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Abstract—We consider private polynomial computation (PPC)
over noncolluding coded databases. In such a setting a user
wishes to compute a multivariate polynomial of degree at most
g over f variables (or messages) stored in multiple databases
while revealing no information about the desired polynomial to
the databases. We construct two novel PPC schemes, where the
first is a generalization of our previous work in private linear
computation for coded databases. In this scheme we consider
Reed-Solomon coded databases with Lagrange encoding, which
leverages ideas from recently proposed star-product private
information retrieval and Lagrange coded computation. The
second scheme considers the special case of coded databases
with systematic Lagrange encoding. Both schemes yield improved
rates compared to the best known schemes from the literature
for a small number of messages, while in the asymptotic case the
rates match.

I. INTRODUCTION

The notion of private information retrieval (PIR) was in-

troduced by Chor et al. in the computer science community

[1]. The goal of PIR is to allow a user to privately access an

arbitrary message stored in a set of databases, i.e., without

revealing any information of the identity of the requested

message to each database. The design of PIR protocols has

focused on the case when multiple databases store the mes-

sages. This connects to the active and renowned research area

of distributed storage systems (DSSs), where the messages

are encoded by an [n, k] linear code and then distributed and

stored across n storage nodes. The study and design of efficient

PIR protocols for coded DSSs have attracted a great deal of

attention in recent years [2]–[6].

Private computation is a generalization of PIR that addresses

the private computation for functions of the stored messages

[7]–[13]. The scenario of noncolluding replicated databases

for linear functions is considered in [7], [8] and referred to as

private linear computation (PLC). The coded case is addressed

in [10]–[13]. In particular, in [11], [12] we proposed a PLC

scheme based on maximum distance separable (MDS) coded

storage, where the obtained PLC capacity is equal to the

MDS-coded PIR capacity in [4]. In [10], private polynomial

computation (PPC) over t colluding and systematically coded

databases is considered by generalizing the star-product PIR

scheme of [3]. In that work, functions are computed that are

polynomials of degree at most g, and a private computation

rate equal to the best asymptotic PIR rate (when the number of

messages tends to infinity) of MDS-coded storage is achieved
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Council of Norway (grant 240985/F20).

for g = t = 1. An alternative PPC approach was recently

proposed in [13] by employing Reed-Solomon (RS) coded

databases with Lagrange encoding. For low code rates, the

scheme improves on the private computation rate of [10].
In this work, we present two new approaches for PPC over

coded databases by leveraging our previous works for PLC

in [11], [12], ideas from star-product PIR [3], and Lagrange

coded computation [14]. Our schemes apply to noncolluding

RS-coded databases with Lagrange encoding. Compared to

the scheme in [13], our first proposed PPC scheme yields a

higher private computation rate when the number of messages

is small. In addition, we construct a second PPC scheme for

RS-coded databases with systematic Lagrange encoding that

improves on the rate of the PPC scheme presented in [10].

In both cases, as the number of messages tends to infinity,

the rate approaches those of [13] and [10], respectively. For

the outer bound, we adopt our coded PLC capacity of [12,

Thm. 2] since PPC can be seen as an extension of PLC.

II. DEFINITIONS AND PROBLEM STATEMENT

A. Notation

We denote by N the set of all positive integers, [a] ,

{1, 2, . . . , a}, and [a : b] , {a, a + 1, . . . , b} for a, b ∈ N,

a ≤ b. A random variable is denoted by a capital Roman letter,

e.g., X , while its realization is denoted by the corresponding

small Roman letter, e.g., x. Vectors are boldfaced, e.g., X

denotes a random vector and x denotes a deterministic vector,

respectively. Random matrices are represented by bold sans

serif letters, e.g., X, where X represents its realization. In

addition, sets are denoted by calligraphic uppercase letters,

e.g., X . (·)T denotes the transpose operator, H(X) represents

the entropy ofX , and I(X ;Y ) the mutual information between

X and Y . The binomial coefficient of a over b, a, b ∈ {0}∪N,

is denoted by
(

a
b

)

where
(

a
b

)

, 0 if a < b. We use the custom-

ary code parameters [n, k] to denote a code C over the finite

field Fq of blocklength n and dimension k. The function χ(x)
denotes the support of a vector x, and the linear span of a set of

vectors {x1, . . . ,xa}, a ∈ N, is denoted by span{x1, . . . ,xa}.

A monomial W i in f variables W (1), . . . ,W (f) with degree

g is written as W i = (W (1))i1(W (2))i2 · · · (W (f))if , where

i , (i1, . . . , if) ∈ ({0} ∪ N)f is the exponent vector with

wt(i) ,
∑f

j=1 ij = g. Finally, a polynomial φ(W ) of

degree at most g is represented as φ(W ) =
∑

i:wt(i)≤g aiW
i,

ai ∈ Fq. Fq[z] denotes the set of all univariate polynomials

over Fq in the variable z. We denote by deg(φ(z)) the degree

of a polynomial φ(z) ∈ Fq[z].
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B. Preliminaries

Definition 1 (Star-product). Let C and D be two linear codes

of length n over Fq. The star-product (Hadamard product) of

v = (v1, . . . , vn) ∈ C and u = (u1, . . . , un) ∈ D is defined

as v ⋆ u = (v1u1, . . . , vnun) ∈ F
n
q . Further, the star-product

of C and D , denoted by C ⋆ D , is defined by span{v ⋆ u :
v ∈ C ,u ∈ D} and the g-fold star-product of C with itself is

given by C ⋆g = span{v1 ⋆ · · · ⋆ vg : vi ∈ C , i ∈ [g]}.

Definition 2 (Reed-Solomon code). Let α = (α1, . . . , αn) be

a vector of n distinct nonzero elements of Fq. For n ∈ N,

k ∈ [n], and q > n, the [n, k] RS code (over Fq) is defined as

RSk(α) , {(φ(α1), . . . , φ(αn)) : φ ∈ Fq[z], deg(φ) < k}. (1)

It is well-known that RS codes are MDS codes that behave

well under the star-product. We state the following proposition

that was introduced in [3].

Proposition 1. Let RSk(α) be a length-n RS code. Then, for

g ∈ N, the g-fold star-product of RSk(α) with itself is the

RS code given by RS⋆g
k (α) = RSmin {g(k−1)+1,n}(α).

Let γ = (γ1, . . . , γk) be a vector of k distinct elements

of Fq. For a message vector W = (W1, . . . ,Wk), let ℓ(z) ∈
Fq[z] be a polynomial of degree at most k−1 such that ℓ(γi) =
Wi for all i ∈ [k]. Using the Lagrange interpolation formula

we present this polynomial as ℓ(z) =
∑

i∈[k]Wiιi(z), where

ιi(z) is the Lagrange basis polynomial

ιi(z) =
∏

t∈[k]\{i}

z − γt
γi − γt

.

It has been shown in [13] that Lagrange encoding is equiva-

lent to the choice of a specific basis for an RS code. Thus, for

encoding we choose the set of Lagrange basis polynomials as

the code generating polynomials of (1) [14]. Thus, a generator

matrix of RSk(α) is GRSk
(α, γ) = (ιi(αj)), i ∈ [k], j ∈ [n].

Note that if we choose γi = αi for i ∈ [k], then the generator

matrix GRSk
(α, γ) becomes systematic.

The set {W i : i ∈ ({0} ∪ N)f , 1 ≤ wt(i) ≤ g} of all

monomials in f variables of degree at most g has size

M(f, g) ,

g
∑

h=1

(

h+ f − 1

h

)

=

(

g + f

g

)

− 1,

and the total number of polynomials in f variables of degree at

most g generated with all possible distinct (up to scalar mul-

tiplication) M(f, g)-dimensional coefficients vectors defined

over Fq is equal to µ(f, g) , qM(f,g)−1
q−1 .

C. System Model

An RS-coded DSS is described as follows. The DSS stores

in total f independent messages W
(1), . . . ,W(f), where each

message W
(m) =

(

W
(m)
i,j

)

, m ∈ [f ], is a random β×k matrix

with some β, k ∈ N, where each entry is chosen independently

and uniformly at random from Fq. Thus, H(W(m)) = βk ,

L, ∀m ∈ [f ] (in q-ary units).

Each message is encoded using an [n, k] RS code as follows.

Let W
(m)
i =

(

W
(m)
i,1 , . . . ,W

(m)
i,k

)

, i ∈ [β], be a message

vector corresponding to the i-th row of W
(m). Each W

(m)
i

is encoded by an RS code RSk(α) with evaluation vector

α = (α1, . . . , αn) over Fq into a length-n codeword C
(m)
i

where C
(m)
i = W

(m)
i GRSk

(α,γ) =
(

C
(m)
i,1 , . . . , C

(m)
i,n

)

and

C
(m)
i,j = ℓ

(m)
i (αj), j ∈ [n], where ℓ

(m)
i (z) is the Lagrange

interpolation polynomial associated with the length-k message

segment W
(m)
i . The βf generated codewords C

(m)
i are then

arranged in the array C =
(

(C(1))T| . . . |(C(f))T
)

T

of dimen-

sions βf × n, where C
(m) =

(

(C
(m)
1 )T| . . . |(C

(m)
β )T

)

T

. The

code symbols C
(m)
1,j , . . . , C

(m)
β,j , m ∈ [f ], for all f messages

are stored on the j-th database, j ∈ [n].

D. Private Polynomial Computation for RS-Coded DSSs

We consider the case of n noncolluding databases. A user

wishes to privately compute exactly one polynomial out of µ
candidate polynomial functions X

(1), . . . ,X(µ)
from the RS-

coded DSS while keeping the requested index private from

each database. The polynomial function X
(v) =

(

φ(v)(Wi,j)
)

,

where Wi,j = (W
(1)
i,j , . . . ,W

(f)
i,j ), is a β × k random matrix

for some polynomial φ(v), where each φ(v)(Wi,j) ∈ Fq is

independent and distributed according to some probability

mass function PXv
. Thus, H(X(v)) = LH(Xv), ∀ v ∈ [µ],

and H(X(1), . . . ,X(µ)) = LH(X1, . . . , Xµ).
Consider an RS-coded DSS with n noncolluding databases

storing f messages. The user wishes to retrieve the v-th poly-

nomial function X
(v)

, v ∈ [µ], from the available information

from queries Q
(v)
j and answer strings A

(v)
j , j ∈ [n]. For a PPC

protocol, the following conditions must be satisfied ∀ v ∈ [µ],

[Privacy]

I
(

v ;Q
(v)
j , A

(v)
j ,X(1), . . . ,X(µ)

)

= 0, ∀ j ∈ [n],

[Recovery]

H
(

X
(v)

∣

∣A
(v)
1 , . . . , A(v)

n , Q
(v)
1 , . . . , Q(v)

n

)

= 0.

Definition 3 (PPC rate for RS-coded DSSs). The rate of a

PPC scheme, denoted by R, is defined as R = L/D, where D

is the total required download cost.1

Definition 4 (τ -sum). For τ ∈ [µ], a sum φ(v1)(Ci1,j)+ · · ·+

φ(vτ )(Ciτ ,j), where Ci,j = (C
(1)
i,j , . . . , C

(f)
i,j ), i ∈ [β], j ∈

[n], of τ distinct candidate polynomial function evaluations is

called a τ -sum for any (i1, . . . , iτ ) ∈ [β]τ , and {v1, . . . , vτ} ⊆
[µ] determines the type of the τ -sum.

III. A GENERAL PPC SCHEME FOR RS-CODED DSSS

WITH LAGRANGE ENCODING

In the following we build a PPC scheme based on Lagrange

encoding and our PLC scheme in [12]. Note that a polynomial

can be written as a linear combination of monomials, and

therefore any private monomial computation (PMC) scheme

is a special case of PPC. Thus, a PPC scheme can be obtained

from a PLC scheme by replacing independent messages with

a monomial basis. We first discuss the PPC case in general

and then provide an example for the special case of PMC.

1In order to compare with the PPC schemes from [10], [13], we use a
slightly imprecise definition of the PPC rate. The exact information-theoretic
PPC rate is defined as the ratio of the minimum desired polynomial function
size Lminv∈[µ] H(Xv) over the total required download cost D.



A. Lagrange Coded Computation

Lagrange coded computation [14] is a framework that can

be applied to any function computation when the function

of interest is a multivariate polynomial of the messages. We

extend the application of this framework to PMC and PPC by

utilizing the following argument.

Recall that ℓ
(m)
t (z), t ∈ [β], m ∈ [f ], evaluated at γj results

in an information symbol W
(m)
t,j and when evaluated at αj we

obtain a code symbol C
(m)
t,j . Let ℓt(z) = (ℓ

(1)
t (z), . . . , ℓ

(f)
t (z))

be a vector of f Lagrange interpolation polynomials associated

with the messages W
(1)
t , . . . ,W

(f)
t . Now, given a multivariate

polynomial function φ(Wt,j) of degree at most g, we intro-

duce the composition function ψt(z) = φ(ℓt(z)). Accordingly,

evaluating ψt(z) at any γj , j ∈ [k], is equal to evaluating the

polynomial function over the uncoded information symbols,

i.e., φ(Wt,j) and similarly, evaluating ψt(z) at αj , j ∈ [n],
will result in the evaluation of the polynomial function over

the coded symbols, i.e., φ(Ct,j). Since each Lagrange interpo-

lation polynomial of ℓt(z) is a polynomial of degree at most

k − 1, it follows that deg(ψt(z)) ≤ g(k − 1) and we require

up to g(k − 1) + 1 coefficients to interpolate and determine

the polynomial ψt(z).
Note that ψt(z) is a linear combination of monomials

zi ∈ Fq[z], i ≤ g(k − 1), and the underlying code C̃ for

(ψt(α1), . . . , ψt(αn)), referred to as the decoding code, is

given by the g-fold star-product RS⋆g
k (α) of the storage code

RSk(α) according to [13, Lem. 7]. This is due to the fact

that the span of RS⋆g
k (α) is given by linear combinations of

codewords in RS⋆g
k (α) where each code symbol represents a

monomial. With other words, to construct coded PPC schemes

that retrieve polynomials of degree at most g, we require

g(k − 1) + 1 ≤ n and dC̃
min

≥ n− (g(k − 1) + 1) + 1, where

dC̃
min

denotes the minimum distance of C̃ , to be able to decode

the computation correctly. It follows from Proposition 1 that

C̃ = RS k̃(α) with dimension k̃ = min{g(k − 1) + 1, n} =

g(k− 1)+ 1 and dC̃
min

= n− k̃+1 = n− (g(k− 1)+ 1) + 1.

B. PPC Achievable Rate Matrix

Similar to [12, Def. 3], where we introduce the notion of

a PIR achievable rate matrix for the coded PLC problem, we

provide the following definition for the PPC case.

Definition 5. A ν × n binary matrix Λκ,ν is called a PPC

achievable rate matrix for (C , C̃ ) if the following conditions

are satisfied.

1) The Hamming weight of each column of Λκ,ν is κ, and

2) for each matrix row λi, i ∈ [ν], χ(λi) is always an

information set for C̃ .

C. Redundancy Elimination

Here, we generalize the coded PLC scheme of [12] in terms

of exploiting the dependency between the virtual messages.

Since any polynomial is a linear function of the monomial

basis of size M(f, g), a PPC scheme can be seen as a PLC

scheme performed over a set of M(f, g) messages. Hence, the

redundancy resulting from the linear dependencies between the

virtual messages is also present for PPC and we can extend

[12, Lem. 1] and [8, Lem. 1] to our scheme. To exploit the

dependency between the virtual messages we adopt a similar

sign assignment process to each queried symbol of the virtual

monomial messages, based on the desired function index v
as introduced in [8, Sec. IV.B]. This will result in a uniquely

solvable equation system from the different τ -sum types given

the side information available from all other databases. By

obtaining such a system of equations in each round τ ∈ [µ]
of the protocol, the user can determine some of the answers

offline.

Now, consider 1-sum types, where we download individual

segments of each virtual message including f independent

messages. For these types, the user can determine any poly-

nomial from the f obtained message segments. Based on this

insight we can state the following lemma.

Lemma 1. Let µ ∈ [f : µ(f, g)] be the number of candidate

polynomials, including the f independent messages. For each

query set, for all v ∈ [µ], each database j ∈ [n], and based

on the queried segments from the f independent messages,

there are
(

µ−f
1

)

redundant 1-sum types out of all possible

types
(

µ
1

)

. On the other hand, for τ ∈ [2 : µ], there are
(

max{µ−M(f,g),0}
τ

)

redundant τ -sum types out of
(

µ
τ

)

types.

The number of nonredundant τ -sum types with τ > 1 is given

by ρ(µ, τ) ,
(

µ
τ

)

−
(

max{µ−M(f,g),0}
τ

)

.

D. Achievable PPC Rate

Since C̃ is an [n, k̃] MDS code (C is an RS code), there

always exists a PPC achievable rate matrix Λκ,ν with (κ, ν) =
(k̃, n) for (C , C̃ ). Hence, using Lemma 1 we can prove the

following theorem.

Theorem 1. Consider a DSS that uses an [n, k] RS code

C to store f messages over n noncolluding databases using

Lagrange encoding. Let µ ∈ [f : µ(f, g)] be the number of

candidate polynomials to be computed of degree at most g,

g(k − 1) + 1 ≤ n, including the f independent messages.

Then, the PPC rate

RPPC =
knµ−1

f k̃
µ
+
∑µ

τ=2 ρ(µ, τ)k̃
µ−τ+1(

n− k̃
)τ−1

is achievable.

We remark that the PPC scheme requires the length of each

message to be L = k · νµ. Note that our proposed scheme

cannot readily be obtained using the concept of refinement

and lifting of so-called one-shot schemes as introduced for

PIR in [15], since this concept cannot readily be applied to

the function computation case.

We now provide further insight into our proposed PPC

scheme by considering the PMC scheme as a special case

in which the candidate set is restricted to contain monomials.

E. Special Case: PMC Scheme

1) Candidate Monomials: As the rate of PMC is a decreas-

ing function of the number of candidate monomial functions,

we can limit ourselves to the set of monomials excluding

parallel monomials, where we define a parallel monomial

as a monomial resulting from raising another monomial to



a positive integer power, i.e., to {W i : i ∈ ({0} ∪ N)f , 1 ≤
wt(i) ≤ g, i | p, p ∈ Pg}, where Pg denotes the set of prime

numbers less or equal to g and i = (i1, . . . , if ) | p means that

all nonzero ij , j ∈ [f ], are divisors of p. For example, for

a bivariate monomial over the variables x and y of degree at

most g = 2 the set of possible monomials is {x, y, xy, x2, y2}.

Note that x2 is a parallel monomial as it can be obtained

by raising the monomial x to the power of 2. Thus, x2 and

y2 are parallel monomials and can be excluded from the set

of candidate monomials. Denote by P = {p1, . . . , p|P|} an

arbitrary nonempty subset of Pg . By applying the Legendre

formula for counting the prime numbers less or equal to g, we

obtain the number of nonparallel monomials as

ĂM(f, g) =

(

g + f

g

)

− 1

+
∑

∀P⊆Pg:P6=∅,
p1···p|P|≤g

(−1)|P|









⌊

g
p1···p|P|

⌋

+ f
⌊

g
p1···p|P|

⌋



− 1



,

where ⌊·⌋ denotes the floor function.

We illustrate the key concept of our proposed scheme in

Theorem 1 with an example. Note that in all examples we

assume that the index preparation step has been performed

to keep the desired polynomial index private. We refer the

readers to [12, Sec. IV-A] for details. Before we proceed with

the example, given a ν × n PPC achievable rate matrix Λκ,ν ,

we define the notion of PPC interference matrices as follows.

Definition 6 ([12, Def. 5]). For a given ν×n PPC achievable

rate matrix Λκ,ν = (λu,j) for (C , C̃ ), we define the PPC

interference matrices Aκ×n = (ai,j) and B(ν−κ)×n = (bi,j)

for the code C̃ with

ai,j , u if λu,j = 1, ∀j ∈ [n], i ∈ [κ], u ∈ [ν],

bi,j , u if λu,j = 0, ∀j ∈ [n], i ∈ [ν − κ], u ∈ [ν].

Note that in Definition 6, for each j ∈ [n], distinct values

of u ∈ [ν] should be assigned for all i. Thus, the assignment

is not unique in the sense that the order of the entries of each

column of A and B can be permuted.

Example 1. Consider two messages W
(1) and W

(2) that are

stored in a noncolluding DSS using a [4, 2] RS code C . Sup-

pose that the user wishes to obtain a monomial function X
(v)

from the candidate set {W(1),W(2),W(1)⋆W(2)} of monomial

functions, i.e., µ = ĂM(2, 2) = 3. We have k̃ = g(k−1)+1 = 3
and

Λ3,4 =







1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1







is a valid PPC achievable rate matrix for (C , C̃ ). From Λ3,4

we further obtain the interference matrices

A3×4 =





1 1 1 2
2 2 3 3
3 4 4 4



 and B1×4 =
(

4 3 2 1
)

.

TABLE I
QUERY SETS FOR A [4, 2] RS-CODED DSS WITH LAGRANGE ENCODING

STORING f = 2 MESSAGES AND WHERE THE FIRST (v = 1) MONOMIAL IS

PRIVATELY COMPUTED FOR g = 2 AND µ = 3.

j 1 2 3 4

Q
(1)
j

(D; 1) x1:9,1, x10:18,1, x19:27,1 x1:9,2, x10:18,2, x28:36,2 x1:9,3, x19:27,3, x28:36,3 x10:18,2, x19:27,3, x28:36,4

Q
(1)
j

(U ; 1) y1:9,1, y10:18,1, y19:27,1 y1:9,2, y10:18,2, y28:36,2 y1:9,3, y19:27,3, y28:36,3 y10:18,2, y19:27,3, y28:36,4

Q
(1)
j

(D; 2)
x37:39,1 + y28:30,1 x37:39,2 + y19:21,2 x37:39,3 + y10:12,3 x43:45,4 + y1:3,4

x40:42,1 + z28:30,1 x40:42,2 + z19:21,2 x40:42,3 + z10:12,3 x46:48,4 + z1:3,4

x43:45,1 + y31:33,1 x43:45,2 + y22:24,2 x49:51,3 + y13:15,3 x49:51,4 + y4:6,4

x46:48,1 + z31:33,1 x46:48,2 + z22:24,2 x52:54,3 + z13:15,3 x52:54,4 + z4:6,4

x49:51,1 + y34:36,1 x55:57,2 + y25:27,2 x55:57,3 + y16:18,3 x55:57,4 + y7:9,4

x52:54,1 + z34:36,1 x58:60,2 + z25:27,2 x58:60,3 + z16:18,3 x58:60,4 + z7:9,4

Q
(1)
j

(U ; 2)
y40:42,1 + z37:39,1 y40:42,2 + z37:39,2 y40:42,3 + z37:39,3 y46:48,4 + z43:45,4

y46:48,1 + z43:45,1 y46:48,2 + z43:45,2 y52:54,3 + z49:51,3 y52:54,4 + z49:51,4

y52:54,1 + z49:51,1 y58:60,2 + z55:57,2 y58:60,3 + z55:57,3 y58:60,4 + z55:57,4

Q
(1)
j

(D; 3)
x61,1 + y58,1 + z55,1 x61,2 + y52,2 + z49,2 x61,3 + y46,3 + z43,3 x62,4 + y40,4 + z37,4

x62,1 + y59,1 + z56,1 x62,2 + y53,2 + z50,2 x63,3 + y47,3 + z44,3 x63,4 + y41,4 + z38,4

x63,1 + y60,1 + z57,1 x64,2 + y54,2 + z51,2 x64,3 + y48,3 + z45,3 x64,4 + y42,4 + z39,4

We simplify notation by letting xt,j = C
(1)
t,j , yt,j = C

(2)
t,j ,

and zt,j = C
(1)
t,j · C

(2)
t,j for all t ∈ [β], j ∈ [n], where β =

νµ = 64. Let the desired monomial function index be v = 1.

The construction of the query sets is briefly presented in the

following steps.2

Initialization (Round τ = 1): We start with τ = 1 to gen-

erate query sets for each database j holding κµ = 27 distinct

instances of xt,j . By message symmetry this also applies to

yt,j and zt,j .

Following Rounds (τ ∈ [2 : 3]): Using the interference

matrices A3×4 and B1×4 for the exploitation of side informa-

tion for the j-th database, j ∈ [n], we generate the desired

query sets Q
(1)
j (D; τ) by querying a number of new symbols

of the desired monomial jointly combined with symbols from

other monomials queried in the previous round from database

i 6= j. Next, the undesired query sets Q
(1)
j (U ; τ) (if τ = 2)

are generated by enforcing message symmetry. We make the

final modification to the query sets by removing all redundant

1-sum types from the first round (see Lemma 1) and update

the query sets. This translates to removing the queries for zt,j ,

since they can be generated offline by the user given xt,j and

yt,j . The resulting query sets are shown in Table I, where

ua:b,j , (ua,j, . . . , ub,j) for u = x, y, z. The PMC rate of the

scheme is equal to kνµ

D
= 2×43

3×4×28 = 0.3810.

IV. PPC SCHEME FOR RS-CODED DSSS WITH

SYSTEMATIC LAGRANGE ENCODING

In this section, we consider the case of RS-coded DSSs with

systematic Lagrange encoding and first adapt the concept of a

PPC achievable rate matrix from Definition 5 to this scenario

by extending [6, Def. 14]. In contrast to the PPC scheme in

Section III, the basic idea is to utilize the systematic part of

the RS code to recover the requested function.

Definition 7. A ν × n binary matrix ΛS
κ,ν is called a PPC

systematic achievable rate matrix for (C , C̃ ) if the following

conditions are satisfied.

1) ΛS
κ,ν is a κ-column regular matrix, and

2) there are exactly κ rows {λi}i∈[κ] and ν − κ rows

{λi+κ}i∈[ν−κ] of ΛS
κ,ν such that ∀ i ∈ [κ], χ(λi)

2With some abuse of notation, the generated queries are sets containing
their answers, and vectors should be considered as the union of their entries.



TABLE II
QUERY SETS FOR A [4, 2] RS-CODED DSS WITH SYSTEMATIC LAGRANGE

ENCODING STORING f = 2 MESSAGES AND WHERE THE FIRST (v = 1)
MONOMIAL IS PRIVATELY COMPUTED FOR g = 2 AND µ = 3.

j 1 2 3 4

Q
(1)
j

(D; 1) x1:4,1, x9:12,1 x5:8,2, x9:12,2 x1:4,3, x5:8,3 x1:4,4, x5:8,4

Q
(1)
j

(U ; 1) y1:4,1, y9:12,1 y5:8,2, y9:12,2 y1:4,3, y5:8,3 y1:4,4, y5:8,4

Q
(1)
j

(D; 2)
x13:14,1 + y5:6,1 x17:18,2 + y1:2,2 x13:14,3 + y9:10,3 x13:14,4 + y9:10,4

x15:16,1 + z5:6,1 x19:20,2 + z1:2,2 x15:16,3 + z9:10,3 x15:16,4 + z9:10,4

x21:22,1 + y7:8,1 x21:22,2 + y3:4,2 x17:18,3 + y11:12,3 x17:18,4 + y11:12,4

x23:24,1 + z7:8,1 x23:24,2 + z3:4,2 x19:20,3 + z11:12,3 x19:20,4 + z11:12,4

Q
(1)
j

(U ; 2)
y15:16,1 + z13:14,1 y19:20,2 + z17:18,2 y15:16,3 + z13:14,3 y15:16,4 + z13:14,4

y23:24,1 + z21:22,1 y23:24,2 + z21:22,2 y19:20,3 + z17:18,3 y19:20,4 + z17:18,4

Q
(1)
j

(D; 3)
x25,1 + y19,1 + z17,1 x26,2 + y15,2 + z13,2 x25,3 + y23,3 + z21,3 x25,4 + y23,4 + z21,4

x27,1 + y20,1 + z18,1 x27,2 + y16,2 + z14,2 x26,3 + y24,3 + z22,3 x26,4 + y24,4 + z22,4

contains an information set for C̃ and ∀ i ∈ [ν − κ],
χ(λi+κ) = [k].

Using Lemma 1, the following theorem follows since it can

be proved that a PPC systematic achievable rate matrix ΛS
κ,ν

with (κ, ν) =
(

k, k +min{k, n− k̃}
)

always exists.

Theorem 2. Consider a DSS that uses an [n, k] RS code

C to store f messages over n noncolluding databases using

systematic Lagrange encoding. Let µ ∈ [f : µ(f, g)] be the

number of candidate polynomials to be computed of degree

at most g, g(k − 1) + 1 ≤ n, including the f independent

messages. Then, the PPC rate

R
S

PPC =
νµ

n
[

fkµ−1 +
∑µ

τ=2 ρ(µ, τ)k
µ−τ

(

ν − k
)τ−1

] ,

with ν = k +min{k, n− k̃}, is achievable.

Example 2. Consider the same scenario as in Example 1

where n = 4, k = 2, and k̃ = 3. It follows that ν = k +
min{k, n− k̃} = 3 and

ΛS

2,3 =





1 0 1 1
0 1 1 1
1 1 0 0





is a valid PPC systematic achievable rate matrix. We further

obtain (by adapting Definition 6 correspondingly)

AS

2×4 =

(

1 2 1 1
3 3 2 2

)

and BS

1×4 =
(

2 1 3 3
)

from ΛS
2,3. The resulting query sets are shown in Table II for

µ = 3, where ua:b,j , (ua,j , . . . , ub,j) for u = x, y, z, and the

PMC rate kνµ

D
= 2×33

2×4×15 = 0.45 is achievable.

V. NUMERICAL RESULTS

In Fig. 1, we compare the PPC rates of Theorems 1 and 2

to those of the schemes from [10], [13] for n = 5, k = 2, and

g = 2. The proposed schemes show improved performance for

a low number of messages f . Observe that the curves converge

to the rates from [10], [13] as the number of messages f grows.

In fact, it can easily be seen from the rate expressions of

Theorems 1 and 2 that this is always the case (details omitted

for brevity). For comparison, we also plot the PMC rate when

parallell monomials are excluded (magenta and purple lines).
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RS-L, µ = M(f, 2)

PPC scheme [13]

Fig. 1. Achievable PPC rates as a function of the number of messages f for
n = 5, k = 2, and g = 2.

VI. CONVERSE BOUND

Since RS codes are MDS codes and PPC can be seen as an

extension of PLC, we can adapt the coded PLC capacity of [12,

Thm. 2] to be an outer bound to the PPC rate. However, for

an infinite number of messages the PPC rates of our proposed

schemes, as for the schemes of [10], [13], do not approach this

outer bound, and it is still unknown whether the PLC capacity

can be achieved by a coded PPC scheme.
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