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Abstract—Existing polarization theories have mostly been con-
cerned with Shannon’s information measures, such as Shannon
entropy and mutual information, and some related measures such
as the Bhattacharyya parameter. In this work, we extend polar-
ization theories to a more general information measure, namely,
the Rényi entropy. Our study shows that under conditional Rényi
entropies of different orders, the same synthetic sub-channel may
exhibit opposite extremal states. This result reveals more insights
into the polarization phenomenon on the micro scale (probability
pairs) rather than on the average scale.

I. INTRODUCTION

The polarization technique (including channel polarization
[1] and source polarization [2]) is one of the most significant
breakthrough in information theory over the past decade.
Arıkan showed us that as the size of the polar transformation
goes to infinity, the conditional entropies of the synthetic
sub-channels (or random variable pairs) equal 0 or 1 almost
everywhere (a.e.) [1]. Also, their varentropies (variance of the
conditional entropy random variable) asymptotically decrease
to zero [3]. These results imply that the sub-channels’ tran-
sition probability matrices tend to either deterministic (noise-
less channels) or uniform with respect to any channel input
(completely noisy channels). However, are they still close to
uniform or deterministic distributions under stricter criteria?
Polarization results using Shannon’s information measures fail
to answer this question.

In this work, we study polarization using a more general
information measure, i.e., the Rényi entropy [4]. The Rényi
entropy is more sensitive to deviations from uniform or deter-
ministic distributions, and has been used in many areas where
Shannon entropy may not be a good metric. For example, the
collision entropy and min-entropy, both of which are special
cases of the Rényi entropy, are convenient metrics for privacy
amplification in secret-key agreement [5]. The Rényi entropy
of a random variable X is defined as follows.

Definition 1 (Rényi Entropy [4]). The Rényi entropy of a
random variable X ∈ X of order α is defined as

Hα(X) =
1

1− α
log
∑
x∈X

PX(x)α, (1)

It can be shown that as α → 1, the Rényi entropy reduces
to the Shannon entropy. Two other special cases of the Rényi
entropy which will be discussed later include the max-entropy:

H0(X) = log |X |, (2)

which is the Rényi entropy of order 0, and the min-entropy:

H∞(X) = min
i

(− log pi) = − log max
i
pi, (3)

which equals the limiting value of Hα(X) as α→∞.
Unlike the conditional Shannon entropy, there is no gener-

ally accepted definition of the conditional Rényi entropy yet.
In this paper, we adopt the following definition of conditional
Rényi entropy in the study of polarization.

Definition 2 (conditional Rényi entropy [6], [7]). The con-
ditional Rényi entropy of order α of X given Y is defined
as

Hα(X|Y ) =
1

1− α
log

∑
{x,y}∈X×Y PX,Y (x, y)α∑

y∈Y PY (y)α
. (4)

Note that this type of conditional Rényi entropy satisfies the
chain rule:

Hα(X|Y ) +Hα(Y ) = Hα(X,Y ). (5)

This means that it reduces to the conditional Shannon entropy
when α = 1.

There have been very limited researches in regard to po-
larization of conditional Rényi entropies. In [8] it is shown
that the following chain rule inequality holds for the polar
transformation for α ≤ 1,

H∗α(U1U2|Y1Y2) ≥ H∗α(U1|Y1Y2) +H∗α(U2|Y1Y2U1),

whenever U1, U2 are i.i.d. uniform on F2. The inequality
holds with equality if and only if the channel W is per-
fect, or the channel W is completely noisy, or α = 1.
Note that H∗α(X|Y ) in [8] is defined as H∗α(X|Y ) =

α
1−α log

∑
y∈Y PY (y)

[∑
x∈X PX|Y (x|y)α

] 1
α

.
In this paper, we also restrict ourselves to the binary case

(i.e., X = F2) as a starting point. As a result, logarithms in this
paper will all be base-2. However, we do not assume X to be
uniformly distributed. We prove that the order-α conditional
Rényi entropies of the synthetic sub-channels also polarize
to 0 and 1, but the fraction of 1 tends to Hα(X|Y ). This
is to say that for a given sub-channel, its conditional Rényi
entropies of different orders may exhibit opposite extremal
states. Intuitively, if a sub-channel is truly noiseless (or truly
completely noisy), its conditional Rényi entropies of different
orders should all be 0 (or 1). We show both analytically
and numerically that this strange phenomenon is caused by a
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vanishing deviation from truly deterministic or truly uniform
distributions. The different extremal states that a sub-channel
exhibits for various α reflect the polarization level of the
sub-channel at the micro scale, i.e., how close is its joint
distribution to truly uniform or truly deterministic.

II. POLARIZATION OF RÉNYI ENTROPY

A. Polarization of a Basic Polar Transformation

Consider two binary-input discrete memoryless channels (B-
DMC) PY1|X1

and PY2|X2
with the same input distribution

PX in the channel coding scenario, or consider (X1, Y1) and
(X2, Y2) as two samples of a memoryless source (X,Y ) ∼
PX,Y with X being the binary source to be compressed and
Y being the side information about X in the source coding
scenario. Note that in the former case, PY1|X1

and PY2|X2

can be different, which corresponds to the compound channel
setting. Let

U1 = X1 ⊕X2, U2 = X2, (6)

and denote

PA(u1, u2, y1, y2)

, PU1,U2
(u1, u2)PY1|X1

(y1|u1 ⊕ u2)PY2|X2
(y2|u2)

for short. From (6) we know that

PU1,U2(0, 0) = PX(0)PX(0), PU1,U2(0, 1) = PX(1)PX(1),

PU1,U2(1, 0) = PX(1)PX(0), PU1,U2(1, 1) = PX(0)PX(1).
(7)

For the basic polar transformation, we have the following
polarization result.

Lemma 1. For α ≥ 0, we have

Hα(U2|Y1Y2U1) ≤ min{Hα(X1|Y1), Hα(X2|Y2)}. (8)
Hα(U1|Y1Y2) ≥ max{Hα(X1|Y1), Hα(X2|Y2)}, (9)

Hα(U1U2|Y1Y2) = Hα(U1|Y1Y2) +Hα(U2|Y1Y2U1). (10)

Let us first recall the Minkowski inequality before proving
Lemma 1.

Proposition 1. The Minkowski inequality states that for 1 ≤
p ≤ ∞,(

n∑
k=1

|xk + yk|p
) 1
p

≤

(
n∑
k=1

|xk|p
) 1
p

+

(
n∑
k=1

|yk|p
) 1
p

,

(11)

with equality if and only if x = (x1, x2, ..., xn) and y =
(y1, y2, ..., yn) are positively linearly dependent, i.e., x = λy
for some λ ≥ 0 or y = 0. For 0 < p < 1, the inequality in
(11) is reversed.

Proof of Lemma 1. (I) First, we consider (10). Denote

S1 =
∑

{y1,y2}∈Y2

( ∑
{u1,u2}∈X 2

PA(u1, u2, y1, y2)
)α

(12)

S2 =
∑

{y1,y2}∈Y2

∑
u1∈X

( ∑
u2∈X

PA(u1, u2, y1, y2)
)α

(13)

S3 =
∑

{y1,y2}∈Y2

∑
{u1,u2}∈X 2

(
PA(u1, u2, y1, y2)

)α
(14)

Then we have

Hα(U1|Y1Y2) +Hα(U2|Y1Y2U1)

=
1

1− α
log

S2

S1
+

1

1− α
log

S3

S2

=
1

1− α
log

S3

S1

= Hα(U1U2|Y1Y2).

(II) Next, we consider (9). Hα(X1|Y1) can be expressed as
(15) (on the top of the next page), where

S4 =
∑

{y1,y2}∈Y2

{[
PY1,X1(y1, 0) + PY1,X1(y1, 1)

]α
×
[
PY2,X2

(y2, 0)α + PY2,X2
(y2, 1)α

]}
From (13) and (7) we have

S2 =
∑

{y1,y2}∈Y2

{[
PY1,X1(y1, 0)PY2,X2(y2, 0)

+ PY1,X1
(y1, 1)PY2,X2

(y2, 1)
]α

+
[
PY1,X1

(y1, 1)PY2,X2
(y2, 0)

+ PY1,X1
(y1, 0)PY2,X2

(y2, 1)
]α}

.

For 0 < α < 1, by the Minkowski inequality we have{[
PY1,X1(y1, 0)PY2,X2(y2, 0) + PY1,X1(y1, 1)PY2,X2(y2, 1)

]α
+
[
PY1,X1

(y1, 1)PY2,X2
(y2, 0)

+ PY1,X1(y1, 0)PY2,X2(y2, 1)
]α} 1

α

≥
{[
PY1,X1

(y1, 0)PY2,X2
(y2, 0)

]α
+
[
PY1,X1(y1, 0)PY2,X2(y2, 1)

]α} 1
α

+
{[
PY1,X1

(y1, 1)PY2,X2
(y2, 0)

]α
+
[
PY1,X1(y1, 1)PY2,X2(y2, 1)

]α} 1
α

(16)

=
[
PY1,X1

(y1, 0) + PY1,X1
(y1, 1)

]
×
[
PY2,X2

(y2, 0)α + PY2,X2
(y2, 1)α

] 1
α

.



Hα(X1|Y1) =
1

1− α
log

(∑
y1∈Y

∑
x1∈X PY1,X1(y1, x1)α

)(∑
y2∈Y

∑
x2∈X PY2,X2(y2, x2)α

)
(∑

y1∈Y
[∑

x1∈X PY1,X1
(y1, x1)

]α)(∑
y2∈Y

∑
x2∈X PY2,X2

(y2, x2)α
) =

1

1− α
log

S3

S4
(15)

Thus, S2 ≥ S4, which means

Hα(U2|Y1Y2U1) =
1

1− α
log

S3

S2

≤ 1

1− α
log

S3

S4
= Hα(X1|Y1). (17)

For α > 1, the inequality in (16) is reversed. However, since
1−α < 0, the result remains the same. For α = 1, the Renyi
entropy reduces to the Shannon entropy, and the polarization
result is identical to the result here [1]. For α = 0, it is obvious
from (2) and (4) that (10) holds, while (8) and (9) hold with
equality.

Similarly, Hα(U2|Y1Y2U1) ≤ Hα(X2|Y2) can be proved.
(III) Finally, equality (10) and inequality (9) immediately

imply (8).

B. Recursive Polar Transformation

Now consider extending the basic transformation recursively
to higher orders. For N = 2n with n being an arbitrary
integer, the recursive transformation can be expressed as
U1:N = X1:NGN [1], where GN = BNF⊗n with BN being

the bit-reversal matrix and F =

[
1 0
1 1

]
. Denote HN (i) =

Hα(U i|Y 1:NU1:i−1). We have the following theorem.

Theorem 1. For any B-DMC PY |X (or any discrete memory-
less source (X,Y ) ∼ PX,Y over X × Y with X = {0, 1}
and Y an arbitrary countable set) and any α ≥ 0, as
N → ∞ through the power of 2, the fraction of indices
i ∈ [N ] , {1, 2..., N} with HN (i) ∈ (1 − δ, 1] goes to
Hα(X|Y ), and the fraction with HN (i) ∈ [0, δ) goes to
1−Hα(X|Y ).

Proof. We follow Arıkan’s martingale approach [1], [9] to
complete the proof. First, we introduce the same infinite binary
tree as in the proof of [1, Theorem 1], with a root node
at level 0 and 2n nodes at level n. Then define a random
walk {Bn;n ≥ 0} in this tree as follows. The random
walk starts at the root node with B0 = (0, 1), and moves
to one of the two child nodes in the next level with equal
probability at each integer time. If Bn = (n, i), Bn+1 equals
(n+1, 2i−1) or (n+1, 2i) with probability 1/2 each. Denote
H(0, 1) = Hα(X|Y ) and H(n, i) = Hα(U i|Y 1:2n , U1:i−1)
for n ≥ 1, i = [2n]. Define a random process {Hn;n ≥ 0}
with Hn = H(Bn). It can be shown that the process
{Hn;n ≥ 0} is a martingale due to the chain rule equality
of (10), i.e.,

E[Hn+1|B0, B1, ..., Bn] = Hn. (18)

Since {Hn;n ≥ 0} is a uniformly integrable martingale, it
converges a.e. to an RV H∞ such that E[|Hn − H∞|] = 0.
Then we have

E[|Hn −Hn+1|]→ 0. (19)

Note that

E[|Hn −Hn+1|]

=
1

2

(
E[|Hα(U i|Y 1:2n , U1:i−1)

−Hα(U2i−1|Y 1:2n+1

, U1:2i−2)|]
+ E[|Hα(U i|Y 1:2n , U1:i−1)

−Hα(U2i|Y 1:2n+1

, U1:2i−1)|]
)
. (20)

In Lemma 1, by letting X1 = X2 = U i, Y1 = Y2 =
(Y 1:2n , U1:i−1), U1 = U2i−1, and U2 = U2i, we can see
that (19) and (20) force (16) to hold with equality for i ∈ [2n]
a.e. as n→∞. From Proposition 1 we know that (16) holds
with equality only in the following two cases:
• (Case 1) PY1,X1(y1, 0) = 0 or PY1,X1(y1, 1) = 0 for all

effective y1 ∈ Y .
• (Case 2) PY2,X2

(y2, 0) = PY2,X2
(y2, 1) for all effective

y2 ∈ Y .
The effective elements of Y (denoted by Ye ⊂ Y) mean that∑

{x,y}∈X×Ye PX,Y (x, y)α∑
y∈Ye PY (y)α

→
∑
{x,y}∈X×Y PX,Y (x, y)α∑

y∈Y PY (y)α

as n→∞. A more detailed discussion about it will be given in
the next subsection. Since PY1,X1 and PY2,X2 are identical in
the recursive transformation, the joint distributions of PYi,Ui

(i ∈ [2n]) tend to either Case 1 or Case 2 a.e. as n→∞, where
Yi = (Y 1:2n , U1:i−1). It is easy to verify that Hα(U i|Yi)
equals 0 in Case 1 and 1 in Case 2. This shows that Hn

converges a.e. to 0 and 1 as n→∞.
The convergence result together with the chain rule equality

of (10) imply that the fraction of {i : H(n, i) ∈ (1 − δ, 1]}
goes to Hα(X|Y ) as n→∞.

Now we can answer the question raised at the beginning of
this paper. From the definition of the max-entropy H0(X) and
(5) we know that

H0(X|Y ) = log |X × Y| − log |Y| = 1, (21)

provided that the probabilities PYi,Ui(y
i, ui) are nonzero.

Since PYi,Ui(y
i, ui) never really become 0 by the polar

transformation, we know that the fraction of sub-channels with
H0(U i|Yi) → 0 is always 0, which means that the synthetic



sub-channels never really polarize to truly deterministic state.
On the contrary, the min-conditional-entropy,

H∞(X|Y ) = H∞(XY )−H∞(Y )

= log
maxy∈Y py

max{x,y}∈X×Y px,y
, (22)

is not a constant in general. As will be explained in Section
III, only truly uniform distribution yields H∞(X|Y ) = 1.
Therefore, as n → ∞, a fraction H∞(X|Y ) of the sub-
channels will become truly completely noisy. This result can
be concluded by the following corollary.

Corollary 1. As n→∞, the fraction of truly completely noisy
sub-channels tends to H∞(X|Y ), while the fraction of truly
noiseless sub-channels is 0.

C. An Example of Effective Elements

The reason we introduce the term of effective elements is
that, without the ”effective” in the definitions of Case 1 and
Case 2, the conditional Rényi entropies in Case 1 and Case 2
of different orders should all be 0 and 1, respectively. In this
subsection, we further discuss this issue. First, let us present
an example to show that for a given α = α0 and α′ = α0 + 1,
Hα(X|Y ) can be arbitrarily close to 1 while Hα′(X|Y ) can
be arbitrarily close to 0.

Let |Y| = 2N ,M . Consider a joint distribution PX,Y such
that a fraction 1

L of probability pairs
(
PX,Y (0, y), PX,Y (1, y)

)
are completely deterministic with accumulated probability of
1
N . Without loss of generality, we assume that PX,Y (0, yi) =
L
NM and PX,Y (1, yi) = 0 for i ∈ A, where A ⊂ [2N ]
is the set of deterministic pairs. The rest L−1

L fraction of
probability pairs are completely uniform, i.e., PX,Y (0, yi) =

PX,Y (1, yi) = (N−1)L
2NM(L−1) for i ∈ AC . Then

Hα(X|Y )

=
1

1− α
log

∑
i∈A ( L

NM )α + 21−α
∑
i∈AC ( (N−1)L

NM(L−1) )
α∑

i∈A ( L
NM )α +

∑
i∈AC ( (N−1)L

NM(L−1) )
α

=
1

1− α
log

M
L ( L

NM )α + 21−αM(L−1)
L ( (N−1)L

NM(L−1) )
α

M
L ( L

NM )α + M(L−1)
L ( (N−1)L

NM(L−1) )
α

=
1

1− α
log

(L− 1)α−1 + 21−α(N − 1)α

(L− 1)α−1 + (N − 1)α
. (23)

For a considered α = α0 > 1, let

L− 1 = 2−1(N − 1)
α0−0.5/α0
α0−1 . (24)

Then we have

Hα0
(X|Y ) =

1

1− α0
log

21−α0
[
(N − 1)α0− 0.5

α0 + (N − 1)α0
]

21−α0(N − 1)α0− 0.5
α0 + (N − 1)α0

.

It is clear that as N →∞, (N−1)α0

(N−1)
α0−

0.5
α0

= (N−1)0.5/α0 →∞,

thus Hα0(X|Y )→ 1.
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Fig. 1. conditional Rényi entropies of different α.

Now let α′ = α0 + 1. From (23) we have

Hα′(X|Y )

=
1

−α0
log

2−α0(N − 1)
α2
0−0.5

α0−1 + 2−α0(N − 1)α0+1

2−α0(N − 1)
α2
0−0.5

α0−1 + (N − 1)α0+1

.

In this case, as N → ∞, (N−1)α0+1

(N−1)
α2
0−0.5

α0−1

= (N − 1)
−0.5

α2
0−1 → 0,

thus Hα′(X|Y )→ 0.
From (24) we can see that 1

L → 0 as N → ∞ if α0 > 1.
Also, 1

N → 0 as N → ∞. Therefore, we have shown a case
when Hα(X|Y ) and Hα+1(X|Y ) can be completely opposite
asymptotically. Fig. 1 shows the example of α0 = 2.

We can similarly design such an example for 0 < α < 1.
This shows that the extreme cases defined in the proof of
Theorem 1 are relative. Even if almost all probability pairs
of a sub-channel are uniform (so that it may seem to be of
Case 2), when powered by some α, these probability pairs may
have little impact on the value of Hα(X|Y ) (so that the sub-
channel is actually of Case 1), just as our example has shown.
Thus, although we proved Theorem 1 for any α ≥ 0 in a
unified form, the criterion for judging whether a sub-channel
converges to Case 1 or Case 2 depends on α.

D. Numerical Results

In this subsection we present the polarization of a binary
symmetric channel (BSC) with crossover probability 0.2 nu-
merically. We calculate the joint distribution of each synthetic
sub-channel and then compute its conditional Rényi entropies
of order 0.1, 0.5, 1, 2, 10 and 100, respectively. The result
is shown in Fig. 2. The channel indices are reordered so
that the conditional Shannon entropies increase monotonically.
The dash lines demonstrate the proportions of extremal sub-
channels as n→∞. Although the considered block-length is
not long, this figure clearly shows that the polarized sets vary
with α. We can also see that a relatively higher conditional
Shannon entropy does not necessarily imply a relatively higher
conditional Rényi entropy of a different order.



Fig. 2. Polarization of conditional Rényi entropies.

III. A DISCUSSION ON RÉNYI ENTROPY

In this section, we further discuss how small the deviation
from a uniform or deterministic distribution should be to make
the conditional Rényi entropy achieve 1 or 0. Let Q̄X,Y be a
uniform distribution with respect to X , i.e., Q̄X,Y (0, y) =
Q̄X,Y (1, y) = 1

2 Q̄Y (y) for any y ∈ Y , and further assume
that Q̄Y (y) = PY (y). Let Q̃X,Y be a deterministic distribution
with respect to X , i.e., Q̃X,Y (0, y) = 0, Q̃X,Y (1, y) = Q̃Y (y)
or Q̃X,Y (1, y) = 0, Q̃X,Y (0, y) = Q̃Y (y) for any y ∈ Y , and
further assume that Q̃Y (y) = PY (y). Then we have

Hα(X|Y ) =
1

1− α
log

{∑
{x,y}∈X×Y PX,Y (x, y)α∑
{x,y}∈X×Y Q̄X,Y (x, y)α

×
21−α

∑
y∈Y Q̄Y (y)α∑

y∈Y PY (y)α

}

= 1 +
1

1− α
log

∑
{x,y}∈X×Y PX,Y (x, y)α∑
{x,y}∈X×Y Q̄X,Y (x, y)α

,

and similarly

Hα(X|Y ) =
1

1− α
log

∑
{x,y}∈X×Y PX,Y (x, y)α∑
{x,y}∈X×Y Q̃X,Y (x, y)α

.

For the uniform distribution case, assume that
PX,Y (0, yi) = 1

2 Q̄Y (yi) + δi, PX,Y (1, yi) = 1
2 Q̄Y (yi) − δi,

where δi � Q̄Y (yi). Denote |Y| = M . Define

∆ =

∑
{x,y}∈X×Y PX,Y (x, y)α∑
{x,y}∈X×Y Q̄X,Y (x, y)α

− 1 (25)

≈
2α(α− 1)

∑M
i=1 δ

2
i Q̄

α−2
Y (yi)∑M

i=1 Q̄Y (yi)α
. (26)

As a simple example, further assume that Q̄Y is also uniform.
Then to ensure that Hα(X|Y )→ 1,

α(α− 1)M2δ2i → 0

is required. As α→∞, only truly uniform distribution yields
Hα(X|Y ) = 1.

For the deterministic distribution case, without loss of
generality, assume Q̃X,Y (0, yi) = 0, Q̃X,Y (1, yi) = Q̃Y (yi),
and PX,Y (0, yi) = δi, PX,Y (1, yi) = Q̃Y (yi) − δi for any
yi ∈ Y , where δi � Q̃Y (yi). Denote |Y| = M . Define

∆ =

∑
{x,y}∈X×Y PX,Y (x, y)α∑
{x,y}∈X×Y Q̃X,Y (x, y)α

− 1 (27)

≈

∑M
i=1

[
δαi − αδiQ̃

α−1
Y (yi)

]
∑M
i=1 Q̃Y (yi)α

. (28)

For 0 < α < 1, the difference between δi and Q̃Y (yi) shrinks
by the power-α operation. As α approaches 0,

∑M
i=1 δ

α
i gains

more influence on ∆. When α is small enough, we will have

∆ ≈
∑M
i=1 δ

α
i∑M

i=1 Q̃Y (yi)α
. (29)

In the extreme case when α = 0 and δi > 0 for all i ∈ [M ],
we get ∆ = 1, and Hα(X|Y ) always equals 1. ∆ equals 0 if
and only if δi = 0 for all i ∈ [M ].

IV. CONCLUDING REMARKS

This work has revealed the polarization phenomenon of
conditional Rényi entropies. To apply the results to specific
problems, much work has yet to be done. For example,
estimating conditional Rényi entropies accurately can be a
hard problem when N grows large, and existing approximation
methods for polar code constructions may not be directly ap-
plied. For another example, the polarization rate of conditional
Rényi entropies has not been touched in this paper. We will
leave them for future research.

REFERENCES

[1] E. Arıkan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE
Transactions on Information Theory, vol. 55, no. 7, pp. 3051–3073, 2009.

[2] ——, “Source polarization,” in 2010 IEEE International Symposium on
Information Theory, 2010, pp. 899–903.

[3] ——, “Varentropy decreases under the polar transform,” IEEE Transac-
tions on Information Theory, vol. 62, no. 6, pp. 3390–3400, 2016.
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