , β, T ) < T ∗

0 (SW , β) + ε

⇐⇒ T ∗
0 (SW , β) + ε is a feasible solution of (P2β). (188)

For notational convenience we abbreviate T ∗
0 (SW , β) as T ∗

0 . One can verify that

φT∗
0 +ε,β(t) = φT∗

0
+ε

T∗
0

T∗
0 ,β

(t) =

√
T ∗
0

T ∗
0 + ε

· φT∗
0 ,β

(
T ∗
0

T ∗
0 + ε

· t
)
,

and in the frequency domain, we have

φ̂T∗
0 +ε,β(f) =

√
T ∗
0 + ε

T ∗
0

· φ̂T∗
0 ,β

(
T ∗
0 + ε

T ∗
0

· f
)
.

We now show that for every ε > 0, there exists a T ′
ε,β > 0 such that for all T > T ′

ε,β , T ∗
0 + ε is a feasible

solution of (P2β). Note that the optimization (P2β) explicitly depends on T .

1) (The first constraint) Since T ∗
0 is a feasible solution of (P1β), it satisfies that for every i ∈ J1, lK,

∀f ≥ αiW, |φ̂T∗
0 ,β(f)|2 < Vi · |φ̂T∗

0 ,β(0)|2, (189)

hence there exists a γi > 0 such that

∀f ≥ αiW, |φ̂T∗
0 ,β(f)|2 ≤ Vi · |φ̂T∗

0 ,β(0)|2 − γi. (190)

It is also worth noting that ∀f ≥ αiW ,

∣∣∣φ̂T∗
0 +ε,β(f)

∣∣∣
2

=
T ∗
0 + ε

T ∗
0

∣∣∣∣φ̂T∗
0 ,β

(
f · T

∗
0 + ε

T ∗
0

)∣∣∣∣
2

(191)

≤ T ∗
0 + ε

T ∗
0

(
Vi

∣∣∣φ̂T∗
0 ,β (0)

∣∣∣
2

− γi

)
= Vi

∣∣∣φ̂T∗
0 +ε,β(0)

∣∣∣
2


1− (T ∗

0 + ε)γi

T ∗
0 Vi

∣∣∣φ̂T∗
0 +ε,β(0)

∣∣∣
2


 . (192)

Since limT→∞ u(T, T ∗
0 + ε) = 0 and u(T, T ∗

0 + ε) > 0, we have that for every τ1i > 0, there exists a

T ′
τ1i,ε,β

> 0 such that for all T > T ′
τ1i,ε,β

, 0 < u(T, T ∗
0 + ε) < τ1i, which further implies

1− u(T, T ∗
0 + ε)

1 + u(T, T ∗
0 + ε)

>
1− τ1i
1 + τ1i

.

By choosing τ1i to satisfy

1− τ1i
1 + τ1i

= 1− (T ∗
0 + ε)γi

T ∗
0

(
10−

Ui
10

) ∣∣∣φ̂T∗
0 +ε,β(0)

∣∣∣
2 , (193)

one can show that for all T > T ′
τ1i,ε,β

, the term in (192) satisfies

1− (T ∗
0 + ε)γi

T ∗
0 · Vi

∣∣∣φ̂T∗
0 +ε,β(0)

∣∣∣
2 =

1− τ1i
1 + τ1i

<
1− u(T, T ∗

0 + ε)

1 + u(T, T ∗
0 + ε)

, (194)
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and thus,

∀f ≥ αiW,
∣∣∣φ̂T∗

0 +ε,β(f)
∣∣∣
2

< Vi

∣∣∣φ̂T∗
0 +ε,β(0)

∣∣∣
2

· 1− u(T, T ∗
0 + ε)

1 + u(T, T ∗
0 + ε)

. (195)

This implies that T ∗
0 + ε satisfies the first constraint in (P2β).

2) (The second constraint) We first note that for every i ∈ J1, lK, T ∗
0 satisfies

∫ αiW

−αiW
|φ̂T∗

0 ,β(f)|2df ≥ ηi. Let

σ ,
T∗
0 +ε
T∗
0

and θi , (
∫ αiWσ

−αiWσ
|φ̂T∗

0 ,β(f)|2df)/(
∫ αiW

−αiW
|φ̂T∗

0 ,β(f)|2df). One may check that θi > 1. Note that

for every i ∈ J1, lK,

∫ αiW

−αiW

∣∣∣φ̂T∗
0 +ε,β(f)

∣∣∣
2

df =
T ∗
0 + ε

T ∗
0

∫ αiW

−αiW

∣∣∣∣φ̂T∗
0 ,β

(
T ∗
0 + ε

T ∗
0

f

)∣∣∣∣
2

df (196)

=

∫ αiW
T∗
0 +ε

T∗
0

−αiW
T∗
0

+ε

T∗
0

∣∣∣φ̂T∗
0 ,β(f

′)
∣∣∣
2

df ′ = θi ·
∫ αiW

−αiW

∣∣∣φ̂T∗
0 ,β(f

′)
∣∣∣
2

df ′ ≥ θiηi. (197)

Since limT→∞ u(T, T ∗
0 + ε) = 0 and u(T, T ∗

0 + ε) > 0, for every τ2i > 0, there exists a T ′
τ2i,ε,β

> 0 such

that for all T > T ′
τ2i,ε,β

, 0 < u(T, T ∗
0 + ε) < τ2i, which further implies

1− u(T, T ∗
0 + ε) > 1− τ2i.

By choosing τ2i to satisfy 1− τ2i = 1/θi, we have that for all T > T ′
τ2i,ε,β

,
(∫ αiW

−αiW

∣∣∣φ̂T∗
0 +ε,β(f)

∣∣∣
2

df

)
· (1 − u(T, T ∗

0 + ε)) ≥ θiηi(1− u(T, T ∗
0 + ε)) > θiηi(1− τ2i) = ηi. (198)

Finally, for every ε > 0, we define T ′
ε,β , maxj∈{1,2},i∈J1,lK T

′
τji,ε,β

, thus for all T > T ′
ε,β , T ∗

0 + ε is a feasible

solution of the optimization problem (P2β), which, by (188), is equivalent to saying that |T̂ ∗
0 (SW , β, T )−T ∗

0 | < ε.

This completes the proof of Claim 2.

By defining T ′
ε , maxβ∈[0,1] T

′
ε,β for every ε > 0, one can prove that for every ε > 0, for all T > T ′

ε,
∣∣∣∣ min
β∈[0,1]

T̂ ∗
0 (SW , β, T )− min

β∈[0,1]
T ∗
0

∣∣∣∣ < ε, (199)

which eventually leads to

lim
T→∞

min
β∈[0,1]

T̂ ∗
0 (SW , β, T ) = min

β∈[0,1]
T ∗
0 (SW , β), (200)

lim
T→∞

T̂ ∗
0 (SW , T ) = T ∗

0 (SW ). (201)

APPENDIX C

PROOF OF LEMMA 3

Consider a fixed roll-off factor β ∈ [0, 1]. To prove Lemma 3, it suffices to show that for any c > 0,

T ∗
0 (ScW , β) =

1

c
T ∗
0 (SW , β), (202)

since (202) implies that for any W, W̃ > 0, where W̃ = cW for some c,

T ∗
0 (SW̃

, β) · W̃ = T ∗
0 (ScW , β) · cW =

1

c
T ∗
0 (SW , β) · cW = T ∗

0 (SW , β) ·W. (203)
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Note that T ∗
0 (ScW , β) is the optimal value of the following optimization problem:

(P1′β) min
T0

T0

s.t. ∀f ≥ αicW, |φ̂T0,β(f)|2 ≤ Vi|φ̂T0,β(0)|2, i ∈ J1, lK;
∫ αicW

−αicW

|φ̂T0,β(f)|2df ≥ ηi, i ∈ J1, lK;

T0 > 0.

(204)

In the following, we show that T ∗
0 (SW , β)/c is a feasible solution of (P1′β) in the direct part, and any value

greater than T ∗
0 (SW , β)/c is not feasible in the converse part. In the following we abbreviate T ∗

0 (SW , β) as T ∗
0 for

convenience.

1) Direct part: Since T ∗
0 is a feasible solution of the optimization problem (P1β), we have

∀f ≥ αiW, |φ̂T∗
0 ,β(f)|2 ≤ Vi|φ̂T∗

0 ,β(0)|2, i ∈ J1, lK; (205)
∫ αiW

−αiW

|φ̂T∗
0 ,β(f)|2df ≥ ηi, i ∈ J1, lK. (206)

To prove that T ∗
0 /c is a feasible solution of the optimization problem (P1′β), we need to verify that

∀f ≥ αicW,
∣∣∣φ̂ 1

cT
∗
0 ,β(f)

∣∣∣
2

≤ Vi

∣∣∣φ̂ 1
cT

∗
0 ,β(0)

∣∣∣
2

, i ∈ J1, lK; (207)

∫ αicW

−αicW

∣∣∣φ̂ 1
cT

∗
0 ,β(f)

∣∣∣
2

df ≥ ηi, i ∈ J1, lK; (208)

By the definition of RRC pulses, we have φ 1
cT

∗
0 ,β(t) =

√
c · φT∗

0 ,β(ct), hence in the frequency domain, by the

scaling property of the Fourier Transform, we obtain

φ̂ 1
cT

∗
0 ,β(f) =

1√
c
· φ̂T∗

0 ,β

(
f

c

)
. (209)

The first constraint (207) is satisfied since for every i ∈ J1, lK,

∀f ≥ αicW,
∣∣∣φ̂ 1

cT
∗
0 ,β(f)

∣∣∣
2

=

∣∣∣∣
1√
c
· φ̂T∗

0 ,β

(
f

c

)∣∣∣∣
2

≤ 1

c
· Vi ·

∣∣∣φ̂T∗
0 ,β(0)

∣∣∣
2

= Vi ·
∣∣∣φ̂ 1

cT
∗
0 ,β(0)

∣∣∣
2

. (210)

The second constraint (208) is also satisfied since for every i ∈ J1, lK,

∫ αicW

−αicW

∣∣∣φ̂ 1
cT

∗
0 ,β(f)

∣∣∣
2

df =
1

c

∫ αicW

−αicW

∣∣∣∣φ̂T∗
0 ,β

(
f

c

)∣∣∣∣
2

df (211)

τ=f/c
=

1

c

∫ αiW

−αiW

c ·
∣∣∣φ̂T∗

0 ,β(τ)
∣∣∣
2

dτ ≥ ηi, (212)

where inequality (212) follows from (206). This completes the proof of the direct part.

2) Converse part: Suppose there exists a κ > 1
cT

∗
0 such that κ is a feasible solution of the optimization problem

(P1′β), then one can show that cκ is also a feasible solution of the optimization problem (P1β). The idea of the

proof is similar to the direct part, hence we omit the detail here. This fact contradicts our assumption since cκ is

greater than T ∗
0 .

Combining the direct part and the converse part together, we complete the proof of Lemma 3.
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APPENDIX D

In the following, we provide the detailed calculations for equations (39)-(41) in Section IV-A. By a Taylor series

expansion, we have

log

(
1

2
e

−2anz−a2
n

Nw +
1

2
e

2anz−a2
n

Nw

)
=

1

2

(
2anz

Nw

)2

− 1

12

(
2anz

Nw

)4

+O(a6n).

Also, note that

EQ0

(
log

Q̃(Z)

Q0(Z)

)
=

∫ ∞

−∞
Q0(z) log

(
1

2
e

−2anz−a2
n

Nw +
1

2
e

2anz−a2
n

Nw

)
dz

= − a2n
Nw

∫ ∞

−∞
Q0(z)dz +

∫ ∞

−∞
Q0(z) log

(
1

2
e

−2anz
Nw +

1

2
e

2anz
Nw

)
dz

= − a2n
Nw

+

∫ ∞

−∞
Q0(z)

(
1

2

(
2anz

Nw

)2

− 1

12

(
2anz

Nw

)4

+O(a6n)

)
dz

= − a2n
Nw

+
a2n
Nw

− a4n
N2

w

+O(a6n) = − a4n
N2

w

+O(a6n),

EQ0

(
log2

Q̃(Z)

Q0(Z)

)
=

∫ ∞

−∞
Q0(z) log

2

(
1

2
e

−2anz−a2
n

Nw +
1

2
e

2anz−a2
n

Nw

)

=

∫ ∞

−∞
Q0(z)

(
− a2n
Nw

+ log

(
1

2
e

−2anz
Nw +

1

2
e

2anz
Nw

))2

dz

=
a4n
N2

w

− 2a2n
Nw

∫ ∞

−∞
Q0(z) log

(
1

2
e

−2anz
Nw +

1

2
e

2anz
Nw

)
dz

+

∫ ∞

−∞
Q0(z) log

2

(
1

2
e

−2anz
Nw +

1

2
e

2anz
Nw

)
dz

=
a4n
N2

w

− 2a2n
Nw

(
a2n
Nw

− a4n
N2

w

+O(a6n)

)
+

∫ ∞

−∞
Q0(z)

(
1

4

(
2anz

Nw

)4

+O(a6n)

)
dz

=
2a4n
N2

w

+O(a6n),

VarQ0

(
log

Q̃(Z)

Q0(Z)

)
= EQ0

(
log2

Q̃(Z)

Q0(Z)

)
−
(
EQ0

(
log

Q̃(Z)

Q0(Z)

))2

=
2a4n
N2

w

+O(a6n),

EQ0

(
log3

Q̃(Z)

Q0(Z)

)
=

∫ ∞

−∞
Q0(z) log

3

(
1

2
e

−2anz−a2
n

Nw +
1

2
e

2anz−a2
n

Nw

)

=

∫ ∞

−∞
Q0(z)

(
− a2n
Nw

+ log

(
1

2
e

−2anz
Nw +

1

2
e

2anz
Nw

))3

dz

=

∫ ∞

−∞
Q0(z)

(
− a2n
Nw

+
1

2

(
2anz

Nw

)2

− 1

12

(
2anz

Nw

)4

+O(a6n)

)3

dz = O(a6n).

Similarly, the detailed calculations for equations (45)-(47) are provided as follows:

EQ̃

(
log

Q̃(Zi)

Q0(Zi)

)

=
1

2

∫ ∞

−∞
Qa(z) log

(
1

2
e

−2anz−a2
n

Nw +
1

2
e

2anz−a2
n

Nw

)
dz +

1

2

∫ ∞

−∞
Q−a(z) log

(
1

2
e

−2anz−a2
n

Nw +
1

2
e

2anz−a2
n

Nw

)
dz

=

∫ ∞

−∞
Qa(z) log

(
1

2
e

−2anz−a2
n

Nw +
1

2
e

2anz−a2
n

Nw

)
dz
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=

(
− a2n
Nw

)∫ ∞

−∞
Qa(z)dz +

∫ ∞

−∞
Qa(z) log

(
1

2
e

−2anz
Nw +

1

2
e

2anz
Nw

)
dz

= − a2n
Nw

+

∫ ∞

−∞
Qa(z)

(
1

2

(
2anz

Nw

)2

− 1

12

(
2anz

Nw

)4

+O(a6n)

)
dz =

a4n
N2

w

+O(a6n),

EQ̃

(
log2

Q̃(Zi)

Q0(Zi)

)

=

∫ ∞

−∞
Qa(z) log

2

(
1

2
e

−2anz−a2
n

Nw +
1

2
e

2anz−a2
n

Nw

)
dz

=

∫ ∞

−∞
Qa(z)

(
− a2n
Nw

+ log

(
1

2
e

−2anz
Nw +

1

2
e

2anz
Nw

))2

dz

=
a4n
N2

w

− 2a2n
Nw

∫ ∞

−∞
Qa(z) log

(
1

2
e

−2anz
Nw +

1

2
e

2anz
Nw

)
dz +

∫ ∞

−∞
Qa(z) log

2

(
1

2
e

−2anz
Nw +

1

2
e

2anz
Nw

)
dz

=
a4n
N2

w

− 2a2n
Nw

∫ ∞

−∞
Qa(z)

(
1

2

(
2anz

Nw

)2

+O(a4n)

)
dz +

∫ ∞

−∞
Qa(z)

(
1

4

(
2anz

Nw

)4

+O(a6n)

)
dz

=
2a4n
N2

w

+O(a6n),

VarQ̃

(
log

Q̃(Z)

Q0(Z)

)
= EQ̃

(
log2

Q̃(Z)

Q0(Z)

)
−
(
EQ̃

(
log

Q̃(Z)

Q0(Z)

))2

=
2a4n
N2

w

+O(a6n),

EQ̃

(
log3

Q̃(Z)

Q0(Z)

)

=

∫ ∞

−∞
Qa(z) log

3

(
1

2
e

−2anz−a2
n

Nw +
1

2
e

2anz−a2
n

Nw

)

=

∫ ∞

−∞
Qa(z)

(
− a2n
Nw

+ log

(
1

2
e

−2anz
Nw +

1

2
e

2anz
Nw

))3

dz

=

∫ ∞

−∞
Qa(z)

(
− a2n
Nw

+
1

2

(
2anz

Nw

)2

− 1

12

(
2anz

Nw

)4

+O(a6n)

)3

dz = O(a6n).

APPENDIX E

PROOF OF LEMMA 8

Suppose a key s is shared between Alice and Bob. According to the decoding rule, three types of error may

occur:

1) xms is transmitted but (xms,y) /∈ An
γ ,

2) xms is transmitted but there exists a m′ 6= m such that (xm′s,y) ∈ An
γ ,

3) no transmission occurs but there exists a m such that (xms,y) ∈ An
γ .

We bound the probability of error P (avg)
err averaged over the random code ensemble as follows:

E(P (avg)
err ) (213)

= E

(
M∑

m=1

K∑

s=1

1

MK

∫

y

W⊗n
Y |X(y|Xms)1

{
(Xms,y) /∈ An

γ or ∃m′ 6= m s.t. (Xm′s,y) ∈ An
γ

}
dy

)

+ E

(∫

y

P⊗n
0 (y)1

{
∃m s.t. (Xms,y) ∈ An

γ

}
dy

)
(214)

= E

(∫

y

W⊗n
Y |X(y|X11)1

{
(X11,y) /∈ An

γ or ∃m′ 6= 1 s.t. (Xm′1,y) ∈ An
γ

}
dy

)
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+ E

(∫

y

P⊗n
0 (y)1

{
∃m s.t. (Xms,y) ∈ An

γ

}
dy

)
(215)

≤ E

(∫

y

W⊗n
Y |X(y|X11)1

{
(X11,y) /∈ An

γ

}
dy

)
+
∑

m′ 6=1

E

(∫

y

W⊗n
Y |X(y|X11)1

{
(Xm′1,y) ∈ An

γ

}
dy

)

+

M∑

m=1

E

(∫

y

P⊗n
0 (y)1

{
(Xms,y) ∈ An

γ

}
dy

)
. (216)

The first term of (216) is given by

E

(∫

y

W⊗n
Y |X(y|X11)1

{
(X11,y) /∈ An

γ

}
dy

)
= PP⊗n

X W⊗n
Y |X

(
log

W⊗n
Y |X(Y|X)

P⊗n
0 (Y)

≤ γ

)
. (217)

Now we consider the second term of (216). For m′ 6= 1, we have

E

(∫

y

W⊗n
Y |X(y|X11)1

{
(Xm′1,y) ∈ An

γ

}
dy

)
(218)

=

∫

y

∑

xm′1

P⊗n
X (xm′1)1

{
(xm′1,y) ∈ An

γ

}∑

x11

P⊗n
X (x11)W

⊗n
Y |X(y|x11)dy (219)

=

∫

y

∑

xm′1

P⊗n
X (xm′1)P̃

⊗n(y)1
{
(xm′1,y) ∈ An

γ

}
dy (220)

≤ e−γ

∫

y

∑

xm′1

P⊗n
X (xm′1)W

⊗n
Y |X(y|x) P̃

⊗n(y)

P⊗n
0 (y)

1

{
(xm′1,y) ∈ An

γ

}
dy (221)

≤ e−γ · EP̃⊗n

(
P̃⊗n(y)

P⊗n
0 (y)

)
, (222)

where (221) holds since P⊗n
0 (y) ≤ e−γW⊗n

Y |X(y|x) for (x,y) ∈ An
γ . Moreover, we have

EP̃⊗n

(
P̃⊗n(y)

P⊗n
0 (y)

)
=

(
EP̃

(
P̃ (Y )

P0(Y )

))n

, (223)

EP̃

(
P̃ (Y )

P0(Y )

)
(224)

=

∫ ∞

−∞

1√
πNb

[
1

2
exp

(
− (y − an)

2

Nb

)
+

1

2
exp

(
− (y + an)

2

Nb

)] 1
2 exp

(
− (y−an)

2

Nb

)
+ 1

2 exp
(
− (y+an)

2

Nb

)

exp
(

y2

Nb

) dy

=
1

4
√
πNb

∫ ∞

−∞
exp

(−y2 − 2a2n + 4any

Nb

)
+ 2 exp

(−y2 − 2a2n
Nb

)
+ exp

(−y2 − 2a2n − 4any

Nb

)
dy (225)

=
1

2

[
exp

(
2a2n
Nb

)
+ exp

(
−2a2n
Nb

)]
= 1 +

1

2

(
2a2n
Nb

)2

+O
(
n−2

)
≤ 1 +

4a4n
N2

b

, (226)

where (226) follows from Taylor series expansion, and holds for sufficiently large n. Combining (222), (223),

and (226), we can bound the second term of (216) from above as

∑

m′ 6=1

E

(∫

y

W⊗n
Y |X(y|X11)1

{
(Xm′1,y) ∈ An

γ

}
dy

)
≤Me−γ

(
1 +

4a4n
N2

b

)n

≤Me−γ

(
4a4nn

N2
b

)
. (227)

Finally, the third term of (216) can be bounded from above as

M∑

m=1

E

(∫

y

P⊗n
0 (y)1

{
(Xms,y) ∈ An

γ

}
dy

)
≤M ·

∫

y

P⊗n
0 (y)

∑

xms

P⊗n
X (xms)1

{
(xms,y) ∈ An

γ

}
dy (228)

≤Me−γ ·
∫

y

∑

xms

P⊗n
X (xms)W

⊗n
Y |X(y|xms)dy (229)
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=Me−γ . (230)

Therefore, we conclude that

E(P (avg)
err ) ≤ PP⊗n

X W⊗n
Y |X

(
log

W⊗n
Y |X(Y|X)

P⊗n
0 (Y)

≤ γ

)
+

(
1 +

4a4nn

N2
b

)
Me−γ (231)

≤ PP⊗n
X W⊗n

Y |X

(
log

W⊗n
Y |X(Y|X)

P⊗n
0 (Y)

≤ γ

)
+ C1Me−γ , (232)

for some constant C1 > 0, since 4a4nn/N
2
b scales as O(1).

APPENDIX F

CONVERSE FOR CONTINUOUS-TIME CHANNELS

To derive a converse for continuous-time channels indicating that one can transmit at most O(
√
WT ) bits of

information reliably and covertly over time T , we require that the energy of each codeword in the code does not

differ too much. Hence, we add one more constraint in the definition of spectral mask as follows.

Definition 5 (Spectral mask). Let l ∈ N
∗ be the number of constraints, W > 0 be the bandwidth of interest,

{Ui}li=1, {αi}li=1, and {ηi}li=1 be non-decreasing real-valued sequences, and Vi = 10−
Ui
10 for each i. A code C

with ESD Ê(f) is said to fit into the spectral mask S(W, {Ui}li=1, {αi}li=1, {ηi}li=1) if for every i ∈ J1, lK:

1) its Ui-dB bandwidth is at most αiW , i.e., ∀f ≥ αiW, Ê(f) < Vi
[
Ê(f)

]
max

;

2) the energy allocated in f ∈ [−αiW,αiW ] satisfies
∫ αiW

−αiW
Ê(f)df ≥ ηi

∫ +∞
−∞ Ê(f)df .

3) Emax/Emin <
ηl

1−ηl
· (1−δ)2

2(1+δ)−(1−δ2) , where Emax and Emin are respectively the maximum and minimum energy

of codewords in the code.

Note that the achievability scheme in Section III is still valid since every codeword in our code construction has

the same energy.

For specific choices of bandwidth αlW and time T , we denote the corresponding set of prolate spheroidal wave

functions (PSWFs) by {ψi(t)}∞i=1, and the truncated PSWFs (time-limited to [0, T ]) by

DT [ψi(t)] =




ψi(t), 0 ≤ t ≤ T,

0, otherwise.
(233)

The set of PSWFs has the properties that (i) {DT [ψi(t)]}∞i=1 are complete over L2 functions that are time-limited

to [0, T ], and (ii) there exist an ǫ1 > 0 and a decreasing real-valued sequence {λi}∞i=1 (λi ∈ (0, 1) for every i)

such that

∫ ∞

−∞
DT [ψi(t)]

2dt = λi, where lim
αlWT→∞

λi =




1, 1 ≤ i ≤ 2αlWT (1− ǫ1),

0, i ≥ 2αlWT (1 + ǫ1).
(234)

∫ ∞

−∞
DT [ψi(t)]DT [ψj(t)]dt = 0, ∀i 6= j. (235)

Hence, every CT-codeword x(t), which is time-limited to [0, T ], can be expressed as a linear combination of the

orthonormal basis { 1√
λi
DT [ψi(t)]}∞i=1, i.e.,

x(t) =
∞∑

i=1

xi
1√
λi
DT [ψi(t)], where xi =

1√
λi

∫ T

0

x(t)DT [ψi(t)]dt. (236)
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For every x(t), we define the bandlimited version of x(t) as

BαlW [x(t)] ,

∫ αW

−αW

x̂(f)ej2πftdf, t ∈ R. (237)

Claim 3. For every x(t) that is time-limited to [0, T ], its energy E(x(t)) =
∑∞

i=1 x
2
i , and the energy of BαlW [x(t)]

(i.e., the energy of x(t) allocated in [−αlW,αlW ] in the frequency domain) is EαlW (x(t)) =
∑∞

i=1 x
2
iλi.

Proof: By recalling the properties of PSWFs in (234) and (235), we have

E(x(t)) =

∫ ∞

−∞
x2(t)dt =

∫ ∞

−∞

( ∞∑

i=1

xi√
λi
DT [ψi(t)]

)2

dt =

∞∑

i=1

x2i , (238)

and the energy of x(t) allocated in [−αlW,αlW ] in the frequency domain is

EαlW (x(t)) =

∫ ∞

−∞
BαlW [x(t)]2dt (239)

=

∫ ∞

−∞

( ∞∑

i=1

xi√
λi
BαlW [DT [ψi(t)]]

)2

dt (240)

=

∞∑

i=1

x2i
λi

∫ ∞

−∞
BαlW [DT [ψi(t)]]

2dt+
∑

i6=j

xixj√
λiλj

∫ ∞

−∞
BαlW [DT [ψi(t)]]BαlW [DT [ψj(t)]]dt (241)

=

∞∑

i=1

x2iλi. (242)

Willie’s estimator: Willie maps the received signal Z(t) to the PSWFs ψ1(t), . . . , ψN (t), where N is chosen to be

2αlWT (1 + ǫ1), and his estimator takes the form Φ(Z(t)) ,
∑N

i=1[
∫∞
−∞ Z(t)ψi(t)dt]

2. The threshold τ is set to

be N(Nw/2 + d/
√
N) with d > Nw√

1−δ
. His estimator outputs Λ̂ = 0 if Φ(Z(t)) < τ , and Λ̂ = 1 if Φ(Z(t)) ≥ τ .

When Alice is silent, the received signal Z(t) =W (t), and

N∑

i=1

[∫ ∞

−∞
Z(t)ψi(t)dt

]2
=

N∑

i=1

[∫ ∞

−∞
W (t)ψi(t)dt

]2
=

N∑

i=1

W 2
i , where Wi ∼ N

(
0,
Nw

2

)
. (243)

Note that {Wi}∞i=1 are i.i.d. random variables with E(W 2
i ) = Nw/2 and Var(W 2

i ) = N2
w/2. By using the

Chebyshev’s inequality, we have

PFA = PH0

(
N∑

i=1

W 2
i ≥ τ

)
≤ N2

w

2d2
. (244)

When Alice transmits a CT-codeword x(t), we have

N∑

i=1

[∫ ∞

−∞
Z(t)ψi(t)dt

]2
=

N∑

i=1

[∫ ∞

−∞
(x(t) +W (t))ψi(t)dt

]2
=

N∑

i=1

W 2
i + 2xi

√
λiWi + x2i λi, (245)

since
∫∞
−∞ x(t)ψi(t)dt = xi

√
λi. One can show that {W 2

i + 2xi
√
λiWi}∞i=1 are i.i.d. random variables with

E

(
W 2

i + 2xi
√
λiWi

)
=
Nw

2
, Var

(
W 2

i + 2xi
√
λiWi

)
=
N2

w

2
+ 2x2iλiNw. (246)

When x(t) is transmitted, we use the Chebyshev’s inequality to bound the probability of missed detection from

above as

PMD(x(t)) = P

(
N∑

i=1

W 2
i + 2xi

√
λiWi + x2iλi < τ

)
≤ NN2

w + 4Nw

∑N
i=1 x

2
i λi

2
(
d
√
N −∑N

i=1 x
2
iλi

)2 . (247)
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Let Dd , {(m, s) ∈ J1,MK × J1,KK :
∑N

i=1 x
2
ms,iλi ≤ 2d

√
N} be a subset of codewords such that the energy

allocated in f ∈ [−αlW,αlW ] is small, and let γ , (1 − δ − N2
w

d2 )/(1 − N2
w

2d2 ) be a constant depending on Nw, δ

and d. Note that γ > 0 since we set d > Nw√
1−δ

.

Claim 4. For any code C that ensures (1− δ)-covertness, we have

|Dd|
MK

≥ γ +O
(
N−1/2

)
. (248)

Proof: By using the estimator Φ(·) described above, Willie can bound the sum of PFA and PMD as

PFA + PMD = PFA +
M∑

m=1

K∑

s=1

1

MK
PMD(xms(t)) (249)

= PFA +
1

MK

∑

(m,s)∈Dd

PMD(xms(t)) +
1

MK

∑

(m,s)/∈Dd

PMD(xms(t)) (250)

≤ N2
w

2d2
+

|Dd|
MK

+
1

MK

∑

(m,s)/∈Dd

NN2
w + 4Nw

∑N
i=1 x

2
ms,iλi

2
(
d
√
N −∑N

i=1 x
2
ms,iλi

)2 (251)

≤ N2
w

2d2
+

|Dd|
MK

+
MK − |Dd|

MK

NN2
w + 8Nwd

√
N

2d2N
. (252)

Suppose inequality (248) does not hold, then we have

PFA + PMD ≤ N2
w

2d2
+
NN2

w + 8Nwd
√
N

2d2N
+

|Dd|
MK

(
1− NN2

w + 8Nwd
√
N

2d2N

)
(253)

≤ N2
w

2d2
+
NN2

w + 8Nwd
√
N

2d2N
+ 1− δ − N2

w

2d2
− NN2

w + 8Nwd
√
N

2d2N
(254)

≤ 1− δ, (255)

which contradicts the assumption that the code ensures (1−δ)-covertness. This completes the proof of Claim 4.

Furthermore, we define Ds
d , Dd ∩ Cs as the collection of CT-codewords lying in the intersection between Dd

and the sub-code Cs. For any s ∈ J1,KK, we say Ds
d is a small sub-code if |Ds

d| ≤ γM/2, and a big sub-code

otherwise. Let Ks and Kb be the numbers of small and big sub-codes, respectively. As T tends to infinity, we have

γMK
T→∞
≤ |Dd| ≤ Ks

γM

2
+KbM, (256)

which yields that Kb ≥ γ
2−γK . We then focus on these big sub-codes. Let D̃d be the collection of CT-codewords

in the big sub-codes, i.e.,

D̃d , {(m, s) ∈ Dd : |Ds
d| > γM/2} .

Let φ , ηl − (1 − ηl)
(1+4δ−δ2)Emax

(1−δ)Emin
, which is positive due to the assumption Emax

Emin
< ηl

1−ηl
· (1−δ)2

2(1+δ)−(1−δ2) .

Suppose every big sub-code Ds
d satisfies

∑
(m,s)∈Ds

d
EαlW (xms(t))∑

(m,s)∈Ds
d
E(xms(t))

< φ, (257)

then the set D̃d satisfies
∑

(m,s)∈D̃d
EαlW (xms(t))∑

(m,s)∈D̃d
E(xms(t))

< φ. (258)
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Hence, the fractional energy allocated in f ∈ [−αlW,αlW ] of code C also satisfies

∫ αlW

−αlW
Ê(f)df

∫ +∞
−∞ Ê(f)df

=

1
MK

∑
(m,s)EαlW (xms(t))

1
MK

∑
(m,s)E(xms(t))

(259)

=

∑
(m,s)∈D̃d

EαlW (xms(t)) +
∑

(m,s)/∈D̃d
EαlW (xms(t))∑

(m,s)∈D̃d
E(xms(t)) +

∑
(m,s)/∈D̃d

E(xms(t))
(260)

<
φ
∑

(m,s)∈D̃d
E(xms(t)) +

∑
(m,s)/∈D̃d

E(xms(t))∑
(m,s)∈D̃d

E(xms(t)) +
∑

(m,s)/∈D̃d
E(xms(t))

(261)

≤
φ γ2

2(2−γ)MKEmin +
(
1− γ2

2(2−γ)

)
MKEmax

γ2

2(2−γ)MKEmin +
(
1− γ2

2(2−γ)

)
MKEmax

(262)

=
φ (1−δ)2

2(1+δ)MKEmin +
(
1− (1−δ)2

2(1+δ)

)
MKEmax

(1−δ)2

2(1+δ)MKEmin +
(
1− (1−δ)2

2(1+δ)

)
MKEmax

(263)

= ηl. (264)

where inequality (261) follows from (258), inequality (262) holds since
∑

(m,s)∈D̃d
E(xms(t)) ≥ γ2

2(2−γ)MKEmin

and
∑

(m,s)/∈D̃d
E(xms(t)) ≤

(
1− γ2

2(2−γ)

)
MKEmax, and (263) is obtained since γ → (1 − δ) if we set d to be

large enough. Equation (264) is obtained by substituting the expression of φ into (263). Hence, (264) contradicts

the requirement that
∫ αlW

−αlW
Ê(f)df ≥ ηl

∫ +∞
−∞ Ê(f)df . Therefore, there must exist a big sub-code Ds0

d (satisfying

|Ds0
d | > γM/2) such that

∑
x(t)∈Ds0

d
EαlW (x(t))

∑
x(t)∈Ds0

d
E(x(t))

≥ φ. (265)

Recall that every x(t) ∈ Ds0
d satisfies

∑N
i=1 x

2
iλi ≤ 2d

√
N . Hence, the average energy of codewords in Ds0

d can

be upper bounded as
∑

(m,s)∈Ds0
d
E(xms(t))

|Ds0
d | =

∑
(m,s)∈Ds0

d
EαlW (xms(t))

φ · |Ds0
d | (266)

=

∑
(m,s)∈Ds0

d

∑∞
i=1 x

2
ms,iλi

φ · |Ds0
d | (267)

=

∑N
i=1 λi

∑
(m,s)∈Ds0

d
x2ms,i

φ · |Ds0
d | +

∑∞
i=N+1 λi

∑
(m,s)∈Ds0

d
x2ms,i

φ · |Ds0
d | (268)

T→∞
=

∑N
i=1 λi

∑
(m,s)∈Ds0

d
x2ms,i

φ · |Ds0
d | (269)

≤ 2d
√
N

φ
. (270)

For notational convenience we define the average energy of codewords in Ds0
d as

∞∑

i=1

x2i ,

∞∑

i=1

∑
(m,s)∈Ds0

d
x2ms,i

|Ds0
d | =

∑
(m,s)∈Ds0

d

∑∞
i=1 x

2
ms,i

|Ds0
d | =

∑
(m,s)∈Ds0

d
E(x(t))

|Ds0
d | ≤ 2d

√
N

φ
. (271)

Finally, by applying information inequalities [26, Chapter 8.2] on Ds0
d , we have

log(γ/2) + logM = log(γM/2) ≤ I(X(t);Y (t)) + 2ǫn/γ (272)

= lim
n→∞

I(Xn;Y n) + 2ǫn/γ (273)
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= lim
n→∞

n∑

i=1

1

2
log

(
1 +

2x2i
Nb

)
+ 2ǫn/γ (274)

= lim
n→∞

n

2
log

(
1 +

1
n

∑n
i=1 2x

2
i

Nb

)
+ 2ǫn/γ (275)

= lim
n→∞

∑n
i=1 x

2
i

Nb
+ 2ǫn/γ (276)

<
2d

√
N

φNb
+ 2ǫn/γ (277)

=
2d
√
2αlWT (1 + ǫ1)

φNb
+ 2ǫn/γ, (278)

and

lim
T→∞

logM√
T

≤ 2d
√
2αlW (1 + ǫ1)

φNb
. (279)

APPENDIX G

We first show that

I(X ;Z) =
∑

x∈{−an,an}
PX(x)

∫ ∞

−∞
WZ|X(z|x) log WZ|X(z|x)

Q̃(z)
dz (280)

=
1

2

∫ ∞

−∞
Qa(z) log

Qa(z)

Q̃(z)
dz +

1

2

∫ ∞

−∞
Q−a(z) log

Q−a(z)

Q̃(z)
dz (281)

=

∫ ∞

−∞
Qa(z) log

Qa(z)

Q̃(z)
dz (282)

= D(Qa||Q̃), (283)

where (282) follows from the symmetry of Gaussian random variables. Note that

D(Qa||Q̃) =

∫ ∞

−∞
Qa(z) log




exp
(

−a2
n+2anz
Nw

)

1
2 exp

(
−a2

n+2anz
Nw

)
+ 1

2 exp
(

−a2
n−2anz
Nw

)


 dz (284)

=

∫ ∞

−∞
Qa(z)

(−a2n + 2anz

Nw

)
dz −

∫ ∞

−∞
Qa(z) log

[
1

2
e

−a2
n+2anz

Nw +
1

2
e

−a2
n−2anz

Nw

]
dz (285)

=

∫ ∞

−∞
Qa(z)

(−a2n + 2anz

Nw

)
dz −

∫ ∞

−∞
Qa(z)

(
− a2n
Nw

)
dz

−
∫ ∞

−∞
Qa(z) log

[
1

2
e

2anz
Nw +

1

2
e

−2anz
Nw

]
dz (286)

≤ a2n
Nw

+
a2n
Nw

+

∫ ∞

−∞
Qa(z)

(
2a2nz

2

Nw
− 4a4nz

4

3N2
w

)
dz (287)

=
2a2n
Nw

−
(
a2n
Nw

+
a4n
N2

w

− 4a6n
N3

w

− 4a8n
3N4

w

)
(288)

≤ a2n
Nw

, (289)

where inequality (287) follows from Taylor series expansion. Therefore, we have

I(X ;Z) = D(Qa||Q̃) ≤ a2n
Nw

. (290)
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Furthermore, we show that

EPXWZ|X

(
log2

(
WZ|X(Z|X)

Q̃(Z)

))
(291)

=
∑

x∈{−an,an}
PX(x)

∫ ∞

−∞
WZ|X(z|x) log2

(
WZ|X(z|x)
Q̃(z)

)
dz (292)

=
1

2

∫ ∞

−∞
Qa(z) log

2

(
Qa(z)

Q̃(z)

)
dz +

1

2

∫ ∞

−∞
Q−a(z) log

2

(
Q−a(z)

Q̃(z)

)
dz (293)

=

∫ ∞

−∞
Qa(z) log

2

(
Qa(z)

Q̃(z)

)
dz (294)

=

∫ ∞

−∞
Qa(z)

4a2nz
2

N2
w

dz −
∫ ∞

−∞
Qa(z)

4anz

Nw
log

(
1

2
exp

(
2anz

Nw

)
+

1

2
exp

(
−2anz

Nw

))
dz

+

∫ ∞

−∞
Qa(z) log

2

(
1

2
exp

(
2anz

Nw

)
+

1

2
exp

(
−2anz

Nw

))
dz (295)

=
2a2n
Nw

+O(a4n). (296)

APPENDIX H

PROOF OF LEMMA 14

Note that
∫

z

(
Q̂(z)− Q̃⊗n(z)

)
log

Q̃⊗n(z)

Q⊗n
0 (z)

dz =

∫

z

(
Q̂(z)− Q̃⊗n(z)

)( n∑

i=1

log
Q̃(zi)

Q0(zi)

)
dz (297)

=
n∑

i=1

∫

zi

(
log

Q̃(zi)

Q0(zi)

)∫

z∼i

(
Q̂(z) − Q̃⊗n(z)

)
dz∼idzi, (298)

where z∼i = [z1, . . . , zi−1, zi+1, . . . , zn]. Let ±νn be the roots of the function

fn(x) =
1

2
exp

(
− (x− an)

2

Nw

)
+

1

2
exp

(
− (x+ an)

2

Nw

)
− exp

(
− x2

Nw

)
. (299)

One may check that fn(x) is odd and only has two roots (by checking the derivative of fn(x)). Hence,

• When zi ∈ (−νn, νn), Q̃(zi) < Q0(zi) and log(Q̃(zi)/Q0(zi)) < 0;

• When zi ∈ (−∞,−νn] ∪ [νn,∞), Q̃(zi) ≥ Q0(zi) and log(Q̃(zi)/Q0(zi)) ≥ 0.

Note that
∫

zi

(
log

Q̃(zi)

Q0(zi)

)∫

z∼i

(
Q̂(z) − Q̃⊗n(z)

)
dz∼idzi (300)

=

∫ ∞

νn

(
log

Q̃(zi)

Q0(zi)

)∫

z∼i

(
Q̂(z) − Q̃⊗n(z)

)
dz∼idzi +

∫ −νn

−∞

(
log

Q̃(zi)

Q0(zi)

)∫

z∼i

(
Q̂(z) − Q̃⊗n(z)

)
dz∼idzi

+

∫ νn

−νn

(
log

Q̃(zi)

Q0(zi)

)∫

z∼i

(
Q̂(z) − Q̃⊗n(z)

)
dz∼idzi. (301)

Claim 5. With probability at least 1− 2 exp
(
− ε2MK

6

)
over the code design, a randomly chosen code C satisfies

∀zi ∈ R,

∣∣∣∣
∫

z∼i

(
Q̂(z)− Q̃⊗n(z)

)
dz∼i

∣∣∣∣ ≤ εQ̃(zi) ≤ εQ̃(an). (302)
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Proof: First note that for any zi ∈ R,

∫

z∼i

Q̂(z)dz∼i =

∫

z∼i

1

MK

M∑

m=1

K∑

s=1

W⊗n
Z|X(z|xms)dz∼i (303)

=
1

MK

M∑

m=1

K∑

s=1

∫

z∼i

W⊗n
Z|X(z|xms)dz∼i (304)

=
1

MK

M∑

m=1

K∑

s=1

WZ|X(zi|xms,i) (305)

=
WZ|X(zi|an)

(∑M
m=1

∑K
s=1 1 {xms,i = an}

)

MK
+
WZ|X(zi| − an)

(∑M
m=1

∑K
s=1 1 {xms,i = −an}

)

MK
.

(306)

Since

E

(
M∑

m=1

K∑

s=1

1 {xms,i = an}
)

= E

(
M∑

m=1

K∑

s=1

1 {xms,i = −an}
)

=
MK

2
, (307)

by the Chernoff bound, we have

P

(
MK(1− ε)

2
≤

M∑

m=1

K∑

s=1

1 {xms,i = an} ≤ MK(1 + ε)

2

)
≥ 1− 2 exp

(
−ε

2MK

6

)
. (308)

Equation (308) further implies that with probability at least 1− 2 exp
(
− ε2MK

6

)
over the code design, a randomly

chosen code C satisfies

∫

z∼i

Q̂(z)dz∼i =
WZ|X(zi|an)

(∑M
m=1

∑K
s=1 1 {xms,i = an}

)

MK
+
WZ|X(zi| − an)

(∑M
m=1

∑K
s=1 1 {xm,i = −an}

)

MK

(309)

≤ (1 + ε)

2
WZ|X(zi|an) +

(1 + ε)

2
WZ|X(zi| − an) (310)

≤ (1 + ε)

(
1

2
Qa(zi) +

1

2
Q−a(zi)

)
(311)

= (1 + ε)Q̃(zi), (312)∫

z∼i

Q̂(z)dz∼i ≥ (1 − ε)Q̃(zi). (313)

By noting that
∫
z∼i

Q̃⊗n(z)dz∼i = Q̃(zi) for any zi ∈ R, we have
∣∣∣∣
∫

z∼i

(
Q̂(z) − Q̃⊗n(z)

)
dz∼i

∣∣∣∣ =
∣∣∣∣
∫

z∼i

Q̂(z)dz∼i −
∫

z∼i

Q̃⊗n(z)dz∼i

∣∣∣∣
w.h.p.

≤ εQ̃(zi) ≤ εQ̃(an), (314)

where the last inequality holds since the maximum value of Q̃(zi) is achieved when zi = ±an.

With the help of Claim 5, we are now able to bound (301). Because of the symmetry property, the techniques

used to bound the first and the second terms in (301) are the same, hence in the following we only focus on the

first and the third terms.

1) Bounding the first term of (301):

∫ ∞

νn

(
log

Q̃(zi)

Q0(zi)

)∫

z∼i

(
Q̂(z) − Q̃⊗n(z)

)
dz∼idzi (315)

≤
∫ ∞

νn

(
log

Q̃(zi)

Q0(zi)

) ∣∣∣∣
∫

z∼i

(
Q̂(z)− Q̃⊗n(z)

)
dz∼i

∣∣∣∣ dzi (316)
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≤
∫ ∞

νn

Q̃(zi)

Q0(zi)

∣∣∣∣
∫

z∼i

(
Q̂(z) − Q̃⊗n(z)

)
dz∼i

∣∣∣∣ dzi (317)

=

∫ √
n

νn

Q̃(zi)

Q0(zi)

∣∣∣∣
∫

z∼i

(
Q̂(z)− Q̃⊗n(z)

)
dz∼i

∣∣∣∣ dzi +
∫ ∞

√
n

Q̃(zi)

Q0(zi)

∣∣∣∣
∫

z∼i

(
Q̂(z) − Q̃⊗n(z)

)
dz∼i

∣∣∣∣ dzi (318)

w.h.p.

≤ εQ̃(an)

∫ √
n

νn

Q̃(zi)

Q0(zi)
dzi +

∫ ∞

√
n

Q̃(zi)

Q0(zi)

(∫

z∼i

Q̂(z)dz∼i +

∫

z∼i

Q̃⊗n(z)dz∼i

)
dzi. (319)

By choosing ε = exp (−O(
√
n)), we have

εQ̃(an)

∫ √
n

νn

Q̃(zi)

Q0(zi)
dzi (320)

≤ εQ̃(an)

∫ √
n

0

Q̃(zi)

Q0(zi)
dzi (321)

= εQ̃(an)

∫ √
n

0

1

2
exp

(−a2n + 2anzi
Nw

)
+

1

2
exp

(−a2n − 2anzi
Nw

)
dzi (322)

=
εQ̃(an)Nw

4an

{[
exp

(
2an

√
n− a2n
Nw

)
− exp

(−a2n
Nw

)]
−
[
exp

(−2an
√
n− a2n

Nw

)
− exp

(−a2n
Nw

)]}
(323)

= exp
(
−O(

√
n)
)
. (324)

Further, for any zi >
√
n,

∫

z∼i

Q̂(z)dz∼i +

∫

z∼i

Q̃⊗n(z)dz∼i =
1

MK

M∑

m=1

K∑

s=1

WZ|X(zi|xms,i) + Q̃(zi) ≤ 2Qa(zi), (325)

hence, we have
∫ ∞

√
n

Q̃(zi)

Q0(zi)

(∫

z∼i

Q̂(z)dz∼i +

∫

z∼i

Q̃⊗n(z)dz∼i

)
dzi (326)

≤ 2

∫ ∞

√
n

Q̃(zi)Qa(zi)

Q0(zi)
dzi (327)

≤ 1√
πNw

∫ ∞

√
n

exp

(−z2i − 2a2n + 4anzi
Nw

)
dzi +

1√
πNw

∫ ∞

√
n

exp

(−z2i − 2a2n
Nw

)
dzi (328)

≤ 1

2
exp

(
2a2n
Nw

)
exp

(
−
√
n
2

Nw
+

4an
√
n

Nw
− 4an
Nw

)
+

1

2
exp

(
2a2n
Nw

)
exp

(
−
√
n
2

Nw

)
(329)

= exp (−O(n)) . (330)

Therefore, with high probability the first term of (301) is bounded from above as

∫ ∞

νn

(
log

Q̃(zi)

Q0(zi)

)∫

z∼i

(
Q̂(z)− Q̃⊗n(z)

)
dz∼idzi ≤ exp

(
−O(

√
n)
)
. (331)

By symmetry, with high probability the second term of (301) is also bounded from above as

∫ −νn

−∞

(
log

Q̃(zi)

Q0(zi)

)∫

z∼i

(
Q̂(z)− Q̃⊗n(z)

)
dz∼idzi ≤ exp

(
−O(

√
n)
)
. (332)

2) Bounding the third term of (301): Since Q̃(zi) < Q0(zi) when zi ∈ (−νn, νn), we have

∫ νn

−νn

(
log

Q̃(zi)

Q0(zi)

)∫

z∼i

(
Q̂(z)− Q̃⊗n(z)

)
dz∼idzi (333)

≤
∫ νn

−νn

−
(
log

Q̃(zi)

Q0(zi)

) ∣∣∣∣
∫

z∼i

(
Q̂(z)− Q̃⊗n(z)

)
dz∼i

∣∣∣∣ dzi (334)
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=

∫ νn

−νn

(
log

Q0(zi)

Q̃(zi)

)∣∣∣∣
∫

z∼i

(
Q̂(z) − Q̃⊗n(z)

)
dz∼i

∣∣∣∣ dzi (335)

≤
∫ νn

−νn

Q0(zi)

Q̃(zi)

∣∣∣∣
∫

z∼i

(
Q̂(z)− Q̃⊗n(z)

)
dz∼i

∣∣∣∣ dzi (336)

w.h.p.

≤ εQ̃(zi)

∫ νn

−νn

Q0(zi)

Q̃(zi)
dzi (337)

≤ εQ̃(zi)
2νnQ0(0)

Q̃(0)
. (338)

Though we do not obtain the value of νn analytically, we are still able to bound νn from above as

νn ≤ an
2

+
Nw

2an
. (339)

Combining (338) and (339), we have

∫ νn

−νn

(
log

Q̃(zi)

Q0(zi)

)∫

z∼i

(
Q̂(z) − Q̃⊗n(z)

)
dz∼idzi = exp

(
−O(

√
n)
)
. (340)
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