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Single-Server Single-Message Online Private Information

Retrieval with Side Information

Fatemeh Kazemi, Esmaeil Karimi, Anoosheh Heidarzadeh, and Alex Sprintson

Abstract— In many practical settings, the user needs to
retrieve information from a server in a periodic manner, over
multiple rounds of communication. In this paper, we discuss the
setting in which this information needs to be retrieved privately,
such that the identity of all the information retrieved until the
current round is protected. This setting can occur in practical
situations in which the user needs to retrieve items from the
server or a periodic basis, such that the privacy needs to be
guaranteed for all the items been retrieved until the current
round. We refer to this setting as an online private information
retrieval as the user does not know the identities of the future
items that need to be retrieved from the server.

Following the previous line of work by Kadhe et al. we
assume that the user knows a random subset of M messages
in the database as a side information which are unknown to
the server. Focusing on scalar-linear settings, we characterize
the per-round capacity, i.e., the maximum achievable download
rate at each round, and present a coding scheme that achieves
this capacity. The key idea of our scheme is to utilize the data
downloaded during the current round as a side information
for the subsequent rounds. We show for the setting with K
messages stored at the server, the per-round capacity of the
scalar-linear setting is C1 = (M + 1)/K for round i = 1
and Ci = (2i−1(M + 1))/KM for round i ≥ 2, provided that
K/(M + 1) is a power of 2.

I. INTRODUCTION

The goal of the Private Information Retrieval (PIR)

schemes [1] is to enable a user to privately download, with

minimum cost, a message belonging to a database with

copies stored on a single or multiple remote servers, without

revealing which message it is requesting. In a single server

scenario, the entire database needs to be downloaded to

preserve the privacy of the requested message. However,

when the user has some side information about the database

[2]–[8], the information-theoretic privacy can be achieved

more efficiently than downloading the whole database.

In the PIR with side information setting, the user has

access to a random subset of the messages in the database

as a side information, which are unknown to the server. This

side information could have been obtained from other trusted

users or through previous interactions with the server. In this

setting, the savings in the download cost depend on whether

the user wants to protect only the privacy of the requested

message, or the privacy of both the requested message and

the messages in the side information.

To the best of our knowledge, all of the prior works on

the private information retrieval focus on the single message
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request. However, in many practical settings, the user needs

to retrieve multiple messages periodically, over a period of

time. For example, a user might retrieve a news item or

the stock market information on a daily basis. The key

requirement in such scenarios is to protect the identity of

all the requested messages up to the current round. By

leveraging previously downloaded messages, the user can

significantly reduce the number of bits that need to be

downloaded. Accordingly, in this paper we analyze both the

fundamental limits as well as the achievability schemes for

the multi-round PIR schemes. We refer to this setting as an

online private information retrieval as the user does not know

the identities of the future items that need to be retrieved

from the server.

A. Main Contributions

In this paper, we study the problem of single-server

online PIR with side information. In this problem,

a user wishes to download a sequence of messages

XW = {XW1
, XW2

, · · · , XWt
} from a database X of K

messages, stored on a single server. The communication is

performed in rounds, such that at round i, the user wishes to

retrieve a message XWi
for some Wi ∈ [K]. We assume that

the user decides on which message Wi to request at round i
and that the identity of the future messages Wj , j > i are not

known at round i. We also assume that the user has access

to M messages which are selected uniformly at random and

whose identity are not known to the server.

We focus on the scenario where at round i, the user wishes

to protect the privacy of all the requested messages up to

round i, {W1, · · · ,Wi} for 1 ≤ i ≤ t. That is, after the user

makes a request to the server at round i, the server cannot de-

cide which of the K messages is more likely to get requested

at that round and at the previous rounds. Focusing on scalar-

linear settings, we characterize the per-round capacity, i.e.,

the maximum achievable download rate at each round. We

also present a scalar-linear coding scheme that achieves this

capacity. The key idea of our scheme is to utilize the data

downloaded during the current round as a side information

for subsequent rounds. We show for the setting with K
messages stored at the server and a random subset of M
messages available to the user at the first round, the per-round

capacity of the scalar-linear scheme is C1 = (M + 1)/K for

round i = 1 and Ci = (2i−1(M + 1))/KM for round i ≥ 2,

provided that K/(M + 1) = 2l for some l ≥ 1.
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B. Related Work

The classical PIR problem with multiple servers each

of which stores the full copy of the database, has been

extensively studied [9]–[11]. The most relevant to our paper

is the line of work that focuses on setting with multiple

retrieved messages [8], [12], [13] as well as settings in which

the user access to certain files as side information before the

information retrieval process begins. The side information

settings have been studied in [2], [3] for the single server

setting and in [4]–[8] for the multi-server setting.

Kadhe et al. [2] have initiated the study of the single-

server single-message PIR with side information. The multi-

server single-message and the multi-server multi-message

PIR with side information problems, in the scenario where

the user wants to protect the privacy of both the requested

message(s) and the messages in the side information, are

studied in [7] and [8], respectively. Heidarzadeh et al. [3]

focused on a setting in which the side information is random

linear combination of a subset of messages.

To the best our knowledge, none of the prior works on the

private information retrieval focused on the online settings

in which the requests are issued one at a time such that the

identity of future requests are unknown.

II. PROBLEM FORMULATION AND MAIN RESULTS

For a positive integer i, denote [i] , {1, . . . , i}. Let

Fq be a finite field of size q and Fqm be an exten-

sion field of Fq of size qm for some prime q ≥ 2
and m ≥ 1. We assume that there is a server stor-

ing a set X of K messages, X , {X1, . . . , XK}, with

each message Xi being independently and uniformly dis-

tributed over Fqm , i.e., H(X1) = · · · = H(XK) = L and

H(X1, . . . , XK) = KL, where L , m log2 q. We assume

that there is a user that wishes to retrieve a sequence of

messages XW = {XW1
, XW2

, · · · , XWt
} from the server so

that at round i, the user wishes to retrieve the message XWi

for some Wi ∈ [K]. We assume that the identity of the index

Wi of the message retrieved at round i is not known to the

user before round i.

We also assume that initially the user knows a random

subset XS of X that includes M messages for some S ⊂ [K],
|S|= M . We refer to Wi as the demand index at round i,
XWi

as the demand at round i, and refer to S as the side

information index set, XS as the side information and M as

the size of the side information set.

Let S and Wi be random variables corresponding to S
and Wi, respectively. Denote the probability mass function

(pmf) of S by pS(·), and the conditional pmf of Wi given

S by pWi|S(·|·). We assume that S is uniformly distributed

over all subsets of [K] of size M , i.e.,

pS(S) =
1

(
K
M

) , S ⊂ [K], |S|= M

and Wi’s are independent and uniformly distributed over

[K] \ S, i.e.,

pWi|S(Wi|S) =

{
1

K−M
, Wi /∈ S

0, otherwise.

Also, we assume that the server knows the size of S (i.e.,

M ), the pmf pS(.) and pWi|S(.|.), but the realizations S and

Wi are unknown to the server a priori.

At round i, for any S and Wi, in order to retrieve XWi
, the

user sends to the server a query Q[Wi,S], and upon receiving

Q[Wi,S], the server sends to the user an answer A[Wi,S].

We define Q[W1:i,S] , {Q[W1,S], Q[W2,S], · · · , Q[Wi,S]} and

A[W1:i,S] , {A[W1,S], A[W2,S], · · · , A[Wi,S]} as the set of all

queries and answers up to the round i, respectively.

Note that the query at round i, Q[Wi,S] is a (poten-

tially stochastic) function of Wi,S, XS , Q
[W1:i−1,S], and

A[W1:i−1,S]. Similarly, the answer at round i, A[Wi,S] is a

(deterministic) function of Q[W1:i,S] and the messages in X ,

i.e.,

H(A[Wi,S]|Q[W1:i,S],X ) = 0.

The queries from the first round up to round i all together,

Q[W1:i,S] must protect the individual privacy for all the user’s

demand indices up to round i from the server, i.e.,

P(Wj = W ′|Q[W1:i,S],X ) =
1

K

for all W ′ ∈ [K] and all j ∈ [i]. This means that some

correlations between the demands in different rounds can be

revealed to the server, but all the demands up to round i must

be protected to be individually private at each round. This

condition is referred to as the privacy condition.

All the answers from the first round up to round i,
A[W1:i,S] along with the side information XS must enable the

user to retrieve the demand XWi
. This condition is referred

to as the recoverability condition, as follows:

H(XWi
|A[W1:i,S], Q[W1:i,S],XS) = 0.

The problem of the single-server Online Private Informa-

tion Retrieval (OPIR) is to design a query Q[Wi,S] and an

answer A[Wi,S] for any given S and Wi at round i ≥ 1, that

satisfy the privacy and recoverability conditions.

The per-round rate of an OPIR algoirhtm at round i
denoted by Ri, is defined as the ratio of the entropy of a

message, i.e., L, to the maximum entropy of the answer at

round i, i.e.,

Ri = min
W1:i,S

L

H(A[Wi,S])
.

The per-round capacity of OPIR at round i denoted by Ci, is

defined as the supremum of rates over all OPIR algorithms

that achieve the capacity up to round i − 1. We focus on

scalar-linear capacity, which corresponds to the maximum

rate that can be achieved by scalar-linear protocols.

The goal of this paper is to establish the scalar-linear per-

round capability of the OPIR and present an algorithm that

achieves this capacity. Theorem 1 characterizes the capacity

of scalar-linear OPIR problem for the case when K
M+1 = 2l

for some l ≥ 1.
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Theorem 1. For the OPIR problem with K messages, and

side information of size M , when K/(M + 1) = 2l for some

l ≥ 1, the scalar-linear per-round capacity at round i is

given by:

(1)Ci =

{
M+1
K

i = 1
2i−1(M+1)

KM
i ≥ 2

III. CONVERSE PROOF

In this section, we prove the converse part of Theorem 1.

Suppose that the user wishes to retrieve a sequence of

messages XW = {XW1
, XW2

, · · · , XWt
} from the server so

that at round i, the user wants to download the message

XWi
for some Wi ∈ [K], and knows XS for a given

S ⊆ [K] \ W , |S|= M . By assumption, K/(M + 1) = 2l

for some l ≥ 1. At round i, for any S and Wi, in order to

retrieve XWi
, the user sends to the server a query Q[Wi,S],

and the server responds to the user by an answer A[Wi,S].

The answer A[Wi,S] at round i is a set of mi messages, i.e.,

A[Wi,S] , {yi,1, . . . , yi,mi
}. In linear OPIR schemes each

message yi,j for 1 ≤ j ≤ mi is a linear combination of

the original messages in X , i.e.

yi,j =
∑

m∈[K]

γm
i,jXm,

where γm
i,j ∈ Fq are the encoding coefficients of yi,j .

We refer to the vector γi,j = [γ1
i,j , γ

2
i,j , · · · , γ

K
i,j ] as the

encoding vector of yi,j . The i-th unit encoding vector

that corresponds to the original packet Xi is denoted by

ui = [u1
i , u

2
i , · · · , u

K
i ], where ui

i = 1 and uj
i = 0 for

i 6= j. Consider the set of K linearly independent unit

vectors {u1, u2, · · · , uK} as a basis for a vector space V
of dimension K . Thus, the encoding vector of yi,j , i.e., γi,j ,

is a vector in the vector space V . Define the answer matrix at

round i, Ai, of dimension (mi ×K) with γij being the j-th

row of Ai. Note that the number of messages in A[Wi,S],

or equivalently, the number of rows of matrix Ai is the

download cost at round i.
For the first round (i = 1), the proof of converse follows

from the prior results for PIR with side information (see [2,

Lemma 1]). It is easy to verify that at round 1, any optimal

scalar-linear scheme can be converted to the partition-based

scheme of [2] by row operations. The answer matrix A1

corresponding to the optimal scheme has exactly k/(M +1)
rows. Followed by a column permutation, the matrix A1 can

be represented as:

A1 =








M + 1
︷ ︸︸ ︷

⋆ · · · ⋆ M + 1
︷ ︸︸ ︷

⋆ · · · ⋆
. . . M + 1

︷ ︸︸ ︷

⋆ · · · ⋆








K

M+1
×K

where ⋆’s indicate non-zero entries in matrix A1 and all other

entries in matrix A1 are zero. Each row of A1 corresponds

to one of the messages in the answer. For instance, the first

row corresponds to X1 + · · ·+XM+1, the second row cor-

responds to XM+2 + · · ·+X2M+2, and so on. The support

set of each message in the answer is called a partition. Thus,

the optimal scheme in the first round has n = K/(M + 1)
number of partitions, denoted by {P1, P2, · · · , Pn}.

For the second round and after that (i ≥ 2), in Theorem 2

we prove that the maximum entropy of the answer, i.e.,

H(A[Wi,S]), where the maximum is taken over all Wi and

S, is lower bounded by KM/(2i−1(M + 1)).

Theorem 2. The maximum entropy of the answer

H(A[Wi,S]) at round i ≥ 2 over all Wi and S, is lower

bounded by KM/(2i−1(M + 1)).

Proof: For linear schemes it is sufficient to prove that

the maximum number of rows of matrix Ai for i ≥ 2 is

lower bounded by KM/(2i−1(M + 1)). The proof is based

on an inductive argument and uses a simple yet powerful

observation, formally stated in Lemma 1.

Lemma 1. For any i, W1:i, S, and any W ⋆ ∈ [K], there

must exist S⋆ ⊆ Pj , |S⋆|= M and W ⋆ * Pj for some

j ∈ [n] such that

H(XW⋆ |A[W1:i,S], Q[W1:i,S],XS⋆) = 0.

Proof: The proof is given in Appendix.

Lemma 2. At round i for i ≥ 2, in the vector space spanned

by the rows of matrices A1, A2, · · · , Ai, corresponding to

any W ⋆ ∈ [K], there must exist a vector which is a linear

combination of at most M+1 messages including XW⋆ itself

and at most M other messages which are a subset of XS⋆ ,

a potential side information for XW⋆ defined in Lemma 1.

Proof: The proof is based on contradiction. Assume that

at round i, for i ≥ 2, in the vector space spanned by the

rows of matrices A1, A2, · · · , Ai, for a given W ⋆ ∈ [K],
there does not exist such a vector described in Lemma 2.

This means that XW⋆ is not recoverable from A[W1:i,S] and

XS⋆ , which contradicts the result of Lemma 1.

In fact, in the vector space spanned by the rows of

A1, A2, · · · , Ai, there must exist K of such vectors, one for

each potential value of W ⋆ ∈ [K]. Define matrix Γ with

these K vectors being as the rows of Γ. An instance of

matrix Γ would be as follows:

Γ =

R {

L {














W ⋆

︷︸︸︷

1

S⋆

︷ ︸︸ ︷

⋆ ⋆ · · · ⋆

1 ⋆ ⋆ · · · ⋆
. . .

⋆ ⋆ · · · ⋆ 1

⋆ ⋆ · · · ⋆ 1














K×K

Lemma 3. The rank of matrix Γ is lower bounded by K/2.
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Proof: Since by Lemma 1, S⋆ ⊆ Pj for some j ∈ [n] and

W ⋆ * Pj , then S⋆ is either in the left side of W ⋆, or in the

right side of W ⋆ in each row of matrix Γ. Accordingly, the

rows of matrix Γ can be classified into two types: L and R,

based on the criteria that S⋆ is in the left side of W ⋆, or in

the right side of W ⋆, respectively. Let z1 and z2 denote the

number of rows of type L and the number of rows of type R,

respectively. It is easy to verify that the maximum of z1 and

z2 is greater than or equal to K/2, i.e., max(z1, z2) ≥ K/2.

Without loss of generality, assume max(z1, z2) = z1. Then,

z1 ≥ K/2. By removing z2 rows of type R from matrix Γ,

we are left with z1 ≥ K/2 rows of type L that constitute a

matrix of size z1×K , in which there exists a lower triangular

submatrix of size z1 × z1 and rank z1 ≥ K/2. Thus, the

rank of matrix Γ is at least z1 which is lower bounded by

K/2.

For the second round (i = 2), we need to show that

the number of rows of matrix A2 is lower bounded by

KM/(2(M + 1)). Based on Lemma 2, in the vector space

spanned by the rows of matrices A1 and A2, there must

exist all K rows of matrix Γ which based on Lemma 3 is

of rank greater than or equal to K/2. On the other hand, as

mentioned earlier, the optimal scheme in the first round is

partitioning where each row of A1 corresponds to a linear

combination of M+1 messages. One can readily confirm that

corresponding to any M +1 number of linearly independent

rows of matrix Γ, there exists at most one linear combination

of these rows in the rows of matrix A1. Thus, there must exist

at least M linearly independent combinations of these rows

in the rows of matrix A2. Then, we have:

rank(A2) ≥
M

M + 1
×rank(S) ≥

M

M + 1
×
K

2
=

KM

2(M + 1)

In other words, matrix Γ has at least K/2 number

of linearly independent rows. Thus, there exist at most

K/(2(M + 1)) linearly independent combinations of these

rows in the rows of matrix A1. Therefore, there must exist

at least K/2−K/(2(M + 1)) = KM/(2(M + 1)) linearly

independent combinations of these rows in the rows of matrix

A2, which indicates that the number of rows of matrix A2

is lower bounded by KM/(2(M + 1)). The optimal scheme

achieves the lower bound. Thus, in the optimal scheme, the

number of rows of matrix A2 is exactly KM/(2(M + 1)).

For the third round (i = 3), we need to show that

the number of rows of matrix A3 is lower bounded by

KM/(4(M + 1)). Based on the Lemma 2, in the vector

space spanned by the rows of matrices A1, A2 and A3,

there must exist all K rows of matrix Γ which based on

Lemma 3 is of rank greater than or equal to K/2. By the

same reasoning as in the case of i = 2, corresponding to any

2(M +1) number of linearly independent rows of matrix Γ,

there exist at most two linearly independent combinations

of these rows in the rows of matrix A1. On the other

hand, we showed that A2 in the optimal scheme is of rank

KM/(2(M + 1)), which shows that corresponding to any

2(M + 1) number of linearly independent rows of matrix

Γ, there exist at most M linearly independent combinations

of these rows in the rows of matrix A2. Thus, there must

exist at least 2(M + 1)− 2−M = M linearly independent

combinations of these rows in the rows of matrix A3. Then,

we have:

rank(A3) ≥
M

2(M + 1)
× rank(S) ≥

KM

4(M + 1)

In other words, matrix Γ has at least K/2 num-

ber of linearly independent rows. Thus, there exist

at most K/(2(M + 1)) linearly independent combina-

tions of these rows in the rows of matrix A1, and

KM/(4(M + 1)) linearly independent combinations of

these rows in the rows of matrix A2. Therefore, there must

exist at least K/2−K/(2(M + 1))−KM/(4(M + 1)) =
KM/(4(M + 1)) linearly independent combinations of

these rows in the rows of matrix A3, which indicates that

the number of rows of matrix A3 is lower bounded by

KM/(4(M + 1)).

Using the same proof technique and similar reasoning as

in the cases of i = 2 and i = 3, it can be shown that

the number of rows of Ai for i ≥ 2 is lower bounded by

KM/(2i−1(M+1)). By the result of Lemma 2, in the vector

space spanned by the rows of matrices A1, A2, · · · , Ai, there

must exist all K rows of matrix Γ, which is of rank greater

than or equal to K/2 (by Lemma 3). Again, similarly as in

the cases of i = 2 and i = 3, it follows that corresponding to

any 2i−2(M+1) number of linearly independent rows of ma-

trix Γ, there exist at most 2i−2, 2i−3M, 2i−4M, · · · ,M , lin-

early independent combinations of these rows in the rows of

matrix A1, A2, A3, · · · , Ai−1, respectively. Thus, there must

exist at least 2i−2(M + 1)− (2i−2)− (
∑i−3

j=0 2
j)M = M

linearly independent combinations of these rows in the rows

of matrix Ai. Then, we have:

rank(Ai) ≥
M

2i−2(M + 1)
×

K

2
=

KM

2i−1(M + 1)

which shows that the number of rows of matrix Ai is lower

bounded by KM/(2i−1(M + 1)).

IV. ACHIEVABILITY SCHEME

In this section, we propose an OPIR protocol for arbitrary

K and M where K/(M + 1) = 2l for some l ≥ 1,

which achieves the rate (M + 1)/K in the first round and

(2i−1(M + 1))/KM at rounds i ≥ 2. The proposed scheme,

referred to as the Online Partitioning (OP) Protocol, is

described in the following.

Each round of the OP protocol consists of four steps:

Round i = 1:

Step 1: The user creates a partition of the K messages

into n1 , K/(M +1) sets. The first partition, P 1
1 is formed

by combining the demand and the side information set S:

P 1
1 , {W1} ∪ S. The user randomly partitions the set of

messages [K] \ P 1
1 into n1 − 1 sets, each of size M + 1,

denoted as P 1
2 , · · · , P

1
n1

.
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Step 2: The user sends to the server a uniform random

permutation of the partition {P 1
1 , · · · , P

1
n1
}, i.e., it sends

{P 1
1 , · · · , P

1
n1
} in a random order.

Step 3: The server picks an arbitrary Cauchy matrix

of size K × (Ml + 1) denoted by C , [ci,j ] with pa-

rameters from Fq , where q ≥ K +Ml+ 1. For a subset

P ⊂ [K], let VP denote the characteristic vector of the

set P , which is a vector of length K such that for all

i ∈ [K], its i-th entry is ci,1 if i ∈ P , otherwise it is

0. The server computes the answer A[W1,S] as a set of n1

inner products given by A[W1,S] = {AP 1
1
, · · · , AP 1

n1
}, where

AP = [X1, · · · , XK ] · VP for all P ∈ {P 1
1 , P

1
2 , · · · , P

1
n1
}.

Step 4: Upon receiving the answer from the server,

the user decodes XW1
by subtracting off the contribu-

tions of its side information XS from AP for some

P ∈ {P 1
1 , P

1
2 , · · · , P

1
n1
} such that W1 ∈ P .

Round i ≥ 2:

Step 1: Based on the OP protocol at round i − 1, the

user sends to the server a uniform random permutation of a

partition of the K messages into ni−1 number of sets as the

query, i.e., Q[Wi−1,S] = {P i−1
1 , P i−1

2 , · · · , P i−1
ni−1

}. Given the

query at round i−1, i.e., Q[Wi−1,S] and given Wi and S, the

user creates a partition of K messages into ni =
ni−1

2 sets

{P i
1, P

i
2, · · · , P

i
ni
}. It should be noted that ni−1 is always

divisible by 2 based on the assumption that K/(M + 1) is

a power of 2. It is easy to confirm that Wi and S belong

to two different partitions at round i − 1. Assume, without

loss of generality, that Wi ∈ P i−1
1 and S ∈ P i−1

2 . Then,

the user constructs P i
1 = P i−1

1 ∪ P i−1
2 . For constructing each

P i ∈ {P i
2, · · · , P

i
ni
}, the user chooses two partitions from

the remaining partitions at round i− 1 uniformly at random

(without replacement) and unions them.

Step 2: The user sends to the server a uniform random

permutation of the partition {P i
1, P

i
2, · · · , P

i
ni
}, i.e., it sends

Q[Wi,S] = {P i
1, P

i
2, · · · , P

i
ni
} in a random order.

Step 3: The server extracts a submatrix H = [hij ]K×M

of the Cauchy matrix C which contains all

rows and j-th column of the matrix C, where

(i− 2)M + 2 ≤ j ≤ (i− 1)M + 1. For a subset P ⊂ [K],
let GP = [gij ]K×M denotes the characteristic matrix of

the set P , which is a matrix of size K × M such that for

each j ∈ [M ], for all i ∈ [K], gij = hij if i ∈ P , otherwise

it is zero, i.e., gij = 0 for i /∈ P . The server computes

AP = [X1, · · · , XK ] · GP for all P ∈ {P i
1, P

i
2, · · · , P

i
ni
}.

In fact, AP = [(AP)1, · · · , (AP )M ] is a row vector of

length M that gives M linearly independent combinations

of the messages Xi for i ∈ [P ]. Finally, the server

computes the answer A[Wi,S] as a set of ni ×M linearly

independent combinations of the messages, i.e., A[Wi,S] =
{(AP i

1
)1, · · · , (AP i

1
)M , · · · , (AP i

ni

)1, · · · , (AP i
ni

)M}.

Step 4: Upon receiving the answer from the server, the

user retrieves XWi
by subtracting off the contributions

of its side information XS from A[W1:i,S] and solving a

set of 2i−2(M + 1) linearly independent equations with

2i−2(M + 1) unknowns. It should be noted that every sub-

matrix of a Cauchy matrix is itself a Cauchy matrix, which

guarantees the existence of 2i−2(M + 1) linearly indepen-

dent equations.

Lemma 4. The OP protocol satisfies the recoverability

and individual privacy conditions, while achieving the rate

(M + 1)/K at first round, and the rate (2i−1(M+1))/KM
at round i ≥ 2.

Proof: The OP protocol for the first round is based

the Partition and Code PIR Scheme which satisfies the

recoverability and the privacy conditions and achieves the

rate (M + 1)/K [2]. It should be noted that in the first

round, the coefficients of the messages in the answer which

are chosen according to a Cauchy matrix, have no effect on

the recoverability and the privacy proofs.

In the OP protocol at round i ≥ 2, the answer

A[Wi,S] consists of niM = KM/(2i−1(M + 1))
linear combinations of the messages in X , i.e.,

A[Wi,S] = {(AP i

1
)1, · · · , (AP i

ni

)M}. Since the messages

in X are uniformly and independently distributed over

Fqm , and {(AP i

1
)1, · · · , (AP i

ni

)M} are linearly independent

combinations of the messages, then {(AP i

1
)1, · · · , (AP i

ni

)M}
are uniformly and independently distributed over Fqm , i.e.,

H((AP i

1
)1) = · · · = H((AP i

ni

)M ) = m log2 q = L, and

H(A[Wi,S]) = H((AP i

1
)1) + · · ·+H((AP i

ni

)M ) = niML.

Therefore, the rate of the OP protocol at round i ≥ 2 is

equal to L/H(A[Wi,S]) = (2i−1(M + 1))/KM .

From the step 4 of the OP protocol for round i ≥ 2, it can

be easily verified that the recoverability condition is satisfied

because of choosing the coefficients from a Cauchy matrix.

To prove that the OP protocol satisfies the privacy

condition at round i ≥ 2, we need to show that

P(Wj = W ′|Q[W1:i,S], X) = 1
K

for all W ′ ∈ [K] and all

j ∈ [i]. Since the OP protocol does not depend on the

contents of the messages in X , then it is sufficient to prove

that P(Wj = W ′|Q[W1:i,S]) = 1
K

for all W ′ ∈ [K] and all

j ∈ [i]. Thus, for j = i, we have:

P(Wi = W ′|Q[W1:i,S])

=
∑

S⋆

(P(Wi = W ′|Q[W1:i,S],S⋆)× P(S⋆|Q[W1:i,S])

where the sum is over all possible S⋆ of size M , a

potential side information for Wi = W ′. Let assume W ′ is

located in the kth partition of round i, i.e. P i
k. As mentioned

earlier, at round i ≥ 2, each partition is a union of two

partitions at round i− 1. Without loss of generality assume

that, kth partition of round i (of size 2i−1(M + 1)), is a

union of wth and vth partitions of round i − 1 (each of

size 2i−2(M + 1)), i.e., P i
k = P i−1

w ∪ P i−1
v , and W ′ is

located in the P i−1
w . A possible potential side information

S⋆ for Wi = W ′, would be a subset of P i−1
v of size M

which is completely located in one of the partitions of the

first round. P i−1
v of size 2i−2(M + 1), is a union of 2i−2

partitions of the first round. From each partition of the first

round, all subsets of size M , i.e.,
(
M+1
M

)
, can be considered

as possible S⋆. Thus, one can consider 2i−2
(
M+1
M

)
number
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of possible potential side information S⋆ for Wi = W ′. For

a specific S⋆ = Ŝ, given that S⋆ = Ŝ belongs to P i−1
v ,

each of the elements in P i−1
w (of size 2i−2(M + 1)) can

be user’s demand index with the same probability. In other

words, P(Wi = W ′|Q[W1:i,S],S⋆ = Ŝ) = 1
2i−2(M+1) .

The probability of a specific S⋆ = Ŝ given Q[W1:i,S],

can be computed by the application of the total probability

theorem and chain rule, we have:

P(S⋆ = Ŝ|Q[W1:i,S])

=
∑

j∈[ K

M+1
]

P(S⋆ = Ŝ|Q[W1:i,S],S⋆ ∈ P 1
j )× P(S⋆ ∈ P 1

j |Q
[W1:i,S])

where the potential side information S⋆ belongs to

each of the partitions of the first round with the same

probability, i.e., P(S⋆ ∈ P 1
j |Q

[W1:i,S]) = M+1
K

for all

j ∈ [ K
M+1 ]. In each partition of the first round, there are

(
M+1
M

)
subsets of size M , each of which can be the po-

tential side information S⋆ with the same probability. Thus,

P(S⋆ = Ŝ|Q[W1:i,S],S⋆ ∈ P 1
j ) =

1
M+1 , for one j ∈ [ K

M+1 ]
and zero for others. Thus, we have:

P(S⋆|Q[W1:i,S]) =
1

M + 1
×

M + 1

K

Finally, P(Wi = W ′|Q[W1:i,S]) is obtained as follows:

P(Wi = W ′|Q[W1:i,S])

=
∑

S⋆

(P(Wi = W ′|Q[W1:i,S],S⋆)× P(S⋆|Q[W1:i,S])

= 2i−2(M + 1)×
1

2i−2(M + 1)
×

1

M + 1
×

M + 1

K
=

1

K
.

We proved that P(Wi = W ′|Q[W1:i,S]) = 1
K

for all

W ′ ∈ [K]. Using the same proof technique, for j ∈ [i − 1],
it can be shown that P(Wj = W ′|Q[W1:i,S]) = 1

K
for all

W ′ ∈ [K].

Example 1. (OP Protocol) Assume that the server has

K = 12 messages {X1, X2, · · · , X12}, and the user has

M = 2 messages, X2 and X3, as side information, i.e.,

S = {2, 3}. Consider a scenario as follows:

First round: The user demands the message X1, i.e.,

W1 = 1. Thus, the user labels 4 sets of size 3 as P 1
1 , · · · , P

1
4 .

Next, the user constructs P 1
1 = {W1,S} = {1, 2, 3} and

randomly partitions the set of remaining messages into

P 1
2 , P

1
3 , P

1
4 sets. Assume the user has chosen P 1

2 = {4, 5, 6},

P 1
3 = {7, 8, 9}, P 1

4 = {10, 11, 12}. Then, the user sends

to the server a random permutation of {P 1
1 , · · · , P

1
4 }. The

server picks an arbitrary Cauchy matrix C = [cij ]12×5 with

parameters over F17 as follows:

C =























7 13 6 9 1
3 7 13 6 9
5 3 7 13 6
15 5 3 7 13
2 15 5 3 7
12 2 15 5 3
14 12 2 15 5
10 14 12 2 15
4 10 14 12 2
11 4 10 14 12
8 11 4 10 14
16 8 11 4 10























The server sends back to the user four coded packets as:

Y1 = 7X1 + 3X2 + 5X3,

Y2 = 15X4 + 2X5 + 12X6,

Y3 = 14X7 + 10X8 + 4X9,

Y4 = 11X10 + 8X11 + 16X12,

The user can retrieve X1 by replacing the values of X2 and

X3 in Y1. From the server’s perspective, the user’s demand is

in one of the four partitions {P 1
1 , · · · , P

1
4 } with probability

1
4 , and in each partition, each of the indices is the user’s

demand index with probability 1
3 . Thus, the probability that

each of the indices i ∈ [12] being as a demand index would

be the same, i.e., P (W1 = i|Q[W1=1,{2,3}]) = 1
12 = PW1

(i).

Second round: The user demands the message X4, i.e.,

W2 = 4. Based on the OP protocol, the user labels 2 sets

of size 6 as P 2
1 , P

2
2 . Since W2 = 4 ∈ P 1

2 and S ∈ P 1
1 ,

the user constructs P 2
1 = P 1

1 ∪ P 1
2 = {1, 2, 3, 4, 5, 6}.

For constructing P 2
2 , the user chooses the remaining two

partitions of round 1, i.e., P 1
3 and P 1

4 , and unions them, i.e.,

P 2
2 = P 1

3 ∪ P 1
4 = {7, 8, 9, 10, 11, 12}. Then, the user sends

to the server a random permutation of {P 2
1 , P

2
2 }. Based on

the extracted submatrix H of the selected Cauchy matrix C,

the server constructs 2 linearly independent combinations of

the messages with indices in each partition {P 2
1 , P

2
2 }, and

sends back to the user four coded packets as follows:

Z1 = 13X1 + 7X2 + 3X3 + 5X4 + 15X5 + 2X6,

Z2 = 6X1 + 13X2 + 7X3 + 3X4 + 5X5 + 15X6,

Z3 = 12X7 + 14X8 + 10X9 + 4X10 + 11X11 + 8X12,

Z4 = 2X7 + 12X8 + 14X9 + 10X10 + 4X11 + 11X12.

The user has already downloaded X1 from the first round.

Thus, from the answers of the first and second rounds, the

user can retrieve X4 by solving a set of three linearly

independent equations with three unknown as follows:

15X4 + 2X5 + 12X6 = Y2,

5X4 + 15X5 + 2X6 = Z1 − 13X1 − 7X2 − 3X3,

3X4 + 5X5 + 15X6 = Z2 − 6X1 − 13X2 − 7X3.

From the server’s perspective, given the queries Q[W1:2,S]

and all the packets, the probability that each of the indices

i ∈ [12] being as a user’s demand index in the second round

would be the same and can be calculated as follows:
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P(W2 = i|Q[W1:2,S], X)

=
∑

S⋆

(P(W2 = i|Q[W1:2,S], X,S⋆)× P(S⋆|Q[W1:2,S], X))

= 3×
1

3
×

1
(
3
2

) ×
1

4
=

1

12
.

Also, from the server’s perspective, given the queries

Q[W1:2,S] and all the packets, the probability that each of

the indices i ∈ [12] being as a user’s demand index in the

first round is the same, i.e., P(W1 = i|Q[W1:2,S], X) = 1
12 .

This means that the scheme is individually private and from

the server’s perspective, the user’s demand index in the first

round will remain private after round 1.

Third round: The user demands the message X7, i.e.,

W3 = 7. Based on the OP protocol, the user labels 1 set

of size 12 as P 3
1 . Since W3 = 7 ∈ P 2

2 and S ∈ P 2
1 , the

user constructs P 3
1 = P 2

1 ∪ P 2
2 = {1, 2, · · · , 12}. Based

on the selected Cauchy matrix C, the server constructs 2

linearly independent combinations of all the messages, and

sends back to the user the following two coded packets:

T1 =
∑12

i=1 ci4Xi,

T2 =
∑12

i=1 ci5Xi.

The user has already downloaded X1 from the first round

and X4, X5, and X6 from the second round. Thus, from

the answers of the first, second and third rounds, the user

can retrieve X7 by solving a set of six linearly independent

equations with six unknown as follows:

14X7 + 10X8 + 4X9 = Y3,

11X10 + 8X11 + 16X12 = Y4,

12X7 + 14X8 + 10X9 + 4X10 + 11X11 + 8X12 = Z3,

2X7 + 12X8 + 14X9 + 10X10 + 4X11 + 11X12 = Z4,
∑12

i=7 ci4Xi = T1 −
∑6

i=1 ci4Xi,
∑12

i=7 ci5Xi = T2 −
∑6

i=1 ci5Xi.

From the server’s perspective, given the queries Q[W1:3,S]

and all the packets, the probability that each of the indices

i ∈ [12] being as a user’s demand index would be the same

and can be calculated as follows:

P(W3 = i|Q[W1:3,S], X)

=
∑

S⋆

(P(W3 = i|Q[W1:3,S], X,S⋆)× P(S⋆|Q[W1:3,S], X))

= 6×
1

6
×

1
(
3
2

) ×
1

4
=

1

12
.

Also, from the server’s perspective, in the second round

the demand of the first round and the demand of the second

round remains private, i.e., P(W1 = i|Q[W1:3,S], X) = 1
12

and P(W2 = i|Q[W1:3,S], X) = 1
12 .

APPENDIX

PROOF OF LEMMA 1

If there does not exist any S⋆ such that XW⋆ is recoverable

from A[W1:i,S] and XS⋆ , then the server knows that W ⋆

cannot be the user’s demand index, and this violates the

privacy condition. Given the optimal scheme in the first

round, if there exists a S⋆ * Pj for some j ∈ [n], such

that XW⋆ is recoverable from A[W1:i,S], Q[W1:i,S] and XS⋆ ,

then the server knows that S⋆ cannot be the user’s side

information index set. Thus, W ⋆ cannot be the user’s demand

index, and this violates the privacy condition.
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