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Abstract

We consider the problem of influence maximization in fixed networks for contagion models
in an adversarial setting. The goal is to select an optimal set of nodes to seed the influence
process, such that the number of influenced nodes at the conclusion of the campaign is as large
as possible. We formulate the problem as a repeated game between a player and adversary,
where the adversary specifies the edges along which the contagion may spread, and the player
chooses sets of nodes to influence in an online fashion. We establish upper and lower bounds on
the minimax pseudo-regret in both undirected and directed networks.

1 Introduction

Many data sets in contemporary scientific applications possess some underlying network struc-
ture [32]. Popular examples include data collected from social media websites such as Facebook
and Twitter [1, 28], or electrocortical recordings gathered from a network of firing neurons [35]. An
important application of network science arises in marketing, where researchers have studied the
importance of word-of-mouth advertising for decades [23]. More recently, methods have been pro-
posed by marketing researchers to quantify the importance of word-of-mouth marketing in online
social networks in both theory and practice [10, 37]. Subsequent empirical studies suggest that
word-of-mouth marketing has a significant effect in online social networks [3, 34]. At the same time,
computer scientists have analyzed the problem of viral marketing from an optimization-theoretic
perspective |15, 27, 11], where the goal is to select an optimal set of influencers to encourage product
adoption in an online social network. This has led to rigorous theoretical guarantees that hold for
stochastic models of word-of-mouth advertising inspired by physics and epidemiology, and the scope
of the spread is quantified using a notion known as influence [24]. In social networks, edges represent
potential interactions between individuals, and the problem of influence maximization corresponds
to identifying subsets of individuals on which to impress an idea so that information spreads as
widely as possible subject to an advertising budget.

Formally, the influence of a subset of nodes is defined as the expected number of influenced
individuals in a network at the conclusion of a spread, starting from an initial configuration where
only the specified nodes are influenced. Even when the influence function is assumed to be com-
putable for any subset using a black-box method in unit time, it is not clear whether influence
maximization may be performed (exactly or approximately) in polynomial time, since searching
over all subsets of k£ nodes is exponential in the number of nodes. Accordingly, the body of work
in theoretical computer science has mostly focused on specific spreading models that give rise to
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nice properties such as submodularity, implying that a greedy algorithm for influence maximization
leads to a constant-factor approximation of the optimal set [24, 25, 8]. Other related work includes
predicting when knowledge becomes viral; limiting the spread of information through carefully po-
sitioned interventions [14, 16]; or competitive settings of influence maximization, e.g. competing for
votes or market share [7, 19, 18].

A significant shortcoming in the analysis of stochastic spreading models is the fact that the
parameters characterizing the spread of influence are generally assumed to be known, allowing
for approximate evaluation of the influence function (either by analytic methods or simulation).
However, such an assumption is not always practical. In the case of independent cascade models
or linear threshold models, where parameters correspond to edge weights in the network, one might
even question a scientist’s prior knowledge of the precise network structure. To address these issues,
some authors have studied the interesting question of accurately learning the influence function
itself in a stochastic spreading model based on observing multiple rounds of infection [29, 26, 21].
Another approach involves a notion of “robust influence maximization,” where the parameters are
only specified to lie in fixed confidence sets, and the goal is to obtain a set of source vertices that
approximately maximizes the true influence function, possibly in a worst-case sense [12, 20]. Robust
influence maximization methods may also be model-dependent, meaning that a robust algorithm
designed for the independent cascade model may lead to a severely non-optimal solution if the
influence spread actually follows linear threshold model. Indeed, the parameters describing different
models, as well as the nature of uncertainties permitted in them, may be completely different.
Further, it is unclear that popular models of influence are good apprixmations of real-world behavior
[17, 22].

In this paper, we take a rather different approach toward the problem of unknown spreading
parameters that also avoids assumptions about a particular spreading mechanism. As discussed
in more detail in Section 2, we only assume knowledge of an underlying fixed graph representing
the paths along which a influence may spread, where the case of no prior knowledge corresponds
to a complete graph. We formulate the influence maximization problem as an online game, where
a “player” must make sequential decisions about the next seed set to choose based on observing
the behavior of the spread in previous “rounds” of the game. Here, a round represents a particular
instance of an influence process initialized from the specific seed nodes from beginning to end. We
allow an “adversary” to choose the path of influence on each round in a completely arbitrary manner,
as long as the process may only spread along edges of the graph—in particular, this setting subsumes
the stochastic models usually adopted in the influence maximization literature, while allowing for
much more general spreading mechanisms (e.g., information does not necessarily propagate in an
i.i.d. manner over all rounds of the game). Note that the adversary’s strategy may be so arbitrary as
to be “unlearnable.” Thus, instead of simply trying to maximize the aggregate number of influenced
vertices across all rounds, we seek to develop player strategies that bound the “regret” of the player,
defined as the difference between the total number of vertices influenced using the player’s strategy
and the number of vertices that would have been influenced if the player had adopted the best
constant choice of source set in hindsight. Such notions are taken from the literature on multi-
armed bandits and online learning theory [5, 10], and adapted to the present setting.

Our main contribution is to derive upper and lower bounds on the pseudo-regret for various
adversarial and player strategies. We study both directed and undirected networks, where in the
latter setting, contagion is allowed to spread in both directions when an edge is chosen by the
adversary. Furthermore, we derive lower bounds for the minimax pseudo-regret when the underlying
network is a complete graph, where the supremum is taken over all adversarial strategies and the
infimum is taken over all player strategies. Our upper and lower bounds match up to constant
factors in the case of directed networks. Notably, the bounds also agree with the usual rate for



pseudo-regret in multi-armed bandits, showing that no new information is gained by the player by
exploiting network structure. On the other hand, a gap exists between our upper and lower bounds
for undirected networks, leaving open the possibility that the player may leverage the additional
information from the network to incur less regret. Additionally, the constant factor on the upper
bound may be slightly improved, providing further evidence that graph structure may be exploited.
Finally, we demonstrate how to extend our upper bounds to the setting where the player is allowed to
choose multiple source vertices on each round. The proposed multi-source player strategy augments
the source set sequentially using the single-source strategies as a subroutine, and is based on a
general online greedy algorithm proposed by Streeter and Golovin [36].

The remainder of our paper is organized as follows: In Section 2, we provide some important
background on online learning theory and formally define the adversarial spreading model and
notions of regret to be studied in our paper. In Section 3, we present upper and lower bounds for
pseudo-regret in the adversarial setting. We conclude the paper with a selection of open research
questions in Section 4. All proofs, as well as a more technical discussion of related work, is contained
in the appendices.

Notation. For a set A, let 22 denote the power set of A. When we want to specify that we are
taking the expectation with respect to a particular distribution p of some random variable X, we
write Ex~p. In particular, we often write Es~., to mean the expectation taken over the player’s
actions for a fixed set of adversarial actions, which is the same as the conditional expectation with
respect to the adversary’s actions. Similarly, we write E 4 to indicate the conditional expectation
with respect to a fixed set of player actions.

2 Background and preliminaries

We begin by formally defining the repeated game between the player and adversary and the types
of strategies we will analyze in our paper. Next, we introduce the notions of regret we will study,
and then connect our setting to related work in the learning theory literature.

2.1 Adversarial repeated games

Consider a fixed graph G = (V,E) on n vertices, which may be directed or undirected. The
adversarial influence maximization problem may be described as follows: Repeatedly over 1" rounds,
the player selects an influence seed set S C V, with |S§] = k, for t = 1,...,T. At the same
time, the adversary designates a subset of edges A; C F to be “open.” A node is considered to
be influenced at time ¢ if and only if it is an element of S; or is reachable from S; via a path of
open edges. Note that in the context of influence spreading, the open edges correspond to ties over
which influence propagates in that round—importantly, influence only has an opportunity to be
transmitted between individuals that interact in the network, but may not necessarily spread over
a particular connection on a specific round. In the case when G is an undirected graph, designating
an edge to be open allows an influence campaign to spread in both directions. Furthermore, in the
directed case, edges may exist in both directions between a given pair of nodes, in which case the
adversary may designate both, one, or neither of the edges to be open. For an open edge set A C E
and influence seed set S C V, we define f(A,S) to be the fraction of vertices in the graph lying in
the influenced set.

To connect our model to the canonical setting of influence maximization, note that [25] proposed
a very general class of influence models called triggering models, which include the independent



cascade and the linear threshold models as special cases. At the beginning of the influence campaign,
each node chooses a random “triggering” subset of neighbors according to a particular rule, and the
incoming edges from those neighbors are designated to be “active.” A vertex becomes influenced
during the course of the process if and only if a path of active edges exists connecting that vertex
to a vertex in the seed set. Thus, triggering models correspond to a special case of our framework,
in which the edge sets are chosen in an i.i.d. manner from round to round, and the probability
distribution over the edges is determined by the probability rule through which edges are assigned
to be active (e.g., according to the linear threshold or independent cascade models).

Next, we describe the classes of strategies A = {A;} and S = {S;} available to the adversary
and player. We assume that the adversary is oblivious of the player’s actions; i.e., at time t = 0, the
adversary must decide on the (possibly random) strategy .A. We use &7 to denote the set of oblivious
adversary strategies and 27; to denote the set of deterministic adversary strategies. Turning to the
classes of player strategies, we allow the player to choose his or her action at time ¢ based on the
feedback provided in response to the joint actions made by the player and adversary on preceding
time steps. Although the player knows the edge set E of the underlying graph, we assume that the
player only observes the status of edges (i,7) such that either i or j is in the reach of S; (in the
undirected case), and the player observes the status of every edge (i, j) such that i is in the reach of
S; (in the directed case). In other words, whereas the player cannot observe the subset of all edges
that would have propagated influence in the network, he or she will know which edges transmitted
influence if reached by the influence cascade initialized using his or her seed set.

Formally, we write .#(A;,S;) to denote the set of edges with status known to the player (i.e.,
all edges in the subgraph induced by A; belonging to connected components containing nodes in
S;), and we denote St = (S (A1, S1),..., I (A, S)). If Ay is chosen via a stochastic model such
as the independent cascade model with discrete time steps for influence campaign t, our setup
technically allows the player knowledge of the status of an edge between two vertices v and v if
both were actually influenced by some other vertex w. Realistically we would not want the status
of edge (u,v) to be returned as feedback, and we could enforce this by positing a model of how each
influence campaign proceeds. However, this distinction does not affect our results or algorithms,
and so we do not further restrict the feedback . (A, Sy).

The player can only make decisions based on the feedback observed in previous rounds, so
any allowable player strategy {S;} has the property that S; is a function of .#*~1 (possibly with
additional randomization). We denote the class of all player strategies by &, and denote the
subclass of all deterministic player strategies by £2;, meaning that S; is a deterministic function
of .#'=1. Note that strategies S; € &4 may still be random, due to possible randomization of the
adversary, but conditioned on #*~1, the choice of S; is deterministic.

2.2 Minimax regret

The player wishes to devise a strategy that maximizes the aggregate number of influenced nodes up
to time 7. Using the notation from the previous section, we define the regret of the player to be

T

Rr(A,S) = Zf Ay, Sk Zf A, St), (1)

t=1 t=1

!
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is the optimal fixed set that the player would have chosen in hindsight with full knowledge of the
adversary’s strategy.

Note that the regret Rp(A,S) may be a random quantity due to randommess in both the
adversary’s or player’s strategies. Accordingly, we will seek to control the pseudo-regret

T T
> F(ALS) - Zf(At,st)] } : (2)
t=1 t=1

where the expectation in equation (2) is taken with respect to potential randomization in both
A and S. As in the standard learning theory literature [9], recall that the expected regret and
pseudo-regret are generally related via the inequality

Rr(A,S) <E[Rr(A,S))],

although if A € &, we have Rp(A,S) = E[Rr(A,S)]. Our interest in the pseudo-regret rather
than the expected regret is purely motivated by the fact that the former quantity is often easier to
bound than the latter and that this simplification is common in the literature on bandits.

Finally, we introduce the scaled regret

Rr(A,S) = S, {EA,S

T T
RYAS) = o) f(AL,8) =Y f(ALS), (3)
t=1 t=1

il

Note that o = 1 corresponds to the unscaled version. Our interest in the expression (3) is again
for theoretical purposes, since we may obtain convenient upper bounds on the scaled pseudo-regret
in the case a = 1 — % using an online greedy algorithm. Note that when k& > 1, the benchmark
greedy algorithms used for influence maximization in the stochastic spreading setting are also only
guaranteed to achieve a (1 — %)—approximation of the truth, so in some sense, the scaled regret (3)
only requires the player to perform comparably well in relation to the appropriately scaled optimal
strategy.

and the analogous quantity

T T
R7(A,8) = max {EA,S [aZﬂAt, =Y fALS)
t=1

S:ISI=k t=1

3 Main results

In this section, we provide upper and lower bounds for the pseudo-regret. Specifically, we focus on
the quantity

f Ry (A, S
Jof, sup Br(A,S),

where the supremum is taken over the class of adversarial strategies, and the infimum is taken over
the class of player strategies based on the feedback model we have described. In other words, we
wish to characterize the hardness of the influence maximization problem in terms of the player’s
best possible strategy measured with respect to the worst-case game.

A rough outline of our approach is as follows: We establish upper bounds by presenting par-
ticular strategies for the player that ensure an appropriately bounded regret under all adversarial
strategies. For lower bounds, the general technique is to provide an ensemble of possible actions for
the adversary that are difficult for the player to distinguish in the influence maximization problem,
which forces the player to incur a certain level of regret.



3.1 Undirected graphs

We begin by deriving regret upper bounds for undirected graphs. We initially restrict our attention
to the case kK = 1. The proposed player strategy for k > 1, and corresponding regret bounds, builds
upon the results in the single-source setting.

3.1.1 Upper bounds for a single source

Consider a randomized player strategy that selects S; = {i} with probability p;;. The paper [9]
suggests a method based on the Online Stochastic Mirror Descent (OSMD) algorithm, which is
specified by loss estimates {/;;} and learning rates {n:}, as well as a Legendre function F. Here,
we comment on the losses, and in order to avoid excessive technicalities, we defer additional details
of the OSMD algorithm to the appendix.

The most basic loss estimate, which follows from standard bandit theory and ignores all infor-
mation about the graph, is

7hode €i7
9o = g, (4)

Dit

where ¢;; = 1 — f(A, {i}) is the loss incurred if the player were to choose S; = {i}. Importantly,
Zgﬁ’de is always computable for any choice the player makes at time ¢ and is an unbiased estimate of
Uig.

On the other hand, if §; = {i} and another node j is influenced (i.e., in the connected component
formed by the open edges of A;), the player also knows the loss that would have been incurred if
St = {j}, since f( A, {i}) = (A, {j}). This motivates an alternative loss estimate that is nonzero

even when S; # {i}. In particular, we may express

1
Ei,t = E Zég,y

J#i

where 61;]- is the indicator that ¢ and j are in different connected components formed by the open
edges of A;. We then define
. 1 7.
e
9 7-] . . ’
n i Pit + Djt
where Z;; = 1g,n j}20- Note that Z%m is also an unbiased estimate for ¢; ;. The estimator Z%m
is always computable by the player, since the value of €f7j is known by the player whenever S; is

known. We call Zf};m the symmetric loss. Now, we state the following regret bounds:

Theorem 1 (Symmetric loss, OSMD). Suppose the player uses the strategy SsoygnMD corresponding
to OSMD with the symmetric loss /5™ and appropriate parameters. Then the pseudo-regret satisfies
the bound

sup Ryr(A, SHevn) < 2iv/Tn.
Acd/

Remark 1. [t is instructive to compare the result of Theorem 1 with analogous regret bounds for
generic multi-armed bandits. When the OSMD algorithm is run with the loss estimates (4), standard
analysis establishes an upper bound of 2%\/T_n Thus, using the symmetric loss, which leverages the
graphical nature of the problem, produces slight gains.



3.1.2 Lower bounds

We now establish lower bounds for the pseudo-regret in the case k = 1. This furnishes a better
understanding of the hardness of the adversarial influence maximization problem. The general
approach for deriving lower bounds is to produce a strategy for the adversary that forces the player
to incur a certain level of regret regardless of which strategy is chosen.

The intrinsic difficulty of online influence maximization may vary widely depending on the
topology of the underlying graph, and methods for deriving lower bounds may also differ accordingly.
In the case of a complete graph, we have the following result:

Theorem 2. Suppose G = K, is the complete graph on n > 3 wvertices. Then the pseudo-regret
satisfies the lower bound

2 _
—+/T < inf R S).
o33 VT < duf, sup Rr(A.5)

Remark 2. Clearly, a gap exists between the lower bound derived in Theorem 2 and the upper
bound appearing in Theorem 1. It is unclear which bound, if any, provides the proper minimazx rate.
However, note that if the lower bound were tight, it would imply that the proportion of vertices that the
player misses by picking suboptimal source sets is constant, meaning the number of additional vertices
the optimal source vertex influences is linear in the size of the graph. This differs substantially from
the pseudo-regret of order \/n known to be minimax optimal for the standard multi-armed bandit
problem (and arises, for instance, in the case of directed graphs, as discussed in the next section).

3.1.3 Upper bounds for multiple sources

We now turn to the case k > 1, where the player chooses multiple source vertices at each time step.
As discussed in Section 2, we are interested in bounding the scaled pseudo-regret E;(A,S) with
a=1-— %, since it is difficult to maximize the influence even in an offline setting, and the greedy
algorithm is only guaranteed to provide a (1 — %)-approximation of the truth.

Our proposed player strategy is based on an online greedy adaptation of the strategy used in
the single-source setting, and the full details are given in the appendix. We then have the following
result concerning the scaled pseudo-regret:

Theorem 3 (Symmetric loss, multiple sources). Suppose k > 1 and the player uses the strategy
Ssoyg;\}[k[) corresponding to the Online Greedy Algorithm with single-source strategy SsoyglMD, Then the

scaled pseudo-regret satisfies the bound

sup T (A, S < 24T

Comparing Theorem 3 to Theorem 1, we see an additional factor of k in the pseudo-regret
upper bound. Similar results may be derived when alternative single-source strategies are used as
subroutines in the Online Greedy Algorithm.

3.2 Directed graphs

We now derive upper and lower bounds for the pseudo-regret in the case of directed graphs, when
k=1.



3.2.1 Upper bounds

The symmetric loss does not have a clear analog in the case of directed graphs. However, we may
still use the node loss estimate for multi-armed bandit problems, given by equation (4). This leads
to the following upper bound:

Theorem 4. Suppose the player uses the strateqy Sg%fij\‘im corresponding to OSMD with the node
loss 0% and appropriate parameters. Then the pseudo-regret satisfies the bound

sup RT(A SOSMD) 2% vVTn.
Aed/

Remark 3. In the case k > 1, we may again use the Online Greedy Algorithm used in Section 3.1.3
to obtain a player strategy composed of parallel runs of a single-source strategy. If the player uses

the single-source strategy S(@%%\?ID? we may obtain the scaled pseudo-regret bound

kvVTn.

(NI

1-1/e node
sup R( / )(.A Sos%wf)) 2
Aed

3.2.2 Lower bounds

Finally, we provide a lower bound for the directed complete graph on n vertices. (This refers to the
case where all edges are present and bidirectional.) We have the following result:

Theorem 5. Suppose G is the directed complete graph on n vertices. Then the pseudo-regret satisfies
the lower bound

——VTn < inf Rpr(A,S
48\/_ duf, sup Rr(A,S).

Notably, the lower bound in Theorem 5 matches the upper bound in Theorem 4, up to constant
factors. Thus, the minimax pseudo-regret for the influence maximization problem is ©(v/Tn) in the
case of directed graphs. In the case of undirected graphs, however (cf. Theorem 2), we only obtained
a pseudo-regret lower bound of Q(v/T). This is due to the fact that in undirected graphs, one may
learn about the loss of other nodes at time ¢ besides the loss at S;. In contrast, it is possible to
construct adversarial strategies for directed graphs that do not provide information regarding the
loss incurred by choosing a source vertex other than S;.

Finally, we remark that a different choice of G' might affect the lower bound, since influence
maximization is easier for some graph topologies than others. However, Theorem 5 shows that the
case of the complete graph is always guaranteed to incur a pseudo-regret that matches the general
upper bound in Theorem 4, implying that this is the minimax optimal rate for any class of graphs
containing the complete graph.

4 Discussion

We have proposed and analyzed player strategies that control the pseudo-regret uniformly across all
possible oblivious adversarial strategies. For the problem of single-source influence maximization
in complete networks, we have also derived minimax lower bounds that establish the fundamental
hardness of the online influence maximization problem. In particular, our lower and upper bounds



match up to constant factors in the case of directed complete graphs, implying that our proposed
player strategy is in some sense optimal.

Our work inspires a number of interesting questions for future study. An important open question
concerns closing the gap between upper and lower bounds on the minimax pseudo-regret in the case
of undirected graphs, to determine whether the feedback available in the influence maximization
setting actually makes the online game easier than a standard bandit setting. Furthermore, our
lower bounds only hold in the case of complete graphs and single-source influence maximization,
and it would be worthwhile to obtain lower bounds that hold for other network topologies and seed
sets containing multiple nodes. Our results only address a small subset of problems that may be
posed and answered concerning a bandit theory of adversarial influence maximization with edge-level

feedback.
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A Related work

Here, we comment more thoroughly on important relationships between our problem setting and
various online games existing in the learning theory literature. A key difference between the graph
contagion setting and the standard multi-armed bandit setting is that in the latter case, the only
information available to the player on each round is the reward obtained as a consequence of his or
her actions. On the other hand, slightly more information is available to the player in our setting,
since the player may often deduce additional information about which vertices would have been
influenced for a different choice of source vertices, based on observing the scope of the influence
process for a particular choice of source vertices. As a concrete example, the player knows that
exactly the same set of nodes would have been influenced if he or she had chosen to influence a
different seed node in the same connected component of the subgraph induced by the influenced
nodes and adversarially chosen edges.

Online games with partial monitoring [6] or graph-based feedback [2] generalize the bandit setting
to repeated games in which the player may observe feedback corresponding to various subsets of
other actions in addition to or instead of observing the feedback corresponding to his or her actions.
Although such games resemble our problem setting, the possible actions available of the player in
our case correspond to subsets of nodes of size k, leading to a rather complicated feedback graph
that is additionally affected by the adversary’s actions. Another online game with a similar flavor is
the combinatorial prediction setting [1], where the player is allowed to pull a subset of arms on each
round, and observes a loss equal to the sum of losses of the pulled arms in the case of bandit feedback
or a subvector of losses corresponding to the pulled arms, in the case of semi-bandit feedback [31].
Our problem may be cast as a type of combinatorial prediction game with a feedback graph that
varies from round to round and is unknown to the player. Note that the combinatorial game with
edge semi-bandit feedback has been studied recently in the influence maximization literature [13,
38, 41, 39, 33], but these results only apply to stochastic adversaries, rather than the more general
non-stochastic framework we study in this paper. Edge semi-bandit feedback refers to the fact that
in a directed graph, the player receives feedback about the transmission status of different subsets
of edges, corresponding to the outgoing edges from the nodes he or she chooses to seed on each
round.

B Proofs

We now outline the proofs of our main results.

B.1 Upper bounds for adversarial models

In this section, we prove our upper bounds. To this end, we describe the OSMD algorithm, which
generates a sequence of probability distributions {p;} to be employed by the player on successive
rounds. Let A” C R" denote the probability simplex.

Online Stochastic Mirror Descent (OSMD) with loss estimates {lzt}

Given: A Legendre function F' defined on R", with associated Bregman divergence

Dr(p.q) = F(p) — F(q) — (p— )" VF(q),
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and a learning rate n > 0.
Output: A stochastic player strategy {S;}.

Let p; € argmin,can F(p).
For each round t =1,...,T":

(1) Draw a vertex S; from the distribution p;.

(2) Compute the vector of loss estimates 0, = {Z@t}.
(3) Set wpy1 = VF* (VF(pt) — 772;), where F™* is the convex conjugate of F'.

(4) Compute the new distribution pyy1 = arg min,c an Dp(p, wii1).

In general, the OSMD algorithm is defined with respect to a compact, convex set K C R™. The
updates are characterized by noisy estimates of the gradient of the loss function, which we may
conveniently define to be Zt in the present scenario. For more details and generalizations, we refer
the reader to [9]. We will use the following result:

Proposition 1 (Theorem 5.10 of [9]). Let the loss functions {{;.} be nonnegative and bounded by
1. The strategy S corresponding to the OSMD algorithm with loss estimates £, learning rate n > 0,
and Legendre function Fy, where 1) is a 0-potential, satisfies the pseudo-regret bound

2,

(=) (pit)

wup Tr(A.S) < suppean Fy(p) — Fy(p1) N UET:E":E
T ) = o
Aco/ n 2 t=1 i=1

We formally define 0-potentials and the associated Legendre functions in Appendix C. In our
analysis, we take ¢(x) = Elg, yielding the Legendre function Fy(z) = =231, :Ej/z. The pseudo-
regret bound in Proposition 1 may then be analyzed and bounded accordingly in various settings
of interest. Details for the proof of Theorem 1 are also provided in Appendix C.

B.2 Lower bounds for adversarial models.

We now turn to establishing the lower bounds. The proofs of Theorems 2 and 5 are based on the
same general strategy, which is summarized in the following proposition. To unify our results with
standard bandit notation ([9]), we use the shorthand

Xie = f(Au{i})

to denote the reward incurred at time ¢ when the player chooses S; = {i}. Then
T
Rr(A,S) = max Eas ;(Xi,t — Xs,).

Proposition 2. Consider a deterministic player strateqgy S € P;. Let A°, AL, ... A™ be stochastic
adversarial strategies such that for each A', the set of edges played at time t is independent of the
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past actions of the adversary. Let Py, Py, ..., P, denote the corresponding measures on the feedback
I allowing for possible randomization only in the strateqy of the adversary. Let E; denote the
expectation with respect to P;. Suppose

r < m;lién E; [ Xi:— X4, V1<t<T, (5)
e

and

zn: KL (Py,P;) < D. (6)

n T
rT (n; L \/g) < %ZEZZ(XH — Xs,.1)- (7)

i=1 t=1

Then

In particular, if the bounds (5) and (6) hold uniformly for all choices of S € P, then

n—1 D
rT( - %> _gg;jggRT(A ,S). (8)

Remark 4. We remark briefly about the roles of the strategies { A} appearing in Proposition 2. In
practice, the strategies are chosen to be similar, except selecting i as the source node is slightly more
advantageous when the adversary uses strateqy A'. The strategy A° is a baseline strategy that treats
all nodes identically. Thus, the lower bound provided by Proposition 2 is the product of the cost of
an incorrect choice of the source vertex, given by r, and a factor that determines how easy it is to
distinguish the adversary strategies from each other, which depends on D.

Proof. Proof of Proposition 2. We follow the method used in the proof of Theorem 3.5 in [9]. We
first show how to obtain the bound (8) from the set of uniform bounds (7). Note that for any
S € X, we have

sup Rp(A,S) = sup max EASZ it — XS, t)
Acd Aca 15isn P

T

max max EglE ZX~ - X
1<j<n 1<i<n S 'Ajt 1( ut St’t)

v

T
= max max EgE; Z(Xi,t — Xs,t)

1<j<n1<i<n

>

—fi%EsEz it = X

> Es ZEZ =X
=1 t=1

where we have used the fact that the maximum is at least as large as the average in the final
inequality. Since any player strategy in & lies in the convex hull of deterministic player strategies,
a uniform bound (7) over &, implies that inequality (8) holds, as well.
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We now turn to the proof of inequality (7). The idea is to show that on average, the player incurs
a certain loss whenever the wrong source vertex is played, and this event must happen sufficiently
often. We first write

T T
B> (Xip— Xop) =D Ei | D (Xiy — Xj)ls—(n

=1 =1 j#i

—ZZE Xip — Xjal Bi [Ls,—(5] -

j#i t=1
In the last equality, we have used the assumption that the adversary’s action at each time is
independent of the past to conclude that the difference in rewards X; ; — X ; (which depends on the
adversary’s action at time ¢) is independent of the indicator 1 Si={j} (which depends on the sequence
of feedback received up to time ¢ — 1). Using the bound (5), it follows that

T
Ei) (Xit— Xsi0) = Y rEil[Ty),
t=1

J#i
where T; = [{t : S§; = {i}}| denotes the number of times vertex i is selected as the source.
Now let Ur denote a vertex drawn according to the distribution gr = (¢1,7,...,¢n,1), Where

qT = % The derivations above imply that

T
B> (Xip— Xsp) =rT> Pi{Ur=j} =rT(1-P{Ur=i}),
t=1 jAi

—ZEZ Zt—th,t):rT<1—%ZPi{UT:i}). (9)

i=1 =1 i=1
By Pinsker’s inequality, we have

SO

1
SKL (P, P),

where P} denotes the distribution of Ur under the adversarial strategy A°. By Jensen’s inequality,
we therefore have

P {Ur =i} <Py{Ur=1i}+

1 ¢ I 1 /1 1 1<
— P; =i} < —+ - —KL(P,,P) < — — KL (P, P). 10
Tl; {UT Z}—n—i_n; 2 (O 2)—n+ 2”; ( z) ( )
Finally, the chain rule for KL divergence implies that
gT

Note that conditional on .#7 the distribution of Uy is the same under P, and P/, since the player
uses a deterministic strategy. Thus, equation (11) implies that

n n
> KL (P, P;)=> KL (P, P;) < D. (12)
i=1 i=1
Combining inequalities (9), (10), and (12), we arrive at the desired result (7). O
To prove Theorems 2 and 5, it thus remains to find an appropriate set of strategies { A%, A, ... A"}

and verify the bounds (5) and (6). Details for the proofs are provided in Appendix E.1.
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C Additional online upper bound proofs

In this Appendix, we provide proofs for the pseudo-regret of player strategies based on the OSMD
algorithm. We begin with some preliminaries.

C.1 Preliminaries

We first describe the function F. Recall that a continuous function F' : D — R is a Legendre
function if F' is strictly convex, F' has continuous first partial derivatives on D, and

lim [[VF(z)| = oc.
x—D\D

The analysis in this paper concerns a very specific type of Legendre function associated to a 0-
potential, as described in the following definition:

Definition 1. A function ¢ : (—o0,a) — Ry is called a 0-potential if it is convez, continuously
differentiable, and satisfies the following conditions:

i () =0, lm o) = oo,
1

">0, ~L(s)|ds < 0.

P> /O\w (s)|ds < o0

We additionally define the associated function Fy on (0,00)" by

Fow) =3 [ s)ds.
i=1

In particular, we will consider the O-potential 1(z) = (—2)~%. Then ¢~ !(z) = —a:_%, SO
g ~— =
i=1

Specifically, we will consider the case ¢ = 2 (the same analysis could be performed with respect to
g > 1, and then the final bound could be optimized over q).

To employ Proposition 1, we need to bound two summands. The following simple lemma bounds
the first term:

Lemma 1. When ¢(x) = ;15, we have the bound

Fy(p) — Fy(p1) < 2v/n, Vp € A™.

Proof. Proof. Since Fy(p) <0 and ||p1||1 = 1, Holder’s inequality implies that
n
Fy(p) — Fy(p1) < 221)}7/,2 <23,
i=1
This completes the proof of the lemma. O
All that remains is to analyze the loss-specific term appearing in Proposition 1 and choose 7

appropriately.
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C.2 Proof of Theorem 1

We first prove the following lemma:

Lemma 2. We have the inequality

<esy’“>2
pz t)

ZE

]gx/%, Vi<t<T. (13)

Proof. Proof. Let F; denote the sigma-field of all actions up to time ¢t. We have

@“ym)

ZE ]-‘t 1] 2:: p°E { P27, 1}

(5m) (jl (urlrraly)
(8¢

7t

I/\O~

)\ 12
pidE (B Fia ) ) , (14)

where we have used the facts that (1) (z) = %:E_3/2 and p; is measurable with respect to F;_; to
establish (a), and applied Holder’s inequality to obtain (b).

We now inspect the conditional expectation more closely. We have

E[(Z;ytm)ﬂ}‘t_l}:E %gmgszw 2}}—1 ;
- %E %ﬁ:zk; (P +pgt)(pm + Dh yhatindis il Tt
- %E z;«é:zkz;;z (i +p]t)(pm + Dht )gg’j@’kzi i
7 | S g 4|

JF#i

where the third equality is due to the fact that Z;;Z;;, is 1 only when ¢ is the source vertex or j = k
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is the source vertex. Using the fact that € . is bounded by 1, we then obtain

E [(Zs'ym)2|]:t—1] < — Fiq
ot ;gﬁ; pzt+pjt(pzt+pkt)
1 Z;
+ —E — 5 |Ft-1
Tl2 27; (pz t + pj t)
Pit _ Pit
< ’
= n? ;; (Pit + i) (Pit + Prt) n2 Z (pit +pje)?
Dit + Djt
< ’ )
= n2 ;gﬁ; (Pit +pj ) (Dit + Prt)
T n? ; g; Dit + Dkt
<1 Z _
ni Pit + Prit
Combining this result with the bound (14), we have
o\ 1/2
(esym)2 n Dit n 1
E Fial <2 P~ L
Z pm) - ZZ:; n ; Dit + Pt
3
n — ;; (pit +pjt)(pzt + Ph.t)
3
< g o pzt
n

. 1pzt+pyt

1=

Now, we have the useful equation
n2

Zzaz—kakz_’ (15)

=1 k=1

for any nonnegative sequence {a;} ;. This may be seen via the following algebraic manipulations:

n
(073 a;
Zzal—l—ak _Zai+ai+zai—l—ak

i=1 k=1 i ki
1 Q.
_§ _Za2+ak 52%4—%
ki
a; + ag
SEAEPY
2k#ai+ak

n(n—1)
2

_l’_

o3

vo| 3,
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n2

Appealing to equation (15), we may replace the double sum by % and simplify the bound:

(™2

(V=1 (i) ft_l] = % <n_3>% = Van.

2

SE
i=1

Taking an additional expectation and using the tower property, we arrive at the desired inequality.
O

Combining Lemmas 1 and 2 with Proposition 1, we then have

_ 2y/n n
sup Rr(A, Siavp) < —— + 0T/ =.
Aot ( OSMD) n 2

Optimizing over 7, we take n = 2%T_%, which establishes the desired bound.

D Adversarial influence maximization with multiple sources

In this Appendix, we prove results concerning multiple influence sources. First, we need to give the
precise algorithmic details of the online greedy algorithm. We assume the player is allowed to choose
source vertices sequentially at time t and observes the corresponding edge feedback immediately after
each selection. The algorithm, inspired by [36], is outlined below:

Online Greedy Algorithm

Given: A single-source player strategy S'.
Output: A k-source player strategy S¥ = {S;}1<i<7.

For each t = 1,...,T, choose S = {vi4,...,v,+} sequentially, as follows:

(1) Select vy according to the single-source strategy S L

(2) For each i > 1, select v;; according to the single-source strategy S!, based on the edge
feedback f(.At, {Ul,t, . ,Ui,t}) \ f(.At, {Ul,ta . avi—l,t})~

In other words, the Online Greedy Algorithm runs the player’s strategy for single-source selection
k times in parallel, with losses computed marginally for each successively chosen vertex. The “greedy”
component of the algorithm corresponds to the fact that the player makes a selection of the set of
ith source vertices in the best possible way based on the information available (i.e., according to the
single-source strategy that is designed to incur a small pseudo-regret). Note that the feedback

f(.At, {’Ul,ta e ,Ui,t}) \ f(.At, {Ul,t, e 7'Ui—1,t})

is indeed computable by the player when choosing the i vertex at round ¢, since the player has
already observed % (A, {vi¢,...,vi—1+}) after the first i — 1 source nodes are selected.

Fix an adversarial strategy A, and define the functions f;(S;) = f(A;, S¢) and F(S) = 321, £i(Sh).
Thus, F(S) is the total reward for strategy S = {S;}. In the stochastic setting, when 7' = 1, many
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influence-maximization analyses exploit the submodularity of f; under certain stochastic assump-

tions on A;. In the bandit setting, we wish to establish an analogous result for F, in order to

establish regret bounds when the player chooses source vertices according to a greedy algorithm.
Since S € (2¥)7, the function F is not technically a set function. However, we may identify

each player strategy S with an element of $* € Q(VT), and define F*(S*) = F(S5). Here,
T .= {UT = (v(1),v(2),...,v(T)) |v(i) €V, for 1 <i < T},

and S* = {ul,...,ul} € 2(V") corresponds to the strategy that selects the source nodes {u; (t), ..., uz(t)}
in round t.
In more detail, let S = {s¢(1),...,s:(i)} C V denote the set of the first i seed vertices in

round ¢, where St( ) = (). Then, we can write

k

fus) =Y £ () = 1 (887Y).

i=1

One can then write the total reward as

=§Tj§kjft () = £ (s577) = szft () = i (sf7Y)

t=1 i=1 i=1 t=1
If we define
fz*(S*):F*({u{vv U, ) F*({ 7”’?“?—1})

T
=" feui(t) 5 < i) — fr(Qug(t) - j < i— 1))
t=1

and F*(S*) = Zle 17(S¥), then we indeed get the desired equality F(S) = F*(S*) while also
switching our summation for submodularity to be over the ith vertices as opposed to the tth round.
We first show that F™* is a monotone, submodular function:

Lemma 3. The function fi(St) = f(A¢, St) is monotone and submodular, for every fized Ay.

Proof. Proof. It is trivial to see that f; is monotone, so we focus on proving submodularity. Our
goal is to show that for a fixed A, and for any S; C S/ and u € V\S/, we have

[i(SEU{u}) = fi(S)) < fiu(Se U{u}) — fi(S). (16)

Let Zs, ., denote the indicator of an open path between a source node s € & and v € V', where by
convention, Zs, , = 1 if v € S;. Note that f,(S;) = 2 3, .\, Zs, . We will show that for v ¢ SjU{u},
we have
ZSgU{u},v - ZS;,U < ZStU{u},v - ZSt,v' (17)
Summing over v € (S; U {u})¢, using Zs,u{u},0 — Zs,0 > 0 for v € §;\ S, and dividing by n will
yield the desired inequality (16).
We have three cases to consider: In the first case, an open path exists from some s € S] to
v. Then the left side of inequality (17) is equal to 0, while the right hand side is at least 0 by
monotonicity. In the second case, an open path does not exist from any s € S/ to v, but an open
path exists from u to v. Then both sides of inequality (17) are equal to 1. Finally, if no open path
exists from s € S U {u} to v, then both sides of inequality (17) are equal to 0. This completes the
proof. O
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Proposition 3. The function F* is monotone and submodular.

Proof. Proof. The properties are essentially immediate from Lemma 3. Let P and Q be elements
of (2V)T such that P* C Q*. Then

T T
=> ﬂsz = F*(Q"),
t=1 t=1

proving monotonicity. Similarly, if S € (2")7, we have

||
MH

FH(S"UQF) — F*( (fe(StU Q) — fi(Qr))

o+
Il

1

(fe(StUPy) — fi(Pr))

™=

1
s uPn - )

proving submodularity. O

By the standard greedy approximation (|24, 30]), we then have

<1 - 1) max F*(S*) < F*(GY),
€/ |S*<K
where G* is a set of cardinality K > 1 constructed via a sequential greedy algorithm. However, this
result is not immediately applicable to the online bandit setting, since we do not have direct access
to F*. Thus, we can only hope to obtain an approximate greedy maximizer é*, and we wish to
derive theoretical guarantees for F *(é*)
Our result relies on the following general proposition:

Proposition 4 (Theorem 6 from [36]). Let f : 27 — R be a monotone, submodular function such
that f(0) = 0. Consider a set 2 C ¥ and a sequence of error tolerances {€;}, and suppose {GS} is
constructed in an approzimate greedy manner, such that G§ =0 and G5 = G5_; U {g;}, where

max f(Gi_y U{d}) — f(Giy) < F(Gi Udai}) = fF(Giy) + e

ey

Then for any K > 1, we have

K
1
1— -] max G%) < €
(1) anx 7057 - riG) < > e
where Yy consists of subsets of 2 containing at most K elements.
Proposition 4 ensures that for submodular functions, successive errors {¢;} in a sequential greedy

algorithm only accumulate additively. The proof is provided in [30], but we include a proof in
Appendix D.2 for completeness.
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D.1 Proof of Theorem 3

Suppose A € o7. We will apply Proposition 4 with f = E4F*, ¥ = VT, and K = k. Note that
E4F* inherits monotonicity and submodularity from F*. Also let

@:{(v,...,v):UEV}g2(VT)

denote the diagonal set of 2V"). For a (non-random) k-source strategy S* with |Sf| = k for all
t, we use the notation S* = {S},...,S;}, where S corresponds to the set of ith vertices chosen
during the 7" rounds. Proposition 4 immediately gives

1 * ES €
<1— —> g}g)}EAF (§*) —EAF*(GY)
ZmaXE_A F* GE 1U {d }) F*(Gg_l U {gl})]u
Py d,€9

where the sets {G{} are chosen in an approximate greedy manner, and ¢; are upper bounded by the
regret for the ith instance of the single-source algorithm. In particular, we consider {G¢} to be the
choice of i vertices S} corresponding to the player’s choice under the strategy S 1

We now take an expectation with respect to possible randomization in the player’s strategy, to
obtain

k
R(1 1/e) (A,8) < ZES [dmggngA [F*(Gi_y U{di}) — F(Gi_y U {gl})]]
i—1 z

(A

(@) &

a

= ZES[M]
=1

k
() * [ (ve * [ ve
= ZES[LFH [ESZ- {inggngA [F*(Gi_y Ud{di}) — F*(Gi_4 U {92})]] :
i=1 !

Eng}jfEA [F*(Gg_l u{d;}) — F*(G5_, U {gz})]]

Here, Es, denotes the expectation with respect to the first ¢ vertices played, and the equality in

(a) holds because the set of i*" vertices played depends only on the sets of the first i vertices played.
The equality in (b) holds because the set G;_1, and hence the choice of d;, does not depend on the
selection of i*" vertices. Furthermore, the inner expression is simply the pseudo-regret of strategy
S'. By Theorem 1, this is bounded by ﬁ\/ﬁ. Summing up, we obtain the desired result.

D.2 Proof of Proposition 4

We begin with two supporting lemmas:

Lemma 4. For any P C ¥ and Q C 9, we have

fF(PUQ) < f(P) +|Qmax[f(P U {v}) - f(P)].

Proof. Proof. We proceed by induction on |Q|. The case |Q| = 1 is immediate. Now suppose the
statement is true for all |Q] < k, where k > 1. Let ¢ € 2, and suppose Q C Z has cardinality k.
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Then

FPUQUIE) € £ (PU(e)) +IQlmax( (PU{e}) U (a)) — £ (PU{e})

< F(P) + max(f (P U{d)) — F(P)] + 1] max( (P U (a)) — £(P)

= f(P) +1QU et max[f (PU{d}) — f(P)],

where (a) follows from the induction hypothesis and (b) follows from the induction hypothesis and
submodularity. This completes the induction and proves the lemma. O

Lemma 5. Let 6; := f(GS) — f(G5_y). For any Q C 2, we have

F(Q) < f(Gi1) +1QI(0: + €i).

Proof. Proof. Using Lemma 4 and monotonicity of f, we have

S f(G 1) + QI max[f(GF_, U{d}) — f(Giy)]
<SG + 19 (F(G) = F(Giy) + )
= f(Gi_1) +1Ql(6 + &),
completing the proof. O

We now define A; := maxg+cg, f(S*) — f(G5_;). By Lemma 5, we have

Joax f(S%) < f(Giy) + K(6; + €).

Subtracting f(GS_;), we obtain
Ai < K((SZ + 62') = K(Al — AH_l + Gi),

SO

1
A1 <A <1 - ?> + €.

Applying this inequality recursively, we see that

AK+1§A1Q<1—%>+§;Q: <1——> +ZeZ§A1< >+Zez

Rearranging and using the fact that f(f)) = 0 completes the proof.

E Additional online lower bound proofs

The main goal of this Appendix is to prove Theorems 2 and 5. Some of the computations are rather
lengthy and are therefore included in Appendix E.2.
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E.1 Proofs of theorems

We first present the main components of the proofs, followed by detailed calculations involving the
Kullback-Leibler divergence.

E.1.1 Proof of Theorem 2

Let the adversarial strategies {A'} be defined as follows: For each strategy, the adversary chooses
a random subset of vertices, and opens all edges between vertices in the subset. For A’ with
1 <@ < n, the adversary includes vertex i with probability -, and includes all other vertices with
probability £(1 — &) each, where § € (0,1/2) is a small constant. Finally, for A", the adversary
includes all Vertlces independently with probability £(1 —d). Successive actions of the adversary
are 1.i.d. across time steps.

We now derive the following lemmas, which will be used in Proposition 2:

Lemma 6. For anyi# j and 1 <t <T, we have

(n —2)c?

Ei[ X+ — Xj¢ = 3 (1 —0)o.

Proof. Proof. Let C; be the clique chosen by the adversary at time ¢. Note that if 7,57 € Cyor4,j ¢ Cy,
the difference in rewards is 0. Thus, the only cases of interest in computing the expectation are
when exactly one of ¢ or j is in C;. Then

E; [Xix — G| — Dlice,1jgc, — (1 — [Cel)lige Ljec,]

B [(
LG ) Q-

== (5) o (- fa-a) - [1-Ja-9)
(n —2)c?
=21,

where the second equality uses the fact that =(n — 2)(1 — ) other vertices are expected to be in

Ct. O

Lemma 7. Let S € &4 be a deterministic player strategy, and let T; = |{t : S = {i}}|. Then we
have the upper bound

ZKL Py, P;) < (C+1)T52.

n—c

The proof of Lemma 7 is provided in Appendix E.2.1.
Thus, by Proposition 2, we have

inf sup Rp(A,S) > T(niz)cz(l —9)d <n

S€P Aco
2
2T (9) <n
6 \n

g,/nic(c+ 1))
EED)

24



where the second inequality uses the fact that n > 3 and § < 1/2. Finally, we optimize over ¢ and
c. Since we have a quadratic equation in §, we take

n—1 /2n n-—c
0= —\—1/—,
2n VT \cle+1)

yielding
T /eN2 (1 (n—1\> [2n n—-c
f > (- ~ —
s T > 5 (5 () Vo )
n—1\? [n(n—c)
- 12f\/_< ) ( n ) clc+1)
c
> _ - _ _
_27\/_\/T< 2) n(n —c),
where the second inequality uses the bounds "nl > 2 3 when n > 3, and &5 2 £ when ¢ > 2. The

final expression is optimized at ¢ = 3 , yielding the desmed lower bound. Note that for this choice
of ¢, we indeed have 6 < 1/2 when T > 2.

E.1.2 Proof of Theorem 5

Let the adversarial strategies {A’} be defined as follows: For each strategy, the adversary indepen-
dently designates every vertex to be a source, sink, or neither. The adversary then opens directed
edges from all source vertices to all sink vertices. For A?, with 1 < < n, the adversary designates
vertex i to be a source vertex with probability -, and all other vertices to be source vertices with
probability =(1 —4). All vertices are designated to be sink vertices with probability %. Finally, for
A° the adversary designates all vertices to be source vertices with probability 2(1 —=9), and sink
vertices with probability %. Successive actions of the adversary are i.i.d. across time steps.
We now derive the following lemmas, which will be used in Proposition 2:

Lemma 8. For anyi# j and 1 <t <T, we have
(n—1)cd

EilXit = Xjel = —

0.

Proof. Proof. We compute the expectation of each term separately. Let B; and C; denote the
source and sink vertices at time ¢, respectively. Note that X;; = % if i ¢ By; otherwise, X;; = %
Hence,

nEi[X; ] = E[Ligp, + (1 + |Ct|)Lies,]

~(1-9)+ (1+0-08) (3)
(n—1)ed

=1
+ 2

The computation for X;; is similar:

nEi[X;] =E 1,5 + 1+ [C|)1jes,]

- (1—%(1—5))+<1+(n—1)%> ~(1-9)



Taking the difference between these expectations proves the lemma. O

Lemma 9. Let S € Py be a deterministic player strategy, and let T; = |{t : Sq = {i}}|. Then we
have the upper bound

ZKL Py, P;) < %Tﬁ

Essentially, the Kullback-Leibler divergence is of order %, because playing a suboptimal vertex
provides no information about which vertex is optimal. This is unlike the case of the undirected
graph, where the optimal vertex is always more likely to be contained in the feedback that the
player receives, and the KL divergence does not decay with n. The proof of Lemma 9 is provided

in Appendix E.2.2.
By Proposition 2, we then have
| T c(n —d)
2n\lnin—c—d) |’
Finally, we optimize over 6, ¢, and d. We take
5_1 n—1\ /2n [n(n—c—d)
2\ n T cn—d) ~’
d — 1 —c—
inf sup Ry(A,S) > ( )C <n \/ \/ nin —c
S€Z Act c(n —

_ 1 (1-c¢/n—d/n)

- WF< ) n\/ (c/n) (1= d/m)
cd [(1—c¢/n—d/n)
16\f\/_ (c/n)(1—d/n)’

inf sup Rr(A,S) > (n_#éT <n
S€Z Acot n

to obtain

where the last inequality uses the bound "T_l > % Finally, using the fact that the function

l—2x—y

f(:Evy)::Ey .Z'(l—y)

achieves its maximum value of \[ when (z,y) = (%, %), we obtain the bound

inf sup Rp(A,S) > ——
Sez A@Iz)/ T( = 48v/6

vViTn,

Whenc:%andd:%”

26



E.2 Proofs of KL bounds

In this Appendix, we derive the required upper bounds on the KL divergence between adversarial
strategies. We begin by proving a useful technical lemma.

Recall that P; denotes the distribution of the edge feedback .#T under strategy A’, and S € 2,
is a fixed deterministic player strategy. Also recall that T; = |{t : Sy = {i}}| denotes the number of
times vertex ¢ is chosen by the player.

Let P! denote the distribution of the edge feedback .#* under strategy A°, so P; = ]P’;TF. For
each pair of nodes i and v and any 1 <t < T, define the function K Lf(v) to be the KL divergence
between the edge feedback, conditioned on any .#*~! such that S; = {v}:

KLj(v) = KL (B {-|.7 71 Pi{ |7 71)) .

Note that K Lf(v) is indeed a well-defined function of v, since conditioned on .# =1 the player’s
action S; is deterministic. Hence, the randomness in .#¢ is purely due to the stochastic action of
the adversary at time t.

Lemma 10. If KL.(v) is independent of t, we have
KL (Po,P;) = K Li(i)Eo[T}] + ) K Li(j)Eo[T). (18)
J#i
If in addition K L;(i) is independent of i, for 1 < i < n, and KL;(j) is constant for all nonzero
pairs i # j, we have

f: KL (Py,P;) = KL;i(i)T + KL;(j)(n — 1)T. (19)

Proof. Proof. Note that equation (19) follows immediately from equation (18) by summing over i
and using the fact that > " | Eo[T;] = T.
To derive equation (18), we use the chain rule for KL divergence:

!

KL(Bo, ) =37 37 o'} KL (B {7} B {111}

t=1 gt—1

S Y B KLW)

v=1 gt-1.5;={v}
Po{S; = {v}} K Li(v)

v=1

Po{S; = {i}} K Li (i) + ZZPO{St = {JHKLi(j),

1 t=1 j#i

M’ﬂ EM“

(1

~
Il
—

Il
WE

o~
Il

using the assumption that K L!(v) is independent of ¢ in the equation (a). Now we simply recognize

that
T T
> 1&:{4 = Po{S = {i}}
t=1 t=1

to obtain the desired equality. O

= Fo
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E.2.1 Proof of Lemma 7

Note that K L!(v) is independent of ¢, since the adversary’s actions are i.i.d. across time steps.
Furthermore, K L;(i) is clearly independent of i and K L;(j) is constant for all pairs i # j, so
equation (19) of Lemma 10 holds.

We first compute an upper bound for K'L;(i). Let X denote the size of the connected component
containing 7 on a particular time step, based on the edges played by the adversary. Then

where we abuse notation slightly and write P;(X) to denote the distribution of X under adversarial
strategy A". Also let Y be the indicator variable that 4 is in the clique selected by the adversary.
By the chain rule for the KL divergence,

We will derive an upper bound for the latter quantity. In particular, the range of (X,Y) is
{(1,0), (L, )} U{(m,1) :2<m < n}.

This leads to the following expression for K L(Po(X,Y),P;(X,Y)):

(1- 2 —-0)o0g (%ﬁ)

(5a-0(0- 00y us (2S00

" /n—1\c c m—1 c nem
3 ()50 (Za-0) (- Sa-n)

c c m—1 c n—m
< los <z(1—5)(5(1—i)_)1 U )
s G- (-5 -4)

n

= (1-20-5) 108 (%)
3 (nIh)re-a Goa)" (- fn ) st -
— (1- S0 -0) g (w) + L0 8)log(1-0).
Applying the inequality log(1 + z) < z twice, we then obtain
KL@o(X),Bi(X)) < (1= 2(1-9)) 7 f ~—(1-0)3
- (20)
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The computation for K L;(j) is similar. Let X denote the size of the connected component
containing 7, and let C denote the clique chosen by the adversary. Define the random variable

0, ifj¢cC

Y=4(1 ifjeCandi¢C

2. ifi,jeC.

Again, it suffices to obtain a bound on K L(Py(X,Y),P;(X,Y")). The range of (X,Y) is
{(1,0), (L, 1)} U{(m,1):2<m<n—1}U{(m,2):2<m <n}.

Further note that Py(1,0) = IP;(1,0), so we may ignore this term when computing the KL divergence.
We then have following expression for K L(Po(X,Y),P;(X,Y)):

(1 - _fa-9)" o (ta-0)(1-£a-9)""
(Ga=9) (1-a-a) 1g<( )

" F1-9) (=) (-fa-a)"
n—1
+ 3 (m3)50-9 (1= f0-9) (Fa-9)"" (1- fa-9) ™"

C(1-8)(1—c(1—8) (L -8)" " (1—ca—a) "
F-0 (-5 (Ra-a)" - ga -

o (n73) (r-0)" (G -0)™ <1—— a-n)""

x lo ((1_5))2(%( )" 1—%1_
1g<<— (@) (A=) 1 2 )
:§:<;ii>;ﬂ—®(1—%u_®)<(1_®) 0__ Dmm4

C1-0)(1-2) (¢a-0)" " (1-21-08)"""
g(iii) (Ca-9) (Sa-9)"" (1-fa-9)""
X10g< (F0-0)" (z0-9)""(1
(£ =0) (£) (£ -0) "
:%ﬂ—®<1—%ﬂ—50bg it

< log <§(1 &) (1-£(1-9) (£ —5))’” "1-cn —5))""”‘1)

We once again use the inequality log(1

KL(Po(X),P;(X)) < %(1 —4) (1 (1- 5)) <1 fé_) _ (%(1 _ 5)>25

:(%YQ1_@£ . (21)



Combining inequalities (20) and (21) with equation (19) of Lemma 10, we obtain the bound

n 9 n
N\ < 2 < — 552 —
E_:KL(]P’O,]P,)_n_Cé T+(n> (1= )8 ——(n— )T
< (C+1)T52
n—=c

completing the proof.

E.2.2 Proof of Lemma 9

Note that K L!(v) is independent of ¢, since the adversary’s actions are i.i.d. across time steps.
Furthermore, K L;(i) is clearly independent of i and K L;(j) is constant for all pairs i # j, so
equation (19) of Lemma 10 holds.

Note that when S; = {j}, the distribution of the feedback .# is the same under P4{-|.#*~1} and
Pi{.|.#=1}, since the vertex i is chosen to be a sink vertex with the same probability % under both
A and A’. Hence, KL;(j) = 0.

To compute K L;(i), let X denote the size of the influenced component containing i when
St = {i}, and define the random variable

0, if 7 is a sink vertex
Y = {1, ifiisa source vertex

2, otherwise.

As in the proof of Lemma 7, we will upper-bound KL(Py(X,Y),P;(X,Y)), leading to an upper
bound on K L(Py(X),P;(X)). The range of (X,Y) is

{(1,0),(1,2)} U{(m,1) : 2 <m < n}.
We then have the following expression for K L(Py(X,Y),P;(X,Y)):

oo (45)-+ (1= 5-0- e (52 22)
)i (7007

m=2
ca-9 (" -9 m)
X10g< m— n—m ’
" (-9
n—c—d+célog<n—c—d+cé>

n n—c—d
c “/n—1 " da\" "
+E(1—5)1og(1—5)g::2<m_1> (H) (1_E>
gn_c_d+65log<n_c_d+65>+E(1—5)log(1—5).
n—c—d n

Using the inequality log(1 + z) < x, we then have

cd(n —c—d+ch) _3(1_5)5: c(n —d) 52

KL(Py(X),P;(X)) < n(n—c—d) n n(n —c—d)

Applying Lemma 10 completes the proof.
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