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Abstract—This paper introduces the decentralized Pliable Index
CODing (PICOD) problem: a variant of the Index Coding
(IC) problem, where a central transmitter serves pliable users
with message side information; here, pliable refers to the fact
that a user is satisfied by decoding any t messages that are
not in its side information set. In the decentralized PICOD,
a central transmitter with knowledge of all messages is not
present, and instead users share among themselves massages
that can only depend on their local side information set. This
paper characterizes the capacity of two classes of decentralized
complete–S PICODptq problems with m messages (where the
set S Ă rms contains the sizes of the side information sets,
and the number of users is n “

ř
sPS

`
m

s

˘
, with no two users

having the same side information set): (i) the consecutive case
S “ rsmin : smaxs for some 0 ď smin ď smax ď m ´ t, and (ii)
the complement-consecutive case S “ r0 : m ´ tszrsmin : smaxs,
for some 0 ă smin ď smax ă m ´ t. Interestingly, the optimal
code-length for the decentralized PICOD in those cases is the
same as for the classical (centralized) PICOD counterpart, except
when the problem is no longer pliable, that is, it reduces to
an IC problem where every user needs to decode all messages
not in its side information set. Although the optimal code-length
may be the same in both centralized and decentralized settings,
the actual optimal codes are not. For the decentralized PICOD,
sparse Maximum Distance Separable (MDS) codes and vector
linear index codes are used (as opposed to scalar linear codes).

I. INTRODUCTION

A. Motivation

Index coding (IC), first proposed when considering satellite

communication [1], is a simple model to study the impact

of message side information at the receivers in broadcast

communication networks. The IC consists of one transmitter

with m independent messages to be delivered to n users

through an error-free broadcast link. Each user has some

messages as side information available to it and needs to

reliably decode some messages that are not in its side in-

formation set; the desired messages for each user are pre-

determined. In IC, one asks what is the minimum number

of transmissions (i.e., minimum code-length) such that every

user is able to decode its desired messages successfully. In

this paper we are interested in the decentralized pliable index

coding problem, which is motivated by two variants of IC:

Pliable Index CODing (PICOD), and decentralized IC.

The PICOD problem is motivated by the flexibility in

choosing the desired messages for the users in some prac-

tical scenarios, such as online advertisement systems. Firstly

proposed in [2], in the PICODptq there is a single transmitter,

with m message, and n users, with message side information,

which are connected via an error-free rate-limited broadcast

channel, as in IC. Different from IC, in the PICODptq the

desired messages at the users are not pre-determined and each

user is satisfied whenever it can decode any t messages not

in its side information set. This provides the transmitter more

encoding opportunities, as it now encodes based on its own

choice of desired messages for the users. The goal in the

PICODptq is to find the assignment of desired messages that

leads to the smallest possible code-length.

The decentralized IC is motivated by peer-to-peer and ad-

hoc network, where a central controller / transmitter does not

exist and instead communication occurs among peers / users.

The decentralized IC can be seen as a special case of the

distributed IC [5]. In the distributed IC with m messages, there

are 2m ´ 1 servers; each sender has knowledge of a unique

subset of the message set (and can thus only encode based

on its local knowledge) and is connected to the users through

a separate error-free rate-limited link. The decentralized IC is

thus a distributed IC where there are as many servers as users,

and each server has the same message knowledge as one of

the users. The goal for the decentralized IC is to determine

the smallest number of channel uses such that all users are

able to decoded their desired messages.

The decentralized PICOD proposed in this paper is a com-

bination of the (centralized) PICOD and the decentralized IC,

namely, a central transmitter with knowledge of all messages

is not present, and instead users share among themselves

massages that can only depend on their local side information

set. The decentralized PICOD problem is motivated by coded

cooperative data exchange and distributed storage [3].

B. Past Work

Several achievable schemes have been proposed for PICOD,

based on scalar linear codes; the results of [2], [8] show an

exponential code-length reduction for PICOD compared to IC.

For converse results, the optimal code-length under the

restriction that the transmitter can only use linear schemes was

shown in [2] for the oblivious PICODptq, where the transmitter

only knows the size of the side information at the users. In [4],

we used techniques based on combinatorial design to prove

tight converse bounds for some complete–S PICODptq (see

next for a formal definition) problems that generalize of the

oblivious class; in those cases we showed the information

theoretic optimality of scalar linear codes.

The multi-sender IC has been studied in [7], where the

focus was on the “single uniprior” case (where users have only

one single message as side information). The general multi-

sender IC, or distributed IC, was investigated in [5], where

converse bounds (leveraging the submodularity of entropy)
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and achievable bounds (based on composite IC coding) were

proposed; those bounds were numerically verified to match for

the case of symmetric rate and symmetric link capacities in

all settings with no more than four messages; the use of those

bounds in general settings is however problematic because the

number of variables involved is exponential in the number of

servers (thus double exponential in the number of messages).

C. Contributions

In this paper we derive tight information theoretic con-

verse bounds (i.e., no restrictions on the class of codes used

by the users) for two classes of decentralized PICODptq
problems, namely: (i) the complement-consecutive complete-

S PICODptq, and (ii) the consecutive complete-S PICODptq.

The complete–S PICODptq, where S is a subset of r0 : m´ ts
(where m is the number of messages at the transmitter and

t the number of messages to be decoded by each user), is

a system where all side information sets / users with size

indexed by S are present. We say that S is consecutive if

S “ rsmin : smaxs for some 0 ď smin ď smax ď m ´ t, and

complement-consecutive if S “ r0 : m ´ tszrsmin : smaxs for

some 0 ă smin ď smax ă m´t. We characterized the optimal

code-length in those cases in [4] for the centralized PICODptq
case. Here, we examine the decentralized case.

Trivially, a centralized PICODptq has optimal block-length

no larger than that of the corresponding decentralized problem

(because a centralized transmitter can mimic any decentralized

transmission scheme). In this work, we thus start by analyzing

the decentralized version of those PICODptq problems whose

optimal code-length we characterized in [4], and use our

tight past result as a “trivial centralized converse bound.”

Surprisingly, we show that such a “trivial centralized converse

bound” is tight whenever the decentralized PICODptq remains

indeed pliable. More precisely, we show that by using vector

linear codes (in contrast to the simple linear scalar schemes

that are optimal in the corresponding centralized setting [4])

we can achieve the “trivial centralized converse bound” except

for the case where the problem parameters are such that every

user must decode all the messages that are not in its side

information set, that is, the problem becomes a multicast IC.

D. Paper Organization

The rest of the paper is organized as follows: Section II

introduces the system model and related definitions; Section III

summarizes our main contributions; Section IV provides the

proof for consecutive complete–S PICODptq and Section V for

complement-consecutive complete–S PICODptq. Section VI

concludes the paper.

E. Notation

Throughout the paper we use capital letters to denote sets,

calligraphic letters for family of sets, and lower case letters

for elements in a set. For integers 1 ď a1 ď a2 we let ra1 :

a2s :“ ta1, a1 ` 1, . . . , a2u, and ra2s :“ r1 : a2s. A capital

letter as a subscript denotes set of elements whose indices are

in the set, i.e., WA :“ twa : wa P W,a P Au. For two sets A

and B, AzB is the set that consists all the elements that are

in A but not in B.

II. SYSTEM MODEL

A decentralized PICODptq system consists of: (i) n P N

users and no central transmitter. The user set is denoted as

U :“ tu1, u2, . . . , unu. (ii) m P N independent and uniformly

distributed binary messages of κ P N bits each. The message

set is denoted as W :“ tw1, w2, . . . , wmu. (iii) User ui knows

the messages indexed by its side information set Ai Ă rms,
i P rns. The collection of all side information sets is denoted

as A :“ tA1, A2, . . . , Anu, which is assumed globally known

at all users. Note that for a decentralized PICOD problem to

have a solution, one must have Yn
i“1

Ai Ą Aj ,@j P rns, that

is, for every user there must be an unknown message that is

in the side information set of some other users. (iv) An error-

free broadcast link is shared among all users and allows one

user to transmit while all the remaining users receive. (v) The

codeword xκℓ :“ pxκℓ1 , xκℓ2 , . . . , xκℓnq is eventually received

by all users, where ℓ :“
ř

jPrns ℓj and

xκℓj :“ ENCjpWAj
,Aq, @j P rns,

is the encoding function at user uj . (vi) The decoding function

for user uj is

t pwpjq
1

, . . . , pwpjq
t u :“ DECjpWAj

, xℓκq, @j P rns.

(vii) A code is valid if and only if every user can successfully

decode at least t messages not in its side information set, i.e.,

the decoding functions tDECj ,@j P rnsu are such that

PrrDtdj,1, . . . , dj,tu X Aj “ H :

t pwpjq
1

, . . . , pwpjq
t u ‰ twdj,1

, . . . , wdj,t
us ď ǫ,

for some ǫ P p0, 1q. For a valid code, t pwpjq
1

, . . . , pwpjq
t u “

twdj,1
, . . . , wdj,t

u is called the desired message set for user

uj, j P rns. The indices of the desired messages are denoted

as Dj :“ tdj,1, . . . , dj,tu where Dj X Aj “ H,@j P rns.
The choice of desired messages for the users is denoted as

D “ tD1, D2, . . . Dnu. (viii) The goal is to find a valid code

with minimum length, that is, to determine

ℓ‹ :“ mintℓ : D a valid xκℓ for some κu.

In the following we shall focus on the decentralized

complete–S PICODptq, for a given set S Ď r0 : m´ ts. In this

complete–S system, there are n :“
ř

sPS

`
m
s

˘
users, where no

two users have the same side information set, i.e., all possible

users with distinct side information sets that are subsets of size

s of the message set, for all s P S, are present in the system. In

particular, we focus on the consecutive complete-S PICODptq
and the complement-consecutive complete-S PICODptq, where

we say that S is consecutive if S “ rsmin : smaxs for some

0 ď smin ď smax ď m ´ t (i.e., S contains consecutive

integers, from smin to smax), and complement-consecutive if

S “ r0 : m ´ tszrsmin : smaxs for some 0 ă smin ď smax ă
m´ t (note that the set S includes elements 0 and m´ t). We

characterized the optimal centralized code-length in those two



cases in [4] and we examine here the decentralized version.

Note that S “ t0u is not considered since it violates the

condition Yn
i“1

Ai ‰ Aj ,@j P rns.

III. MAIN RESULTS

The main contributions of this paper are as follows.

Theorem 1 (consecutive). For the decentralized complete–S

PICODptq with m messages and S “ rsmin : smaxs for some

0 ď smin ď smax ď m ´ t, the optimal code-length is

ℓ‹ “

$
&
%

p m
m´tq

p m

m´tq´1
t, smax “ smin “ m ´ t,

mintsmax ` t,m ´ sminu, otherwise.
(1)

Theorem 2 (complement-consecutive). For the decentralized

complete–S PICODptq with m messages and S “ r0 : m ´
tszrsmin : smaxs “ r0 : smin ´ 1s Y rsmax ` 1 : m ´ ts for

some 0 ă smin ď smax ă m ´ t, the optimal code-length is

ℓ‹ “ mintm, |S| ` 2t ´ 2u. (2)

Before we give the proof details in Sections IV and V, few

remarks are in order:

1) Surprisingly, Theorem 2 says that, for the same pa-

rameters of pm, t, smin, smaxq, the centralized and the

decentralized settings have the same optimal code-length;

similarly for Theorem 1, except for the case smax “
smin “ m ´ t.

2) Having the same optimal code-length does not necessarily

imply that the same code is optimal in both cases.

In [4], we showed that for the centralized setting simple

scalar linear codes are optimal; in particular, the central

transmitter either sends ℓ‹ distinct messages one by one,

or ℓ‹ random linear combinations of all the messages.

Clearly, the former strategy can be implemented in a

decentralized setting, but not the latter. In this case we

show that vector linear codes are necessary; in particular,

our achievable scheme uses sparse Maximum Distance

Separable (MDS) codes.

3) When necessary to distinguish the optimal code lengths of

the centralized and decentralized setting, we shall use the

notation ℓ‹,cen and ℓ‹,dec, respectively. Note that ℓ‹,dec “
ℓ‹ where ℓ‹ was defined in Section II.

Among all PICOD cases studied in this work, the only

case where the decentralized optimal code-length ℓ‹,dec is

strictly larger than the corresponding centralized optimal

code-length ℓ‹,cen is when smin “ smax “ m ´ t. This is

the only case in centralized PICODptq where ℓ‹,cen “ t.

Since ℓ‹,dec ą t for all decentralized PICODptq (as what

is sent by a user is not useful for that user), our results

show that for the consecutive and complete consecutive

complete–S PICODptq, ℓ‹,dec ‰ ℓ‹,cen if only if ℓ‹,cen “
t; interestingly, this is also the case where the PICOD

problem looses its pliability, that is, it reduces to an IC

problem where every user needs to decode all messages

not in its side information set.

4) Theorems 1 and 2 can be extended to all the centralized

complete–S PICODptq that we have been solved in [4],

which are not reported here because of space limitations.

In those cases too we obtained ℓ‹,dec “ ℓ‹,cen whenever

ℓ‹,cen ‰ t; and ℓ‹,dec “ n
n´1

t if ℓ‹,cen “ t. An intriguing

question is whether this holds true for all complete–S

PICODptq, even those not solved by the technique in [4].

Answering this question is part of ongoing work.

5) The similar proof technique can show that for the de-

centralized PICODp1q where the network topology hy-

pergraph is a circular-arc [4], the optimal code-length

is: ℓ‹ “ 2 if 1-factor does not exists; or ℓ‹ “ p
p´1

,

where p is the maximum size of the 1-factor of the

network topology hypergraph. This serves a tight bound

for the decentralized PICOD beyond the complete–S

case. Finding tight bounds for the general decentralized

PICODptq is one direction for future work.

IV. PROOF FOR THEOREM 1

We split the proof into sub cases. For ℓ‹,cen “ mintsmax `
t,m ´ sminu ă t for the centralized consecutive complete–

S PICODptq, in which case ℓ‹,cen “ ℓ‹,dec “ ℓ‹, we study

separately the cases smax ` t ď m´ smin (Section IV-A) and

t ă m´smin ă smax`t (Section IV-B). The case ℓ‹,cen “ t is

studied in Section IV-C, in which case ℓ‹,cen ă ℓ‹,dec “ ℓ‹ “
p m

m´tq
p m
m´tq´1

t and is only possible for smin “ smax “ m ´ t.

A. Case smax ` t ď m ´ smin

We send smax ` t messages, one at a time. This can be

done in a decentralized setting since each message is in the

side information set of at least one user. Therefore, such a user

can transmit the message to the rest of the users in one channel

use. This achievable scheme is optimal since smax ` t is the

optimal code-length for the corresponding centralized setting.

We thus conclude ℓ‹ “ smax ` t for smax ` t ď m ´ smin.

B. Case t ă m ´ smin ă smax ` t

We show that in this case a decentralized scheme with m´
smin transmissions can satisfy all users; being m ´ smin the

optimal code-length for the corresponding centralized setting,

such a scheme is thus optimal. In the centralized case, the

optimal code involves m ´ smin linearly independent linear

combinations of all the messages, or alternatively an MDS

code; this is not a possible decentralized scheme because at

most smax ` t messages can be used to produce a valid code

(assuming that a user has side information set of size smax

and sends after having decoded t messages).

In the rest of the paper, when describing achievable

schemes, instead of working with messages and codewords

in bits (as done in the description of the channel model

in Section II), we represent each message of κ bits as one

symbols in the finite field F2κ . With an abuse of notation,

we also let xℓ denote the codeword of length ℓ symbols from

the finite field F2κ , and where each symbol corresponds to

a transmission by a user. A linear code for the decentralized

system is thus xℓ “ Gwm, where G is the code generator

matrix of size ℓ ˆ m and wm is the vector of length m

containing all the messages.



For a valid optimal decentralized linear code, we look for a

matrix G “ rC,0s, where 0 is zero matrix of size ℓ‹ ˆ pm´
smax ´ tq with ℓ‹ “ m ´ smin, and where C is a matrix of

size ℓ‹ ˆ psmax ` tq that satisfies two conditions:

1) [C1] each row has at most smax non-zero elements, and

2) [C2] any submatrix of p columns, with t ď p ď ℓ‹, has

rank p / is full rank.

The reason for these conditions is as follows. Each row of G

is the encoding vector used by a user; C1 is because a user

knows at most smax messages (in its side information set). C2

is for successful decoding at the users; once the contribution

of the messages in the side information set has been subtracted

off from the code, each user sees a subset of the remaining

messages encoded by a full rank submatrix of p columns;

the range of p is because each user must decode at least t

messages, thus t ď p, and at most all messages in the code

that are not in the side information, thus p ď ℓ‹.

Note that condition C2 is equivalent to require that all ℓ‹ˆℓ‹

submatrices of G are full rank. This is because any submatrix

obtained by taking a subset of columns of a full rank square

matrix is full rank. Therefore, instead of having to consider all

possible sets of p columns in condition C2, we only look at

submatrix of size ℓ‹ ˆℓ‹, which is the so-called MDS-property

of a linear code of dimension ℓ‹. We show that the desired

matrix G exists as a spare MDS code generator matrix for

sufficiently large κ, that is, for a sufficiently large field size.

We now introduce the “zero pattern” matrix for the spare

MDS code generator matrix. The “zero pattern” matrix Z P
t0, 1upm´sminqˆpsmax`tq of C is a matrix whose entry is 0 if

the corresponding entry in C is 0, and 1 otherwise. Consider

the following Z “ rzijs

zij “

#
1, for 0 ď i ` j pmod psmax ` tqq ď smax ´ 1,

0, otherwise.

Let Zi :“ tj P rsmax ` ts : zij “ 0u be the set of the

zero entries in the ith row, |Zi| “ t,@i P rm ´ smins. Since

smax ` t ą m´ smin, we have Zi ‰ Zj , i ‰ j. Therefore, all

Zi are different “shifted” version of Z1. In XiPPZi there are

|P | ´ 1 “shifts”, which reduce the size of the intersection by

at least |P | ´ 1. We then have the inequality

|P | ` | XiPP Zi| ď |P | ` t ´ p|P | ´ 1q “ t ` 1 ď ℓ‹,

which is known as the “MDS condition”(which is sufficient

for the existence of an MDS generator matrix over some finite

field [6]). Therefore, there exists a matrix C that satisfies

conditions C1 and C2 with the specified “zero pattern” Z.

From [6], a finite field of size m´smin`smax`t´1 suffices.

Since G satisfies condition C1, this code thus can be generated

in a distributed way.

After receiving the codewords of length ℓ‹ “ m´smin, user

ui subtracts off the messages in its side information set Ai

and is left with a linear code for the messages Wrsmax`tszAi
.

Condition C2 guarantees that all users can decode at least t

messages that are not in their side information. Therefore all

users can be satisfied by this code of length m ´ smin. This

concludes the proof for this case.

C. Case smin “ smax “ m ´ t

Let s :“ smin “ smax “ m ´ t. This is the case where

the “trivial centralized converse bound” ℓ‹,cen “ mintm ´
s, s ` tu “ t ď ℓ‹ is not tight, and for which we want to

show ℓ‹ “
tpm

s q
pm

s q´1
ą t “ ℓ‹,cen. In this case, the decentral-

ized PICODptq becomes an actual multicast decentralized IC

problem, we must show both achievability and converse.

1) Converse: An intuitive explanation for the converse

proof is as follows. The n :“
`
m
s

˘
users in the system are

symmetric, i.e., by relabeling the messages we can swap any

pair of users. Therefore all users have the same “chance” 1{n
to be the one who sends part of the overall codeword xℓ.

In the decentralized setting, the part of xℓ sent by a user is

generated based on its own side information set, and such a

transmission cannot benefit the transmitting user. Therefore, at

most a fraction n´1

n
of xℓ can be useful for each user. Since

each transmission can convey at most one message, in order

to let each user decode at least t messages, the total number

of transmissions satisfies n´1

n
ℓ ě t.

We next provide the formal proof for the converse. Let

ℓiκ be the number of bits sent by user ui, i P rns, and

xκℓ :“ pxκℓ1 , xκℓ2 , . . . , xκℓnq be the overall codeword used

for decoding by the users, with ℓ :“
ř

iPrns ℓi. With an abuse

of notation, let xpℓ´ℓiqκ indicate the bits in the transmitted

codeword xℓκ that were not sent by user ui, i P rns.
By Fano’s inequality, with limκÑ8 ǫκ “ 0, we have

ℓκǫκ ě HpWDi
|xℓκ,WAi

q “ HpWDi
|xpℓ´ℓiqκ,WAi

q

“ HpWDi
|WAi

q ´ IpWDi
;xpℓ´ℓiqκ|WAi

q

“ HpWDi
q ´ IpWDi

;xpℓ´ℓiqκ|WAi
q,

Therefore, for @i P rns, we have

pℓ ´ ℓiqκ ě Hpxpℓ´ℓiqκq ě Hpxpℓ´ℓiqκ|WDi
q

ě IpWDi
;xpℓ´ℓiqκ|WAi

q

ě HpWDi
q ´ ℓκǫκ ě tκ ´ ℓκǫκ

and therefore, for large enough κ, by summing the above

inequalities we obtain the converse bound

ℓ ě
nt

n ´ 1
“

`
m
s

˘
`
m
s

˘
´ 1

t. (3)

2) Achievability: The achievability involves message split-

ting and random linear coding. i.e., we use a vector linear code,

in contrast to the scalar linear code used in Section IV-B.

We split each message into f sub-messages, wi “
rwi,1, wi,2, . . . , wi,f s, i P rms. The size of the sub-message

is κ{f bits, which is assumed to be an integer. The parameter

f will be appropriately chosen later. Each sub-message is thus

on the finite field F2κ{f . Each user uses ℓ1 “ fℓ
n

sub-timeslots

(as the messages are split into f pieces, the time slots are split

into f pieces as well) to transmit. In each sub-timeslot the user

transmits a linear combination of all the sub-messages it has in

its side information set, i.e., at sub-timeslot h, user ui transmitsř
gPAi,jPrfs agjphqwg,j , where the coefficients agjphq are on



F2κ{f . The linear code has generator matrix G consisting of

agjphq for g P rms, j P rf s, h P rfℓs, and of size nℓ1 ˆ mf .

Each row of G has at most sf nonzero entries.

For each user, among all nℓ1 sub-timeslots, only pn ´ 1qℓ1

are useful for its decoding since the other ℓ1 sub-timeslots are

transmitted by itself. Therefore, we choose ℓ1 and f such that

pn ´ 1qℓ1 “ pm ´ sqf, n “

ˆ
m

s

˙
, ℓ1 “

fℓ

n
.

For each user, the submatrix of G corresponding to what all

other users have sent needs to be a full rank square matrix of

size pn ´ 1qℓ1 ˆ pm ´ sqf so that each user can successfully

decode. In other words, every submatrix of G formed by

pm ´ sqf columns is full rank. Similarly to the proof in

Section IV-B, the “MDS condition” on its zero-pattern matrix

is as follows

|P | ` | XiPP Zi| ď |P | `

ˆ
pm ´ sq ´ pr

|P |

ℓ1
s ´ 1q

˙
f

ď nℓ1 ` |P | ´ ℓ1 ´
|P | ´ ℓ1

ℓ1
f ď nℓ1.

Therefore the proposed code generator matrix G exists for

some large enough κ. By this scheme each user decodes all

the pm´sqf sub-messages that are not in its side information.

The total number of transmissions by this scheme is

ℓ “
ℓ1

f
n “

1

f

fpm ´ sq

n ´ 1
n “

nt

n ´ 1
, (4)

which coincides with the converse bound in 3. Therefore the

achievability scheme is information theoretically optimal.

V. PROOF FOR THEOREM 2

Also for this decentralized complement-consecutive

complete–S PICODptq, where S “ r0 : m ´ 1szrsmin : smaxs
for some 0 ă smin ď smax ă m ´ t, we need to show

a decentralized achievable scheme that meet the “trivial

centralized converse bound.”

In the centralized case, the achievable scheme consists of

two scalar linear codes: one to serve all the users with side

information of size in r0 : smin ´1s, and the other to serve all

the users with side information of size in rsmax ` 1 : m ´ ts.
Also for the decentralized scheme, we separate the users into

these two groups: U1 “ tui : |Ai| P r0 : smin ´ 1su and

U2 “ tui : |Ai| P rsmax ` 1 : m ´ tsu. The analysis of the

achievability scheme is divided into two parts: smin ´ 1` t ă
smax ` 1 “ m ´ t and the rest.

A. Case smin ´ 1 ` t ă smax ` 1 “ m ´ t

In this case the decentralized scheme is different from the

centralized one. This is because U2 in this case represents a

consecutive complete–S case discussed in Section IV-C, where

the centralized converse bound is not tight. Therefore, we can

not treat the problem of serving the users in U1 and U2 as two

independent subproblems, as the scheme does in centralized

case. The achievability scheme takes two steps:

‚ Step 1: Send messages Wrsmin´1`ts one by one. All users

in U1 are satisfied. smin ´ 1 ` t ě t messages are sent

in this step. Since all users in U2 have side information

sets of size smax ` 1 “ m ´ t, there exists at least one

user in U2 that has been satisfied in the first step.

‚ Step 2: The user in U2 that was satisfied in Step 1 has

the knowledge of all messages and can thus act as the

centralized transmitter of the centralized PICODptq [4],

sending t linearly independent linear combinations of all

messages. Since all users in U2 have t messages not in

the side information, by having t linear independent linear

combinations of all messages, all users in U2 are satisfied.

It thus takes smin ´ 1 ` t ` t “ |S| ` 2t ´ 2 number of

transmissions to satisfy all users.

B. Other Case

The achievable scheme in Section IV-A satisfies the users

in U1 by using smin ´ 1 ` t transmissions. The achievable

scheme in Section IV-B satisfies the users in U2 by using

m´ psmax ` 1q transmissions. Therefore, the total number of

transmissions is smin ´ 1 ` t ` m ´ smax ´ 1 “ |S| ` 2t ´ 2.

Note that ℓ “ m is a trivially achievable number of trans-

missions for the decentralized setting as well, we conclude for

decentralized complement-consecutive complete–S PICODptq
the optimal number of transmissions is ℓ‹ “ mintm, |S| `
2t ´ 2u, which is the same as the centralized setting.

VI. CONCLUSION

In this paper we introduced and found the capacity of some

decentralized complete–S PICODptq problems. For most cases

we found that the optimal code-length for the decentralized

setting is the same as for the centralized one. Among the cases

we have explored, we found that when all users request all

the messages that are not in their side information set then the

decentralized PICOD has a strictly larger optimal code-length

then the centralized one. Whether there are other cases where

the centralized and decentralized settings have the same code-

length, and if there is a fundamental connection between lack

of “pliability” and different code-lengths between centralized

and decentralized settings, is part of ongoing work.
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