
Identification, Secrecy, Template, and
Privacy-Leakage of Biometric Identification System

Under Noisy Enrollment
Vamoua Yachongka

Dept. of Computer and Network Engineering
The University of Electro-Communications

Tokyo, Japan
Email: va.yachongka@uec.ac.jp

Hideki Yagi
Dept. of Computer and Network Engineering
The University of Electro-Communications

Tokyo, Japan
Email: h.yagi@uec.ac.jp

Abstract—In this study, we investigate fundamental trade-off
among identification, secrecy, template, and privacy-leakage rates
in biometric identification systems. Ignatenko and Willems (2015)
studied this system assuming that the channel in the enrollment
process of the system is noiseless and they did not consider the
template rate. In the enrollment process, however, it is highly
considered that noise occurs when bio-data is scanned. In this
paper, we impose a noisy channel in the enrollment process and
characterize the capacity region of the rate tuples. The capacity
region is proved by a novel technique via two auxiliary random
variables, which has never been seen in previous studies. As
special cases, the obtained result shows that the characterization
reduces to the one given by Ignatenko and Willems (2015) where
the enrollment channel is noiseless and there is no constraint on
the template rate, and it also coincides with the result derived
by Günlü and Kramer (2018) where there is only one individual.

Index Terms—Identification system, capacity region, secrecy-
leakage, privacy-leakage, random coding.

I. INTRODUCTION

Biometric security is a security mechanism used to identify
an individual on the basis of his/her physical characteristics.
Biometric technology enables us to recognize the individual
by matching the unique feature with biological data (bio-
data) already stored in the system database. Some well-known
technologies of this kind of security are fingerprint-based
identification, iris-based identification, voice recognition, etc.
Nowadays many applications make use of this technology
like homeland checking at land port, mobile payment with
smartphone and so on.

O’Sullivan and Schmid [1] and Willems et al. [2] in-
dependently introduced the discrete memoryless biometric
identification system (BIS). Basically, the BIS consists of two
phases: (I) Enrollment Phase and (II) Identification Phase. In
(I) Enrollment Phase, all individuals’ bio-data sequences are
generated from a stationary memoryless source. The sequences
are observed through a noisy discrete memoryless channel
(DMC) and stored into system database. In (II) Identification
Phase, a bio-data sequence of an unknown individual is
observed via another noisy DMC, and an estimated value of
the unknown individual is output.

There are many studies related to the BIS. We highlight
some previous studies which are deeply connected to this
study. Willems et al. [2] have clarified the identification capac-
ity of the BIS, which is the maximum achievable rate of the
number of individuals when the error probability converges to
zero as the length of bio-data sequences goes to infinity. How-
ever, the system model in [2] assumes that bio-data sequences
are stored in the system database in a plain form, leading to
a critical privacy leakage threat. Tuncel [3] has extended their
model by incorporating compression of bio-data sequences
stored in the system database and clarified the capacity region
of identification and coding rates (in this study, a codeword is
called a template, and this coding rate is called the template
rate). Later, Ignatenko and Willems [4] investigated the BIS
model with secret data and template generation. Related to
this work, the system with only secrecy estimation has been
analyzed in [5]–[7]. In [4], the authors evaluated the amount of
information leaked between a template stored in the database
and its bio-data sequence, called the privacy-leakage rate,
and clarified the fundamental trade-off among identification,
secrecy and privacy-leakage rates in the BIS provided that the
enrollment channel is noiseless. Recently, Yachongka and Yagi
[8] introduced a constraint of the template rate to the model
developed in [4] and clarified the fundamental trade-off among
identification, secrecy, and template rates in the BIS.

An interesting observation given in [4] for the case where
the secrecy rate is zero and in [8] for the case where the
secrecy rate is positive indicates that the minimum required
amount of the template rate is equal to the minimum required
amount of the privacy-leakage rate when the enrollment chan-
nel is noiseless. Despite this insight, when bio-data is scanned
and stored in the system database, it is highly considerable
that bio-data sequences are subject to noise, as is assumed
in [2], [3], and [9]. Actually, by treating a noisy enrollment
channel, the problem becomes more challenging and interest-
ing, especially, in the evaluation of the privacy-leakage rate.
This motivates us to consider a noisy channel in the enrollment
phase of the BIS.

In this paper, we aim to characterize the capacity region of
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identification, secrecy, template, and privacy-leakage rates in
the BIS. In order to get closer to practical system, we analyze
the region by imposing the following requirements:

1) there is a noisy channel in the enrollment phase,
2) we consider a scheme of both protecting privacy (as in

[4]) and compressing template (as in [3] and [8]),
3) we analyze the capacity region provided that the prior

distribution of an identified individual is unknown.
To handle the difficulties of bounding the privacy-leakage

rate in the achievability proof, we introduce a virtual system
with a partial decoder, which outputs only the secret data
of individual. We show that there are two different ways
to express the capacity region of the BIS. An expression
uses a single auxiliary random variable (RV) and another
requires two auxiliary RVs. Later, we will demonstrate that
the two regions (regions with one and two auxiliary RVs)
are technically identical in Remark 3. Although there are two
different aspects, we provide the proof of our main result based
on the one employing two auxiliary RVs. Some benefits of
deriving via two auxiliary RVs are that the achievability proof
can be done in a simpler form since each rate constraint is
addressed individually. The characterization of the capacity
region of the BIS is basically similar to the ones given in
[4, Theorem 1], [6, Theorem 1], and [8]. As special cases, it
can be checked that our characterization reduces to the one
given by Ignatenko and Willems [4, Theorem 1] where the
enrollment channel is noiseless and there is no constraint on
the template rate, and it also coincides with the result derived
by Günlü and Kramer [6, Theorem 1] where there is only one
individual, and thus individual’s estimation is not necessary.

The rest of this paper is organized as follows. In Sect. II,
we define notation used in this paper and describe the details
of the system model. In Sect. III, we present our main result.
Next, we provide the detailed proofs of the main result in Sect.
IV. Finally, in Sect. V, we give some concluding remarks and
future works.

II. SYSTEM MODEL

In this section, we define notation used in this paper and
describe the details of the system model within information
theoretic framework.

A. Notation

Calligraphic A stands for a finite alphabet. Upper-case A
denotes a RV taking values in A and lower-case a ∈ A denotes
its realization. PA(a) := Pr[A = a], a ∈ A, represents
the probability distribution on A, and PAn represents the
probability distribution of RV An = (A1, · · · , An) in An,
the nth Cartesian product of A. PAnBn represents the joint
probability distribution of a pair of RVs (An, Bn) and its
conditional probability distribution PAn|Bn is defined as

PAn|Bn(a
n|bn) = PAnBn(a

n, bn)

PBn(bn)

(∀an ∈ An,∀bn ∈ Bn such that PBn(b
n) > 0). (1)

The entropy of RV A is denoted by H(A), the joint entropy
of RVs A and B is denoted by H(A,B), and the mutual
information between A and B is denoted by I(A;B) [10].
Throughout this paper, logarithms are of base two. For integers
a and b such that a ≤ b, [a, b] denotes the set {a, a+1, · · · , b}.
A partial sequence of a sequence cn from the first symbol to
the tth symbol (c1, · · · , ct) is represented by ct.

Here, we define the strong typicality property and use the
same notation as in [10]. A sequence xn ∈ Xn is said to
be δ-strongly typical with respect to a distribution PX on
X if | 1nN(a|xn) − PX(a)| ≤ δ and PX(a) = 0 implies
1
nN(a|xn) = 0 for all a ∈ X , where N(a|xn) is the number
of occurrences of a in the sequence xn, and δ is an arbitrary
positive number. The set of sequences xn ∈ Xn such that xn

is δ-strongly typical is called the strongly typical set and is
denoted by A(n)

ε (X). This concept is easily extended to joint
distributions.

B. Model Descriptions

The BIS model studied in this paper is shown in Fig.
1. It consists of two phases: (I) Enrollment Phase, and (II)
Identification Phase. Next, we will explain the details of each
phase.

Fig. 1. BIS model

(I) Enrollment Phase:
Let I = [1,MI ] and X be the sets of indexes of individuals

and a finite source alphabet, respectively. For any i ∈ I, we
assume that xni = (xi1, · · · , xin) ∈ Xn, an n-length bio-data
sequence of individual i, is generated i.i.d. from a stationary
memoryless source PX . The generating probability for each
sequence xni ∈ Xn is

PXn
i
(xni ) := Pr[Xn

i = xni ] =

n∏
k=1

PX(xik). (2)

Now let J = [1,MJ ] and S = [1,MS ] be the sets of
indexes of templates stored in database and individuals’ secret
data, respectively. All bio-data sequences are observed via a



stationary DMC {Y, PY |X ,X}, where Y is a finite output-
alphabet of PY |X . The corresponding probability that xni ∈
Xn is observed as yni = (yi1, yi2, · · · , yin) ∈ Yn via the
DMC PY |X is

PY n
i
|Xn
i
(yni |xni ) =

n∏
k=1

PY |X(yik|xik) (3)

for all i ∈ I. Afterwards, the observed bio-data sequence Y ni
is encoded into template J(i) ∈ J and secret data S(i) ∈ S
as

(J(i), S(i)) = f(Y ni ) (i ∈ I), (4)

where f : Yn −→ J × S denotes encoding function.
The corresponding template J(i) is a compressed version of
sequence Y ni and stored at position i in the database, which
can be accessed by the decoder. Contrarily, the secret data
s(i) is returned to individual i and kept as confidential. We
denote the database as JMI

= {J(1), · · · , J(MI)} for brevity
purpose in the upcoming analyses.

(II) Identification Phase:
Bio-data sequence xnw (w ∈ I) of an unknown w (index

of individual enrolled in the database) is observed via a DMC
{Z, PZ|X ,X}, where Z is a finite output-alphabet of PZ|X .
The corresponding probability that xnw ∈ Xn is output as zn =
(z1, z2, · · · , zn) ∈ Zn via PZ|X is given by

PZn|Xnw(z
n|xnw) =

n∏
k=1

PZ|X(zk|xwk). (5)

The decoder observers the identified sequence Zn and esti-
mates the pair of index and secret data by comparing Zn with
all templates JMI

in the database (Ŵ , ̂S(W )) = g(Zn,JMI
),

where g denotes decoding function.

Remark 1. Note that the distribution of PX , PY |X , and
PZ|X are assumed to be known or fixed and RV W is
independent of (Xn

i , Y
n
i , J(i), S(i), Z

n) for all i ∈ I like
previous studies. But, in this paper we assume neither that the
identified individual index W are uniformly distributed over
I nor that there is a prior distribution of W .

The motivation to analyze performance of the BIS provided
that the distribution of I is unknown is that the identified fre-
quencies of each individual are likely different. For example, it
is hard to think that the frequencies of coming to use a bank
teller of each individual are identical. For real applications,
this assumption is important to take care of.

III. DEFINITIONS AND MAIN RESULTS

The formal definition and main theorem of this study are
given below.

Definition 1. The tuple of an identification, secrecy, template,
privacy-leakage rates (RI , RS , RJ , RL) is said to be achiev-

able if for any δ > 0 and large enough n there exist pairs of
encoders and decoders that satisfy

maxi∈I Pr{(Ŵ , ̂S(W )) 6= (W,S(W ))|W = i} ≤ δ, (6)
1
n logMI ≥ RI − δ, (7)

mini∈I
1
nH(S(i)) ≥ RS − δ, (8)
1
n logMJ ≤ RJ + δ, (9)

maxi∈I
1
nI(S(i); J(i)) ≤ δ, (10)

maxi∈I
1
nI(X

n
i ; J(i)) ≤ RL + δ. (11)

Moreover, the capacity region R is defined as the closure of
the set of all achievable rate tuples.

In Definition 1, (6) is the condition of the error probability
of an individual i, which is arbitrarily small. Equations (7)–
(9) are the constraints related to identification, secrecy, and
template rates, respectively. In term of the privacy protection
perspective, we measure the information leakage of individual
i by (10) and (11). Condition (10) measures the secrecy-
leakage between the template in the database and the secret
data of individual i, and it requires that the maximum leaked
amount is not greater than δ. Condition (11) measures the
amount of privacy-leakage of original bio-data Xn

i from
template J(i) and its maximum value must be smaller than
or equal to RL + δ.

Remark 2. In [4], a stronger requirement that the distribution
of secret data of every individual must be almost uniform, i.e.
1
nH(S(i)) + δ ≥ 1

n logMS , is included in (8). However, this
requirement was not actually necessary in the general problem
formulation.

Theorem 1. The capacity region for the BIS is given by

R = A1, (12)

where A1 is defined as

A1 =
⋃
PU|X

{(RI ,RS , RJ , RL) : RI +RS ≤ I(Z;U),

RJ ≥ I(Y ;U)− I(Z;U) +RI ,

RL ≥ I(X;U)− I(Z;U) +RI ,

RI ≥ 0, RS ≥ 0}, (13)

where auxiliary RV U takes values in a finite alphabet U with
|U| ≤ |Y|+ 2.

Remark 3. We define a region A2 as

A2 =
⋃

PU|X ,PV |U

{(RI ,RS , RJ , RL) :

0 ≤ RI ≤ I(Z;V ),

0 ≤ RS ≤ I(Z;U)− I(Z;V ),

RJ ≥ I(Y ;U)− I(Z;U) + I(Z;V ),

RL ≥ I(X;U)− I(Z;U) + I(Z;V )},
(14)



where auxiliary RVs U and V take values in some finite
alphabets U and V with |U| ≤ (|Y| + 2)(|Y| + 3) and
|V| ≤ |Y|+ 3. Then, it can be verified that

A1 = A2 (15)

for which the proof is given in Appendix A. In this paper,
we will prove Theorem 1 based on the rate constraints of the
region A2 instead of A1.

Fig. 2. The rate region of the BIS

Fig. 3. Projection of the rate region onto RJRI -plane

As we have previously mentioned, one can check that
the characterization of Theorem 1 coincides with the region
characterized by Ignatenko and Willems [4, Theorem 1] in two
steps: first replace Y by X and then remove the constraint
RJ from (13). The obtained region is identical to the result
in [4, Theorem 1] where the enrollment channel is noiseless
(X = Y ) and the template rate can be arbitrarily large. Also,
this characterization corresponds to the region given by Günlü
and Kramer [6, Theorem 1] with only one individual. It is
easy to check this claim by just setting RI = 0. Moreover,
it is worthy mentioning that Kittichokechai and Caire [11]

studied a similar model. They analyzed the model in which
the enrollment channel is noise-free and the presence of an
adversary at the decoder is considered, and characterized the
capacity region by using two RVs as well. In the case where
there is no assumption of adversary, it can be confirmed
that the characterization in this paper reduces to their result
[11, Theorem 1] by similar arguments in the proof of (15)
(Appendix A).

A numerical example of the rate region given by the right-
hand side of (13) where RS = 0 is shown in Fig. 2. This
is a three-dimensional figure of RI (z-axis) as a function of
RS (x-axis) and RJ (y-axis), and the figure was plotted under
the following settings. We assume that alphabets X , Y , Z ,
and U are binary. We fix source probability PX(0) = 0.5 and
transition probability of channels PY |X(0|0) = PY |X(1|1) =
PZ|X(0|0) = PZ|X(1|1) = 0.9. The region below the curved
surface of Fig. 2 is the achievable rate region, which is a
convex region, and it stretches in the direction of blue arrow.
Fig. 3 shows a projection of the rate region onto the RJRI
plane and the colored area represents the achievable area
of the rate pair (RJ , RI). Apparently, the template rate RJ
(storage space of the database) increases as the value of the
identification rate RI rises.

IV. PROOF OF THEOREM 1

We take a standard information theoretic approach; we
divide the proof into the achievability (direct) part and the
converse part.

A. Achievability (Direct) Part

First, we fix δ > 0 arbitrarily small, and a block length
n. We also fix test channels PU |Y and PV |U . We set*1 RI =
I(Z;V )−δ, RS = I(Z;U |V )−δ, RJ = I(Y ;U)−I(Z;U)+
I(Z;V ) + 3δ, and RL = I(X;U)− I(Z;U) + I(Z;V ) + 3δ.
We also set MI = 2nRI , MS = 2nRS , and MJ = 2nRJ ,
respectively.

Random Code Generation:
Sequences vnm are generated i.i.d. from PV for m ∈ [1, NV ],

where NV = 2n(I(Y ;V )+δ). For each m, sequences unk|m
are generated from the memoryless channel PUn|V n=vnm
for k ∈ [1, NU ], where NU = 2n(I(Y ;U |V )+δ). Di-
vide these sequences equally from the first index into
NB = 2n(I(Y ;U |V )−I(Z;U |V )+2δ) bins. That is, the first
bin contains {un1|m, · · · , u

n
MS |m}, the second bin contains

{unMS+1|m, · · · , u
n
2MS |m}, and so on. Consequently, each bin

contains exactly MS codewords. Bins are indexed by b ∈
[1, NB ] and codewords inside a certain bin are indexed by
s ∈ S. Without loss of generality, there exists a one-to-one
mapping between k and the pair (b, s).

Encoding (Enrollment):
When encoder f observes the bio-data sequence yni ,

the encoder looks for (m, k) such that (yni , v
n
m, u

n
k|m) ∈

*1Due to the Markov chain V − U − Z, we have I(Z;U) − I(Z;V ) =
I(Z;UV ) − I(Z;V ) = I(Z;V ) + I(Z;U |V ) − I(Z;V ) = I(Z;U |V ).
In the proof, we use this fact without explanation.



A
(n)
ε (Y V U). In case there are more than one such pairs, the

encoder picks one of them uniformly at random. Assume that
the encoder found a corresponding pair (m, k) = (m(i), k(i))
satisfying the jointly typical condition above. We set the
template j(i) = (m(i), b(i)) and the secret data to be the
corresponding codeword’s index s(i) in bin b(i) *2. j(i) is
stored at position i in the database and s(i) is handed back to
individual i. If there do not exist such m and k, then we set
j(i) = (1, 1) and s(i) = 1.

Decoding (Identification):
The decoder has access to all records in the database
{(m(1), b(1)), · · · (m(MI), b(MI))}. When decoder g sees
zn, the noisy version of identified individual sequence xnw,
it checks whether the codeword pair (vnm(i), u

n
b(i),s|m(i)) is

jointly typical with zn or not for all i ∈ I with some s ∈ S ,
i.e. (zn, vnm(i), u

n
b(i),s|m(i)) ∈ A

(n)
ε (ZV U). If there exists a

unique pair (i, s) for which this condition holds, then the
decoder outputs (ŵ, ŝ(w)) = (i, s) as the estimated index
and secret data, respectively. Otherwise, the decoder outputs
the index of the template (1, 1) as ŵ and ŝ(w) = 1 if
(i) there does not exist such a pair (i, s), (ii) such a pair
(i, s) exists but there are some s′ 6= s (s′ ∈ S) such that
(zn, vnm(i), u

n
b(i),s′|m(i)) ∈ A

(n)
ε (ZV U) satisfies, or (iii) such

a pair (i, s) exists but there are some i′ 6= i such that the
pair (vnm(i′), u

n
b(i′),s′|m(i′)) is jointly typical with zn for some

s′ ∈ S.

Analysis of Error Probability:
We evaluate the ensemble average of the error probability,

where the average is taken over randomly chosen codebook
Cn, which is defined as the set {V nm, Unk|m : m ∈ [1, NV ], k ∈
[1, NU ]}. Let the pair (M(i),K(i)) = (M(i), B(i), S(i))
denote the RVs corresponding to the index pair (m(i), k(i)) =
(m(i), b(i), s(i)) of sequences V nm and Unk|m determined by
the encoder for Y ni . For individual W = w, possible event of
errors occurs at the encoder is:
E1: {(Y nw , V

n
m, U

n
k|m) /∈ A(n)

ε (Y V U)
for all m ∈ [1, NV ] and k ∈ [1, NU ]},

and those at the decoder are:
E2: {(Zn, V nM(w), U

n
B(w),S(w)|M(w)) /∈ A

(n)
ε (ZV U)},

E3: {∃s′ 6= S(w) s. t.
(Zn, V nM(w), U

n
B(w),s′|M(w)) ∈ A

(n)
ε (ZV U)},

E4: {∃i′ 6= w and ∃s′ s. t.
(Zn, V nM(i′), U

n
B(i′),s′|M(i′)) ∈ A

(n)
ε (ZV U)}.

Then, the error probability for W = w can be bounded as

max
w∈I

Pr{(Ŵ , ̂S(W )) 6= (W,S(W ))|W = w}

= Pr {E1 ∪ E2 ∪ E3 ∪ E4}
(a)

≤ Pr {E1}+ Pr {E2|Ec1}+ Pr {E3}+ Pr {E4} , (16)

where (a) follows because Pr {E1, E2} = Pr {E1} +
Pr {E2 ∩ Ec1} ≤ Pr {E1}+ Pr {E2|Ec1}.

*2Since there is a one-to-one mapping between k and (b, s), we identify k(i) with
(b(i), s(i)).

Pr{E1} can be made smaller than δ for large enough n
by utilizing the covering lemma [12, Lemma 3.3] because
1
n logNV = I(Y ;V ) + δ > I(Y ;V ) and 1

n logNU =
I(Y ;U |V ) + δ > I(Y ;U |V ). For Pr {E2|Ec1}, it can also
be made smaller than δ by the Markov lemma [10,
Lemma 15.8.1]. By applying the packing lemma [12, Lemma
3.1], Pr {E3} and Pr {E4} are arbitrarily small for large
enough n since 1

n logMS = I(Z;U |V )− δ < I(Z;U |V )
and 1

n logMI +
1
n logMS = I(Z;U)− 2δ < I(Z;UV ), re-

spectively.
Therefore, the ensemble average of the error probability can

be made that

max
w∈I

Pr{(Ŵ , ̂S(W )) 6= (W,S(W ))|W = w} ≤ 4δ (17)

for large enough n.

Intermediate Steps:
We consider a virtual system, where a partial decoder gi

is employed, for deriving the upper bound on the privacy-
leakage rate. In this system, knowing index i and seeing Zni
(defined as the output sequence of Xn

i via PZ|X ), the partial
decoder gi estimates only the secret data of individual i as
Ŝ(i) = gi(Z

n
i , J(i)). Note that this system is just for analysis,

and the partial decoder is not actually used during the decoding
process.

For any given i ∈ I, the partial decoder gi operates as fol-
lows: observing zni and the template j(i) = (m(i), b(i)) in the
database, it looks for s ∈ S such that (zni , v

n
m(i), u

n
b(i),s|m(i)) ∈

A
(n)
ε (ZV U). It sets ŝ(i) = s if there exists a unique s.

Otherwise, it outputs ŝ(i) = 1. The potential events of error
probability for this case are E2 and E3. Letting Pe(i) be the
error probability of gi, we readily see that

Pe(i) ≤ Pr{(Ŵ , ̂S(W )) 6= (W,S(W ))|W = i} ≤ 4δ, (18)

where the middle term in (18) denotes the error probability of
g (in the original BIS) for individual W = i.

The function of this partial decoder enables us to bound the
following conditional entropy

H(S(i)|Zni , J(i), Cn)
(b)

≤ H(S(i)|Ŝ(i))
(c)

≤ nδn, (19)

where
(b) follows because conditioning reduces entropy,
(c) follows because Fano’s inequality and (18) are applied,

and δn = 1
n (1 + 4δ logMS).

Lemma 1. (Kittichokechai et al. [13])
Assume that (Xn, Y n, Un) are ε-strongly typical with high

probability*3. Then, it holds that

1

n
H(Y n|Un, Cn) ≤ H(Y |U) + δ′n, (20)

1

n
H(Y n|Xn, Un, Cn) ≤ H(Y |X,U) + δ′n, (21)

*3It means that Pr{(Xn, Y n, Un) ∈ A(n)
ε (XY U)} → 1 as n → ∞, where

A(n)
ε (XY U) denotes the set of ε-strongly typical sequences.



where δ′n is a positive value satisfying δ′n ↓ 0.

(Proof) The proofs can be found in [13, Appendix C].

Lemma 2. For any i ∈ I, it holds that

1

n
H(Y ni |J(i), S(i), Cn) ≤ H(Y |U) + δ′n, (22)

where δ′n > 0 and δ′n ↓ 0.

(Proof) The proof is provided in Appendix B.
Due to the fact that we set MS = 2nRS and MJ = 2nRJ ,

the following inequalities hold

1

n
H(S(i)|Cn) ≤ RS = I(Z;U |V )− δ, (23)

1

n
H(J(i)|Cn) ≤ RJ = I(Y ;U)− I(Z;U |V ) + 3δ (24)

with equality when S(i) and J(i) are uniformly distributed on
S and J , respectively, for any codebook Cn.

Hereafter, we shall check the bounds of identification,
secrecy, secrecy-leakage, template, and privacy-leakage rates
averaged over randomly chosen codebook Cn. In the following
analyses, the index i is arbitrarily fixed on I since we need
to show that all conditions in Definition 1 are satisfied.

Analyses of Identification and Template Rates:
From the parameter settings of achievability scheme, it is

straight-forward that the conditions (7) and (9) hold.

Analysis of Secrecy Rate:
The secrecy rate can be evaluated as follows:

1

n
H(S(i)|Cn) =

1

n

{
H(Y ni , J(i), S(i)|Cn)−H(J(i)|S(i), Cn)

−H(Y ni |J(i), S(i), Cn)
}

(d)

≥ 1

n

{
H(Y ni )−H(J(i)|Cn)

−H(Y ni |J(i), S(i), Cn)
}

(e)

≥ H(Y )− (I(Y ;U)− I(Z;U) + I(Z;V ) + 3δ)

− (H(Y |U) + δ′n)

= I(Z;U)− I(Z;V )− 3δ − δ′n
(f)
= RS − 2δ − δ′n, (25)

where

(d) holds because (J(i), S(i)) is a function of Y ni ,
(e) follows because (24) and Lemma 2 are applied,
(f) holds because we set RS = I(Z;U)− I(Z;V )− δ.

Analysis of Secrecy-Leakage:

The amount of leaked information about S(i) from J(i) can
be expanded as
1

n
I(J(i);S(i)|Cn)

=
1

n
{H(S(i)|Cn) +H(J(i)|Cn)−H(Y ni , J(i), S(i)|Cn)

+H(Y ni |J(i), S(i), Cn)}

=
1

n
H(S(i)|Cn) +

1

n
H(J(i)|Cn)−

1

n
H(Y ni )

+
1

n
H(Y ni |J(i), S(i), Cn)

(g)

≤I(Z;U |V )− δ + I(Y ;U)− I(Z;U |V ) + 3δ −H(Y )

+H(Y |U) + δ′n

=2δ + δ′n, (26)

where (g) follows because (23), (24), and Lemma 2 are
applied.

Analysis of Privacy-Leakage Rate:
In view of (11), we start by expanding the privacy-leakage

rate 1
nI(X

n
i ; J(i)|Cn) as

1

n
I(Xn

i ; J(i)|Cn) =
1

n
H(J(i)|Cn)−

1

n
H(J(i)|Xn

i , Cn)

≤ I(Y ;U)− I(Z;U) + I(Z;V ) + 3δ

− 1

n
H(J(i)|Xn

i , Cn). (27)

where the inequality in (27) holds due to (24). Next, let us
focus solely on the conditional entropy in (27). It can be
evaluated as
1

n
H(J(i)|Xn

i , Cn)

=
1

n
H(Y ni , J(i)|Xn

i , Cn)−
1

n
H(Y ni |J(i), Xn

i , Cn)
(h)
=

1

n
H(Y ni |Xn

i , Cn)−
1

n
H(Y ni |M(i), B(i), Xn

i , Cn)
(i)
= H(Y |X)− 1

n
H(Y ni |M(i), B(i), S(i), Xn

i , Cn)

− 1

n
I(S(i);Y ni |M(i), B(i), Xn

i , Cn)

≥ H(Y |X)− 1

n
H(Y ni |M(i), B(i), S(i), Xn

i , Cn)

− 1

n
H(S(i)|M(i), B(i), Xn

i , Cn)
(j)
= H(Y |X)− 1

n
H(Y ni |M(i), B(i), S(i), Uni , X

n
i , Cn)

− 1

n
H(S(i)|M(i), B(i), Xn

i , Z
n
i , Cn)

(k)

≥ H(Y |X)− 1

n
H(Y ni |Uni , Xn

i , Cn)

− 1

n
H(S(i)|M(i), B(i), Zni , Cn)

(l)

≥ H(Y |X)−H(Y |X,U)− (δn + δ′n)

= I(Y ;U |X)− (δn + δ′n)

(m)
= H(U |X)−H(U |Y )− (δn + δ′n), (28)



where
(h) follows since J(i) is a function of Y ni and we have

J(i) = (M(i), B(i)),
(i) follows because Y ni and Xn

i are independent of Cn,
(j) follows because UnB(i),S(i)|M(i) is denoted by Uni and it is

a function of the tuple (M(i), B(i), S(i)) for the second
term, and the Markov chain S(i)−(M(i), B(i), Xn

i )−Zni
holds for a given codebook in the last term,

(k) follows because conditioning reduces entropy,
(l) follows as (21) in Lemma 1 and Fano’s inequality in (19)

are applied,
(m) holds since we have H(U |Y,X) = H(U |Y ) by the

Markov chain U − Y −X .

From (27) and (28), we obtain

1

n
I(Xn

i ; J(i)|Cn) ≤ H(U)−H(U |Y )− I(Z;U) + I(Z;V )

+H(U |Y )−H(U |X) + 3δ + δn + δ′n

≤ I(X;U)− I(Z;U) + I(Z;V )

+ 3δ + δn + δ′n

≤ RL + δ (29)

for all sufficiently large n.
Finally, with a sufficiently small δ and by applying the

selection lemma [14, Lemma 2.2] to all results shown above
(i.e., Eqs. (17), (25), (26), and (29)), there exists a codebook
satisfying all the conditions in Definition 1 for all large enough
n.

B. Converse Part

For the converse proof, we consider a more relaxed case
where identified individual index W is uniformly distributed
over I and (6) is replaced with the average error criterion

Pr{(Ŵ , ̂S(W )) 6= (W,S(W ))} ≤ δ. (30)

We shall show that the capacity region, which is not smaller
than the original one R, is contained in the right-hand side of
(14).

We assume that a rate tuple (RI , RS , RJ , RL) is achievable
so that there exists a pair of encoder and decoder (f, g) such
that all conditions in Definition 1 with replacing (6) by (30)
are satisfied for any δ > 0 and large enough n.

Here, we provide other key lemmas used in this part. For
t ∈ [1, n], we define auxiliary RVs Ut and Vt as Ut =
(Zt−1, J(W ), S(W )) and Vt = (Zt−1, J(W )), respectively.
We denote a sequence of RVs Xn

W = (X1(W ), · · · , Xn(W ))
and Y nW = (Y1(W ), · · · , Yn(W )).

Lemma 3. The following Markov chains hold

Zt−1 − (Y t−1(W ), J(W ), S(W ))− Yt(W ), (31)

Zt−1 − (Xt−1(W ), J(W ), S(W ))−Xt(W ). (32)

(Proof) The proofs are given in Appendix C.

Lemma 4. There exist some RVs U and V which satisfy Z −
X − Y − U − V and

n∑
t=1

I(Zt;Vt) = nI(Z;V ), (33)

n∑
t=1

I(Zt;Ut) = nI(Z;U), (34)

n∑
t=1

I(Yt(W );Ut) = nI(Y ;U), (35)

n∑
t=1

I(Xt(W );Ut) = nI(X;U). (36)

(Proof) The proofs are provided in Appendix D.
In the subsequent analyses, we fix auxiliary RVs U and V

specified in Lemma 4.

Analysis of Identification Rate:
Again note that we are considering the case where W is

uniformly distributed in the converse part, and we have

logMI = H(W )

= H(W |JMI
, Zn) + I(W ;JMI

, Zn)

(a)
= H(W |JMI

, Zn, Ŵ , ̂S(W )) + I(W ;JMI
, Zn)

(b)

≤ H(W |Ŵ , ̂S(W )) + I(W ;JMI
, Zn)

≤ H(W,S(W )|Ŵ , ̂S(W )) + I(W ;JMI
, Zn), (37)

where
(a) holds because (Ŵ , ̂S(W )) is function of JMI

and Zn,
(b) follows because conditioning reduces entropy.
Continue bounding the second term in (37),

I(W ;JMI
, Zn) = I(W ;JMI

) + I(W ;Zn|JMI
)

(c)
= I(W ;Zn|JMI

)

= H(Zn|JMI
)−H(Zn|JMI

,W )

(d)
= H(Zn|J(W ))−H(Zn|J(W ),W )

(e)

≤ H(Zn)−H(Zn|J(W ),W )

= H(Zn)−H(Zn|J(W ))

=

n∑
t=1

{
H(Zt)−H(Zt|Zt−1, J(W ))

}
=

n∑
t=1

I(Zt;Vt)
(f)
= nI(Z;V ), (38)

where
(c) follows because W is independent of other RVs,
(d) follows because only J(W ) is possibly dependent on Zn,
(e) follows because conditioning reduces entropy,
(f) follows because of (33) in Lemma 4.

Thus, from (7), (37), (38), and Fano’s inequality as in (19),
we obtain

RI ≤ I(Z;V ) + δ + δn, (39)



where δn = 1
n (1 + δ logMIMS) and*4 δn ↓ 0 as n→∞ and

δ ↓ 0.

Analysis of Secrecy Rate:
This analysis is similar to the analysis of identification rate,

which we have already seen above. We begin by considering
the entropy of secret data as follows:

H(S(W )) = H(S(W )|JMI
, Zn) + I(S(W );JMI

, Zn)

= H(S(W )|JMI
Zn, Ŵ , ̂S(W ))

+ I(S(W );JMI
, Zn)

≤ H(S(W )|Ŵ , ̂S(W )) + I(S(W );JMI
, Zn)

≤ H(W,S(W )|Ŵ , ̂S(W )) + I(S(W );JMI
, Zn)

= H(W,S(W )|Ŵ , ̂S(W )) + I(S(W );JMI
)

+ I(S(W );Zn|JMI
)

(g)
= H(W,S(W )|Ŵ , ̂S(W )) + I(S(W ); J(W ))

+ I(S(W );Zn|J(W )), (40)

where (g) follows because bio-data sequence of each individ-
ual is generated independently so only J(W ), S(W ), and Zn

are possibly dependent on each other.
For the third term in (40),

I(S(W );Zn|J(W ))

= H(Zn|J(W ))−H(Zn|J(W ), S(W ))

= H(Zn)−H(Zn|J(W ), S(W ))

− (H(Zn)−H(Zn|J(W )))

(h)
=

n∑
t=1

{
H(Zt)−H(Zt|Zt−1, J(W ), S(W ))

}
−

n∑
t=1

{
H(Zt)−H(Zt|Zt−1, J(W ))

}
=

n∑
t=1

{
I(Zt;Ut)− I(Zt;Vt)

}
(i)
= n(I(Z;U)− I(Z;V )), (41)

where
(h) holds because each symbol of Zn is i.i.d,
(i) holds due to (33) and (34) in Lemma 4.

Therefore, from (8), (10), (40), (41), and Fano’s inequality,
we have

RS ≤ I(Z;U)− I(Z;V ) + 2δ + δn. (42)

*4Willems et al. [2] characterized the identification capacity of the system,
where the decoder estimates only the user index, and showed that 1

n
logMI ≤

I(Y ;Z)+ δ for all sufficiently large n. Since the constraints imposed on the
system addressed in this paper are more rigorous than the ones in [2], it is
trivial that 1

n
logMI for this system cannot be larger than I(Y ;Z) + δ.

Moreover, it holds that 1
n
logMS ≤ log |Y| because S(i) is a function of

Y ni . Therefore, for large enough n, we have that δn = 1
n
+ δ
n
logMIMS ≤

1
n
+ δ(log |Y||Z|+ δ), and it converges to zero when n→∞ and δ ↓ 0.

Analysis of Template Rate:
It follows from (9) that

n(RJ + δ)

≥ logMJ ≥ H(J(W ))

= I(Y nW ; J(W ))

= I(Y nW ; J(W ), S(W ), Zn)− I(Y nW ;Zn|J(W ))

− I(Y nW ;S(W )|J(W ), Zn). (43)

Now let us focus on each term in (43) separately. For the first
term,

I(Y nW ; J(W ), S(W ), Zn)

= I(Y nW ; J(W ), S(W )) + I(Y nW ;Zn|J(W ), S(W ))

=

n∑
t=1

{
H(Yt(W ))−H(Yt(W )|Y t−1(W ), J(W ), S(W ))

}
+H(Zn|J(W ), S(W ))−H(Zn|J(W ), S(W ), Y nW )

(j)
=

n∑
t=1

{
H(Yt(W ))

−H(Yt(W )|Zt−1, Y t−1(W ), J(W ), S(W ))
}

+

n∑
t=1

H(Zt|Zt−1, J(W ), S(W ))−H(Zn|Y nW )

(k)

≥
n∑
t=1

{
H(Yt(W ))−H(Yt(W )|Zt−1, J(W ), S(W ))

}
+

n∑
t=1

H(Zt|Ut)− nH(Z|Y )

=

n∑
t=1

{
I(Yt(W );Ut) +H(Zt|Ut)

}
− nH(Z|Y ), (44)

where
(j) holds from (31) in Lemma 3 and (S(W ), J(W )) is a

function of Y nW ,
(k) follows because conditioning reduces entropy.

For the second term,

I(Y nW ;Zn|J(W )) = H(Zn|J(W ))−H(Zn|J(W ), Y nW )

=

n∑
t=1

H(Zt|Zt−1, J(W ))−H(Zn|Y nW )

=

n∑
t=1

H(Zt|Vt)− nH(Z|Y ). (45)

For the last one,

I(Y nW ;S(W )|J(W ), Zn) ≤ H(S(W )|J(W ), Zn)

= H(S(W )|JMI
, Zn)

= H(S(W )|JMI
, Zn, Ŵ , ̂S(W ))

(l)

≤ H(S(W )|Ŵ , ̂S(W ))

(m)

≤ nδn, (46)



where

(l) follows because conditioning reduces entropy,
(m) follows due to Fano’s inequality.

Finally, substituting (44)–(46) into (43), the last terms in (44)
and (45) cancel out each other, and we obtain

RJ + δ

≥ 1

n

n∑
t=1

{I(Yt(W );Ut) +H(Zt|Ut)−H(Zt|Vt)} − δn

=
1

n

n∑
t=1

{I(Yt(W );Ut)− I(Zt;Ut) + I(Zt;Vt)} − δn

= I(Y ;U)− I(Z;U) + I(Z;V )− δn, (47)

where (47) follows due to (33)–(35) in Lemma 4.

Analysis of Privacy-Leakage Rate:
From (11), it follows that

n(RL + δ) ≥ max
w∈I

I(Xn
w; J(w))

≥ I(Xn
W ; J(W )|W ) = I(Xn

W ; J(W ))

= I(Xn
W ; J(W ), S(W ), Zn)− I(Xn

W ;Zn|J(W ))

− I(Xn
W ;S(W )|J(W ), Zn). (48)

Likewise in the analysis of template rate, let us focus on each
term in (48) separately. For the first term,

I(Xn
W ; J(W ), S(W ), Zn)

= I(Xn
W ; J(W ), S(W )) + I(Xn

W ;Zn|J(W ), S(W ))

(n)

≥ I(Xn
W ; J(W ), S(W )) +H(Zn|J(W ), S(W ))

−H(Zn|J(W ), Xn
W )

(o)

≥
n∑
t=1

{
H(Xt(W ))

−H(Xt(W )|Zt−1, Xt−1(W ), J(W ), S(W ))
}

+

n∑
t=1

H(Zt|Zt−1, J(W ), S(W ))−H(Zn|J(W ), Xn
W )

(p)

≥
n∑
t=1

{
H(Xt(W ))−H(Xt(W )|Zt−1, J(W ), S(W ))

}
+

n∑
t=1

H(Zt|Ut)−H(Zn|J(W ), Xn
W )

=

n∑
t=1

{
I(Xt(W );Ut) +H(Zt|Ut)

}
−H(Zn|J(W ), Xn

W ),

(49)

where

(n) follows because conditioning reduces entropy,
(o) holds from (32) in Lemma 3,
(p) follows because conditioning reduces entropy.

For the second term,

I(Xn
W ;Zn|J(W ))

= H(Zn|J(W ))−H(Zn|J(W ), Xn
W )

=

n∑
t=1

H(Zt|Zt−1, J(W ))−H(Zn|J(W ), Xn
W )

=

n∑
t=1

H(Zt|Vt)−H(Zn|J(W ), Xn
W ), (50)

and the last term can be bounded by the same quantity as seen
in (46):

I(Xn
W ;S(W )|J(W ), Zn) ≤ nδn. (51)

Finally, substituting (49)–(51) into (48) and taking similar
steps as in (47), we obtain

RL + δ

≥ 1

n

n∑
t=1

{I(Xt(W );Ut)− I(Zt;Ut) + I(Zt;Vt)} − δn

= I(X;U)− I(Z;U) + I(Z;V )− δn, (52)

where (52) follows due to (33), (34), and (36) in Lemma 4.
Eventually, letting n → ∞ and δ ↓ 0 in (39), (42), (47),

and (52), we can see that the capacity region is contained in
the right-hand side of (14).

To complete the proof of Theorem 1, we discuss the bounds
on the cardinalities of auxiliary RVs. For proving the bound
on the cardinality of alphabet U in the region A1 (cf. (13)), we
use the support lemma in [12, Appendix C] to show that RV
U should have |Y|−1 elements to preserve PY and add three
more elements to preserve H(Z|U), H(Y |U), and H(X|U).
This implies that it suffices to take |U| ≤ |Y|+2 for preserving
A1. Similarly, to bound the cardinalities of alphabets U and V
in the region A2 (cf. (14)), we also utilize the same lemma to
show that |V| ≤ |Y|+ 3 and |U| ≤ (|Y|+ 2)(|Y|+ 3) suffice
to preserve PY , H(Z|V ), H(Z|U) (= H(Z|U, V )), H(Y |U),
and H(X|U).

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we deployed a method using two auxiliary
RVs to characterize the capacity region of identification,
secrecy, template, and privacy-leakage rates in the BIS. We
demonstrated that the characterization using two auxiliary RVs
reduce to the one using only an auxiliary RV. Compared to the
model proposed in [3] and [4], what we newly imposed on our
model are:
• treating a noisy channel in the enrollment phase,
• considering a scheme of both compressing template (as

in [3] and [8]) and protecting privacy (as in [4]),
• analyzing the capacity region provided that the prior

distribution of an identified individual is unknown.
As special cases, it can be checked that our characterization

reduces to the one in [4, Theorem 1] where the enrollment
channel is noiseless and there is no constraint on the template
rate, and it also coincides with the one derived by Günlü and



Kramer [6, Theorem 1] where there is only one individual. In
a slightly different model in which the secret key is chosen
independently of the bio-data sequences, known as chosen-
secret BIS model [4], [6], the capacity region has not been
discussed in this paper. However, it can be characterized via
similar arguments for proving Theorem 1 by just adding a one-
time pad operation. For the future works, as we have seen in
Remark 3 about the relation between A1 and A2, this is a
positive hint that Theorem 1 can be reproved by a scheme
using only one auxiliary RV and now this task is under way.
We also plan to analyze the capacity regions of the BIS under
strong secrecy criterion regarding secrecy-leakage.
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APPENDIX A
Proof of Equation (15)

In the proof, we show the equivalence of A1 and A2

by removing the cardinality bounds of auxiliary RVs U and
V from the two regions. Once the equivalence without the
cardinality bounds is established, the cardinality bounds follow
from the standard arguments (cf. [12, Appendix C]).

It is obvious that A2 ⊆ A1, so we shall show that
A2 ⊇ A1. We assume that (RI , RS , RJ , RL) ∈ A1, meaning
that (RI , RS , RJ , RL) satisfies all conditions in (13) for some

PU |Y . Especially, we have RI + RS ≤ I(Z;U). We choose
the test channel PV |U satisfying that

RI = I(Z;V ). (53)

Such PV |U always exists since I(Z;U) ≥ I(Z;V ) ≥ 0
and I(Z;V ) is a continuous function of PV |U . Under that
condition, it is easy to check that (RI , RS , RJ , RL) is also an
element lying in the region A2.

APPENDIX B
Proof of Lemma 2

In [4], a similar result of this lemma is used without the
proof. Here, we will provide a proof for readers’ sake.

Note that J(i) = (M(i), B(i)). We start by considering the
conditional entropy in the left-hand side of (22) as

1
nH(Y ni |J(i), S(i), Cn) = 1

nH(Y ni |M(i), B(i), S(i), Cn)
(a)
= 1

nH(Y ni |M(i), B(i), S(i), Uni , Cn)
(b)

≤ 1
nH(Y ni |Uni , Cn)

(c)

≤ H(Y |U) + δ′n (54)

where

(a) holds because we denote UnB(i),S(i)|M(i) as Uni for sim-
plicity and the tuple (M(i), B(i), S(i)) determines Uni
for a given codebook,

(b) follows because conditioning reduces entropy,
(c) follows because Y ni and Uni are jointly typical with high

probability and (20) in Lemma 1 is applied.

APPENDIX C
Proof of Lemma 3

First, we prove that (31) holds. The joint distribution among
Zt−1, Y t(W ), J(W ), and S(W ) can be developed as

PZt−1,Y t(W ),J(W ),S(W )(z
t−1, ytw, j(w), s(w))

=
∑

ynw,t+1∈Y
n−t

{
PY n

W
(ynw) · PJ(W ),S(W )|Y n

W
(j(w), s(w)|ynw)

· PZt−1|Y n
W
,J(W ),S(W )(z

t−1|ynw, j(w), s(w))
}

(d)
=

∑
ynw,t+1∈Y

n−t

{
PY n

W
(ynw) · PJ(W ),S(W )|Y n

W
(j(w), s(w)|ynw)

· PZt−1|Y n
W
(zt−1|ynw)

}
=

∑
ynw,t+1∈Y

n−t

{
PY n

W
(ynw) · PJ(W ),S(W )|Y n

W
(j(w), s(w)|ynw)

}
· PZt−1|Y t−1(W )(z

t−1|yt−1w )

= PY t(W ),J(W ),S(W )(y
t
w, j(w), s(w))

· PZt−1|Y t−1(W )(z
t−1|yt−1w )



(e)
= PY t−1(W ),J(W ),S(W )(y

t−1
w , j(w), s(w))

· PYt(W )|Y t−1(W ),J(W ),S(W )(ywt|yt−1w , j(w), s(w))

· PZt−1|Y t−1(W ),J(W ),S(W )(z
t−1|yt−1w , j(w), s(w)),

(55)

where

(d) holds because (J(W ), S(W )) is a function of Y nW ,
(e) follows because of the Markov chain Zt−1−Y t−1(W )−

(J(W ), S(W )).

Similarly, equation (32) can be shown as follows:

PZt−1,Xt(W ),J(W ),S(W )(z
t−1, xtw, j(w), s(w))

=
∑

ynw∈Y
n

{
PY n

W
(ynw) · PJ(W ),S(W )|Y n

W
(j(w), s(w)|ynw)

· PXt(W )|Y n
W
,J(W ),S(W )(x

t
w|ynw, j(w), s(w))

· PZt−1|Xt(W ),Y n
W
,J(W ),S(W )(z

t−1|xtw, ynw, j(w), s(w))
}

(f)
=

∑
ynw∈Y

n

{
PY n

W
(ynw) · PJ(W ),S(W )|Y n

W
(j(w), s(w)|ynw)

· PXt(W )|Y n
W
,J(W ),S(W )(x

t
w|ynw, j(w), s(w))

· PZt−1|Xt(W ),Y n
W
(zt−1|xtw, ynw)

}
(g)
=

∑
ynw∈Y

n

{
PY n

W
(ynw) · PJ(W ),S(W )|Y n

W
(j(w), s(w)|ynw)

· PXt(W )|Y n
W
,J(W ),S(W )(x

t
w|ynw, j(w), s(w))

}
· PZt−1|Xt−1(W )(z

t−1|xt−1w )

= PXt(W ),J(W ),S(W )(x
t
w, j(w), s(w))

· PZt−1|Xt−1(W )(z
t−1|xt−1w )

(h)
= PXt−1(W ),J(W ),S(W )(x

t−1
w , j(w), s(w))

· PXt(W )|Xt−1(W ),J(W ),S(W )(xwt|xt−1w , j(w), s(w))

· PZt−1|Xt−1(W ),J(W ),S(W )(z
t−1|xt−1w , j(w), s(w)),

(56)

where

(f) holds because (J(W ), S(W )) is a function of Y nW ,
(g) follows due to the i.i.d. property of each symbol and the

Markov chain Zt−1 −Xt−1(W )− Y t−1(W ),
(h) follows because of the Markov chain Zt−1−Xt−1(W )−

(J(W ), S(W )).

APPENDIX D
Proof of Lemma 4

We will prove only (33) by the well-known argument
(cf. [10]). We introduce a timesharing variable Q which is
uniformly distributed over {1, 2, · · · , n} and is independent

of all other RVs. The left-hand side of (33) can be rewritten
as

n∑
t=1

I(Zt;Vt) = n

{
1

n

n∑
t=1

I(Zt;Vt|Q = t)

}
= nI(ZQ;VQ|Q)

= n[I(ZQ;VQ, Q)− I(ZQ;Q)]

= nI(ZQ;VQ, Q). (57)

By denoting V = (VQ, Q) and Z = ZQ, (33) obviously holds.
The proof of (34)–(36) can be done similarly by setting X =
XQ and Y = YQ.

To complete the proof, we need to verify that Zt−Xt(W )−
Yt(W )−Ut−Vt holds. We shall first check that Zt−Xt(W )−
Yt(W )− Ut holds for any t ∈ [1, n]. To prove this claim, we
have to verify that

Zt −Xt(W )− Yt(W ), (58)
Xt(W )− Yt(W )− Ut, (59)
Zt − (Xt(W ), Yt(W ))− Ut. (60)

Indeed, Eqs. (58) and (59) clearly hold so the remain-
ing task is to check if the last one also holds. Be-
fore checking that, we show that the Markov chain
Zt − (Zt−1, Xt(W ), Yt(W ))− (J(W ), S(W )), which will
be used to confirm (60), holds.

I(Zt; J(W ), S(W )|Zt−1, Xt(W ), Yt(W ))

= H(Zt|Zt−1, Xt(W ), Yt(W ))

−H(Zt|Zt−1, Xt(W ), Yt(W ), J(W ), S(W ))

(i)

≤ H(Zt|Zt−1, Xt(W ), Yt(W ))

−H(Zt|Zt−1, Xt(W ), Y nW , J(W ), S(W ))

(j)
= H(Zt|Zt−1, Xt(W ), Yt(W ))

−H(Zt|Zt−1, Xt(W ), Y nW )

(k)
= H(Zt|Xt(W ))−H(Zt|Xt(W ))

= 0, (61)

where

(i) follows because conditioning reduces entropy,
(j) holds because (J(W ), S(W )) is a function of Y nW ,
(k) holds because each symbol of bio-data sequences is i.i.d.

and we have Zt −Xt(W )− Yt(W ).

From (61), it means that the conditional mutual information is
zero and thus Zt − (Zt−1, Xt(W ), Yt(W ))− (J(W ), S(W ))
forms a Markov chain.



Equation (60) can be checked as follows:

I(Zt;Ut|Xt(W ), Yt(W ))

= H(Ut|Xt(W ), Yt(W ))−H(Ut|Xt(W ), Yt(W ), Zt)

= H(Zt−1, J(W ), S(W )|Xt(W ), Yt(W ))

−H(Zt−1, J(W ), S(W )|Xt(W ), Yt(W ), Zt)

= H(Zt−1|Xt(W ), Yt(W ))

+H(J(W ), S(W )|Xt(W ), Yt(W ), Zt−1)

−H(Zt−1|Xt(W ), Yt(W ), Zt)

−H(J(W ), S(W )|Xt(W ), Yt(W ), Zt, Z
t−1) (62)

(l)
= H(J(W ), S(W )|Xt(W ), Yt(W ), Zt−1)

−H(J(W ), S(W )|Xt(W ), Yt(W ), Zt−1, Zt)

(m)
= H(J(W ), S(W )|Xt(W ), Yt(W ), Zt−1)

−H(J(W ), S(W )|Xt(W ), Yt(W ), Zt−1)

= 0, (63)

where
(l) holds because every symbol of bio-data sequences is i.i.d.

generated so the first and third terms in (62) cancel each
other,

(m) follows because Zt − (Zt−1, Xt(W ), Yt(W ))− (J(W ), S(W ))
holds (cf. (61)).

Thus, Zt − Xt(W ) − Yt(W ) − Ut holds, and since Vt is a
function of Ut, it follows that Zt−Xt(W )−Yt(W )−Ut−Vt
also forms a Markov chain.
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