
Capacity of Line-of-Sight MIMO Channels
Heedong Do

POSTECH, Korea
Student Member, IEEE

Email: doheedong@postech.ac.kr

Namyoon Lee
POSTECH, Korea

Senior Member, IEEE
Email: nylee@postech.ac.kr

Angel Lozano
Univ. Pompeu Fabra (UPF), Spain

Fellow, IEEE
Email: angel.lozano@upf.edu

Abstract—We establish an upper bound on the information-
theoretic capacity of line-of-sight (LOS) multiantenna channels
with arbitrary antenna arrangements and identify array struc-
tures that, properly configured, can attain at least 96.6% of such
capacity at every signal-to-noise ratio (SNR). In the process, we
determine how to configure the arrays as a function of the SNR.
At low- and high-SNR specifically, the configured arrays revert
to simpler structures and become capacity-achieving.

I. INTRODUCTION

An unrelenting trend in the evolution of wireless
communications is the move to ever higher frequencies, so
as to exploit ever wider bandwidths. The current frontier is
at mmWave frequencies, but researchers already have their
eyes set on sub-terahertz bands where new applications await,
including kiosk information transfers [1], wireless backhaul
[2], and wireless interconnections within datacenters [3].

Another consolidated trend is the use of multiple-input
multiple-output (MIMO) techniques, which, at microwave
frequencies, enable spatial multiplexing. Precisely, the rich
multipath propagation often encountered at these frequencies
acts as a lens that delivers a high-rank channel.

As we move up in frequency, past the mmWave realm and
into sub-terahertz bands, the transmission range necessarily
shrinks and the propagation becomes mostly line-of-sight
(LOS). The multipath lensing effect dwindles. At the same
time, because the wavelength also shrinks dramatically, it
becomes possible to span a high-rank channel based only
on the array apertures themselves. In particular, broadside
uniform linear arrays (ULAs) can give rise to a channel with
all-equal singular values, ideal for spatial multiplexing [6],
provided that the antenna spacing is d =

√
λD/N where λ is

the wavelength, D the transmission range, and N the number
of antennas at either end. With this so-called Rayleigh spacing
within the ULAs, directional signals can be launched and then
resolved at the receiver without cross-talk. At 300 GHz, for
instance, a Rayleigh-spaced 16-antenna ULA with an LOS
range of D = 5 m would occupy 26.2 cm.

With spatial multiplexing as an objective, the antenna spac-
ings that yield all-equal singular values have been determined,
not only for ULAs, but for a variety of array geometries [5],
[7]–[12], and the efficacy of the corresponding transmissions
have been demonstrated experimentally [13]. Spatial multi-
plexing, though, is the optimum transmission strategy only at
high SNR. At low SNR, maximizing the received power is
of essence [4, ch. 5], and that demands beamforming over a

channel whose maximum singular value is as large as possible,
rather than having all-equal singular values [14], [15].

The above considerations suggest that the antenna spacing
within ULAs, and more generally the antenna arrangements,
should depend on the SNR. As a step in this direction, [14]
proposed having three distinct ULA antenna spacings as a
function of the SNR. In parallel, recognizing that both spatial
multiplexing and beamforming are relevant ingredients, works
such as [6], [16] propounded the use of arrays-of-subarrays
(AOSAs). In this paper we show how AOSAs, properly con-
figured, become quasi-optimum from an information-theoretic
standpoint at every SNR.

II. CHANNEL MODEL

Consider an LOS channel with broadside transmit and
receive arrays. The far-field complex baseband channel co-
efficient from the mth transmit to the nth receive antenna is

hn,m =

√
GtGr λ

4πDn,m
e−j

2π
λ Dn,m m,n = 0, . . . , N − 1 (1)

where Dn,m is the distance from the mth transmit antenna to
the nth receive antenna while Gt and Gr are the respective an-
tenna gains. Provided the antenna apertures are small relative
to the range, Dn,m ≈ D such that |hn,m| is approximately
constant across m and n. Only the phase variations need to
be modeled, and this can be done via the normalized matrix

H =

 e−j
2π
λ D0,0 · · · e−j

2π
λ D0,N−1

...
. . .

...
e−j

2π
λ DN−1,0 · · · e−j

2π
λ DN−1,N−1

 , (2)

which, letting σn(·) denote the jth singular value of a matrix,
satisfies

N−1∑
n=0

σ2
n(H) = N2. (3)

We defineH as the set of normalized matrices H produced by
all possible antenna arrangements that respect the broadside
disposition of the arrays and the condition of apertures much
smaller than D. At the receiver,

SNR =
λ2GtGrPt

(4πD)2BN0
(4)

where Pt is the transmit power, B the bandwidth, and N0 the
noise spectral density. For a range D and specific parameters



(wavelength, antenna gains, power, and bandwidth), the SNR
becomes determined. The information-theoretic capacity of a
specific channel H is [4]

C(H,SNR) = max∑N−1
n=0 pn=SNR
pn≥0

N−1∑
n=0

log2

(
1 + pn σ

2
n(H)

)

=

N−1∑
n=0

log2

(
1 +

[
W − 1

σ2
n(H)

]+

σ2
n(H)

)
(5)

with W such that
∑N−1
n=0 pn = SNR and [z]+ = min(0, z).

Achieving C(H,SNR) requires a precoder whose transmit
directions coincide with the right singular vectors of H and
whose power on the nth direction is pn = [W − 1/σ2

n(H)]+,
as well as a linear receiver made of the left singular vectors
of H .

In the setting at hand, the problem of establishing the ca-
pacity broadens to that of identifying the antenna placements
yielding the channel whose individual capacity is largest, i.e.,

C(SNR) = max
H∈H

C(H,SNR). (6)

III. ARRAY STRUCTURES

A. ULAs

The most paradigmatic array structures are ULAs, for
which [11]

hn,m = e−j
2π
λ

√
D2+(ndr−mdt)2

(7)

≈ e−j2πDλ e−jπ
n2

λD d
2
r︸ ︷︷ ︸

RX phase shifts

ej2π
nm
λD drdt e−jπ

m2

λD d
2
t︸ ︷︷ ︸

TX phase shifts

. (8)

The phase shifts across the transmit and receive arrays do not
affect the singular values, and can be easily compensated for,
hence we can concentrate on the remaining antenna-dependent
term, which gives

HULA(N, η) =


ej2πη

0×0
N · · · ej2πη

(N−1)×0
N

...
. . .

...
ej2πη

0×(N−1)
N · · · ej2πη

(N−1)×(N−1)
N

 (9)

where we have introduced

η =
Ndrdt

λD
(10)

as a parameter that compactly describes the ULA configu-
ration. On the one hand, tight antenna spacings correspond
to η � 1. On the other hand, Rayleigh antenna spacings
correspond to η = 1, whereby

HULA(N, 1) =
√
NF ∗N (11)

with FN an N × N Fourier matrix and σ2
n(HULA) = N

for n = 0, . . . , N − 1. The singular vectors of HULA(N, 1)
correspond to spherical waves, orthogonal when launched
from the transmitter and orthogonal at the receiver.

D
<latexit sha1_base64="QefPxpksAVSWDjttUxnvQuzDUFE=">AAAB+HicbVA9SwNBEJ3zM8avqKXNYRCswl0UTBnQwjIB8wHJEfY2k2TJ7t6xuyfEI7/AVns7sfXf2PpL3CRXmMQHA4/3ZpiZF8acaeN5387G5tb2zm5uL79/cHh0XDg5beooURQbNOKRaodEI2cSG4YZju1YIREhx1Y4vpv5rSdUmkXy0UxiDAQZSjZglBgr1e97haJX8uZw14mfkSJkqPUKP91+RBOB0lBOtO74XmyClCjDKMdpvptojAkdkyF2LJVEoA7S+aFT99IqfXcQKVvSuHP170RKhNYTEdpOQcxIr3oz8T+vk5hBJUiZjBODki4WDRLumsidfe32mUJq+MQSQhWzt7p0RBShxmaztCUU07wNxV+NYJ00yyX/ulSu3xSrlSyeHJzDBVyBD7dQhQeoQQMoILzAK7w5z8678+F8Llo3nGzmDJbgfP0CwMGTaA==</latexit>

r subarra
ys

<latexit sha1_base64="s04cvDelEVSqBTfZe3hili9qrlY=">AAACDnicbVDLSsNAFJ3UV62vqLhyM1gEVyWpggU3BTcuK9gHNKFMppN26OTBzI0YQv7BX3Cre3fi1l9w65c4bbOwrQcuHM65l3M5Xiy4Asv6Nkpr6xubW+Xtys7u3v6BeXjUUVEiKWvTSESy5xHFBA9ZGzgI1oslI4EnWNeb3E797iOTikfhA6QxcwMyCrnPKQEtDcwTiZ0b7AB7gkwlHpGSpCofmFWrZs2AV4ldkCoq0BqYP84woknAQqCCKNW3rRjcjEjgVLC84iSKxYROyIj1NQ1JwJSbzd7P8blWhtiPpJ4Q8Ez9e5GRQKk08PRmQGCslr2p+J/XT8BvuBkP4wRYSOdBfiIwRHjaBR5yySiIVBNCJde/YjomklDQjS2keEFe0aXYyxWskk69Zl/W6vdX1WajqKeMTtEZukA2ukZNdIdaqI0oytALekVvxrPxbnwYn/PVklHcHKMFGF+/AlacWw==</latexit>

N/r antennas

<latexit sha1_base64="HvZIMnE8TpUWn/BSq8KAWky1qXU=">AAACD3icbVDLSsNAFJ34rPUVFdy4GSyCq5pUwYKbghtXUsE+oC1lMp20QyeTMHMjlpiP8Bfc6t6duPUT3PolTtssbOuBC4dz7uXee7xIcA2O820tLa+srq3nNvKbW9s7u/befl2HsaKsRkMRqqZHNBNcshpwEKwZKUYCT7CGN7we+40HpjQP5T2MItYJSF9yn1MCRurah7dnCrevcBvYIyREApOS6LRrF5yiMwFeJG5GCihDtWv/tHshjQMmgQqidct1IugkRAGngqX5dqxZROiQ9FnLUEkCpjvJ5P4Unxilh/1QmZKAJ+rfiYQEWo8Cz3QGBAZ63huL/3mtGPxyJ+Eyis1fdLrIjwWGEI/DwD2uGAUxMoRQxc2tmA6IIhRMZDNbvCDNm1Dc+QgWSb1UdM+LpbuLQqWcxZNDR+gYnSIXXaIKukFVVEMUPaEX9IrerGfr3fqwPqetS1Y2c4BmYH39Ah5znF4=</latexit>

per subarra
y

<latexit sha1_base64="VxhimURgiLkUnJSnGm9LkL+04Lw=">AAACDHicbVDLSgNBEJz1GeNrNUcvg0HwFHajYI4BLx4jmAckS5id9CZDZh/M9IrLkl/wF7zq3Zt49R+8+iVOHgeTWNBQVHVTTfmJFBod59va2Nza3tkt7BX3Dw6Pju2T05aOU8WhyWMZq47PNEgRQRMFSugkCljoS2j749up334EpUUcPWCWgBeyYSQCwRkaqW+XeghPmCegqE59phTLJn277FScGeg6cRekTBZo9O2f3iDmaQgRcsm07rpOgl7OFAouYVLspRoSxsdsCF1DIxaC9vLZ8xN6YZQBDWJlJkI6U/9e5CzUOgt9sxkyHOlVbyr+53VTDGpeLqIkRYj4PChIJcWYTpugA6GAo8wMYVwJ8yvlI6YYR9PXUoofToqmFHe1gnXSqlbcq0r1/rpcry3qKZAzck4uiUtuSJ3ckQZpEk4y8kJeyZv1bL1bH9bnfHXDWtyUyBKsr18tK5vy</latexit>

Fig. 1. AOSA featuring r subarrays, each with N/r tightly packed antennas.

B. Uniform AOSAs

A uniform AOSA, illustrated in Fig. 1, consists of r
uniformly spaced subarrays, each with N/r tightly packed
antennas [6], [17]. As the subarrays compose a ULA with
configuration η while each subarray is compact, the channel
equals the Kronecker product of HULA (r, η) with an all-ones
matrix, namely,

HAOSA(r, η,N/r) = HULA (r, η)⊗ 1N
r ×Nr , (12)

which reverts to a tight array for r = 1 and to HULA for
r = N . For Rayleigh subarray spacings specifically, η = 1
and, applying (38),

HAOSA =
√
rF ∗r ⊗ 1N

r ×Nr (13)

=
(√
rIrF

∗
r

)
⊗
(
1N
r ×111×Nr

)
(14)

=
(
Ir ⊗ 1N

r ×1

)√
r
(
F ∗r ⊗ 11×Nr

)
(15)

=

(√
r

N
Ir ⊗ 1N

r ×1

)
︸ ︷︷ ︸

U

N√
r
Ir

(√
r

N
F ∗r ⊗ 11×Nr

)
︸ ︷︷ ︸

V ∗

where we have used (AB)⊗ (CD) = (A⊗C)(B ⊗D). It
can be verified that U∗U = Ir and V V ∗ = IN , indicating
that the columns of U and V give the left and right singular
vectors of HAOSA and that there are r nonzero singular values
with σ2

n = N2/r for n = 0, . . . , r − 1.

IV. CAPACITY UPPER BOUND

We begin by establishing an upper bound on the capacity
over all possible placements of N antennas, a technical result
that provides a benchmark for any achievable scheme. As
detailed in Appendix A, letting

ρ(SNR) =



1 SNR < ζ1

2 ζ1 ≤ SNR < ζ2

3 ζ2 ≤ SNR < ζ3
...
N ζN−1 ≤ SNR

(16)

with ζn a threshold equal to the unique positive solution of

f

(
N2

n2
ζn

)
= f

(
N2

(n+ 1)2
ζn

)
(17)
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Fig. 2. Spectral efficiencies of ULAs with η = 0, 1/
√
N , and 1, for N =

256. Also shown is the capacity upper bound.

given the function

f(x) =
1√
x

log2(1 + x), (18)

we have that

C(SNR) ≤ ρ(SNR) log2

(
1 +

N2

ρ(SNR)2
SNR

)
. (19)

By relaxing ρ into a real-valued parameter, a slightly looser
upper bound can be obtained in explicit form, precisely

C(SNR) ≤


log2

(
1 +N2 SNR

)
SNR < c/N2

N
√

SNR
c log2(1 + c) c/N2 ≤ SNR < c

N log2(1 + SNR) SNR ≥ c
(20)

with c = −1 − 2/W0(−2/e2) ≈ 3.92, given W0(·) as the
principal branch of a Lambert W function.

V. PERFORMANCE OF CONFIGURED ULAS

ULAs adopting three SNR-based configurations were pro-
posed in [14], namely η = 0 for low SNRs, η = 1/

√
N for

medium SNRs, and η = 1 for high SNRs. Shown in Fig. 2 are
the spectral efficiencies of these configurations for N = 256,
computed via (5) and (9), alongside the capacity upper bound.
The approach is seen to be very effective at very low and at
high SNR, less so elsewhere. At SNR = −5 dB, for instance,
only about 55% of the upper bound is attained.

By releasing η and allowing it to take any value in [0, 1],
the upper bound can be hugged very closely (see Fig. 3).
This involves fine-tuning the antenna spacings depending
on the SNR, computing the singular-value decomposition
of HULA(N, η) to obtain the precoding directions and the
receiver, and solving (5) for the transmit powers.

-20 -15 -10 -5 0 5 10
SNR [dB]

0

100

200

300

400

500

600

700

800

900

Sp
ec

tra
l E

ffi
ci

en
cy

 [b
ps

/H
z]

Achievable with continuous 
Upper bound

Fig. 3. Spectral efficiencies of ULAs with η ∈ [0, 1] for N = 256. Also
shown is the capacity upper bound.

VI. PERFORMANCE OF CONFIGURED AOSAS

Now, consider AOSAs with Rayleigh subarray spacings
spawning the channel HAOSA

(
r, 1, N/r

)
. The number of

antennas is N = 2` with ` integer, such that the number of
subarrays r can be any power of two between 1 and 2`, and
for each value the subarrays are balanced at 2`/r antennas.
Then, σ2

n = 22`/r for n = 0, . . . , r − 1 and

C(HAOSA,SNR) = r log2

(
1 +

22`

r2
SNR

)
(21)

achieved by the power allocation pn = SNR/r for n =
0, . . . , r − 1. Over all possible configurations,

CAOSA(SNR) = max
r∈{1,2,...,2`}

r log2

(
1 +

22`

r2
SNR

)
(22)

= max
r∈{1,2,...,2`}

2`f

(
22`

r2
SNR

)
(23)

with f(·) as defined in (17). Since f(·) is unimodal, a value
r is optimum if it is better than its adjacent brethren, r/2 and
2r. The SNR range over which r is better than r/2 and 2r is
delimited by the solutions to

f

(
22`

r2
SNR

)
= f

(
22`

(r/2)2
SNR

)
(24)

and

f

(
22`

r2
SNR

)
= f

(
22`

(2r)2
SNR

)
, (25)

which can be verified to be, respectively, SNR = 21−2`r2 and
SNR = 23−2`r2. Therefore,

CAOSA(SNR) = r(SNR) log2

(
1 +

22`

r(SNR)2
SNR

)
(26)
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Fig. 4. Spectral efficiencies of configured AOSAs for N = 256. Also shown
is the upper bound, and its relaxed version, as well as the average capacity
with random antenna arrangements.

where

r(SNR) =



1 SNR < 23−2`

2 23−2` ≤ SNR < 25−2`

4 25−2` ≤ SNR < 27−2`

...
2` 2 ≤ SNR

(27)

indicates how the AOSAs should be configured, depending on
the SNR. We note that:

• The configuration does not depend on N .
• Beyond SNR = 3 dB, the AOSAs revert to ULAs.

Armed with the upper bound in Section IV, we can now
gauge the optimality of configured AOSAs. It is shown in
Appendix B that the gap to capacity is, in relative terms,

C(SNR)− CAOSA(SNR)

C(SNR)
≤ 1−

√
c/2

log2(1 + c)
log2 3 (28)

≈ 0.034, (29)

meaning that AOSAs can reach, at least, 96.6% of capacity.
Shown in Fig. 4 is the spectral efficiency achievable with

configured AOSAs at N = 256. The envelope of the curves
for r = 8, 16, . . . , 256 indeed tracks the upper bound very
closely at all SNRs. The figure also shows the average capac-
ity that would be achieved if the N antennas were randomly
arranged, at transmitter and receiver, within the respective
apertures (of size corresponding to ULAs with Rayleigh
spacings). The optimization of the antenna placements is
seen to pay off handsomely at medium and high SNRs, and
effecting such optimization via AOSAs is quasi-optimum.

A. Low- and High-SNR Regimes

For SNR ≤ 8/N2, AOSAs reduce to single arrays with
N tightly packed antennas and the ensuing CAOSA(SNR) for
r = 1 meets the upper bound in (19), indicating that

CAOSA(SNR) = C(SNR) = log2

(
1 +N2 SNR

)
(30)

= N2 SNR log2 e+O(SNR2). (31)

In contrast, Rayleigh-spaced ULAs would achieve

CULA(SNR) = N log2(1 + SNR) (32)

= N SNR log2 e+O(SNR2). (33)

An N -fold improvement is obtained in low-SNR capacity,
relative to ULAs designed for high-SNR operation.

For SNR ≥ c, AOSAs reduce to ULAs and CAOSA(SNR) for
r = N meets the relaxed upper bound in (20), indicating that

CAOSA(SNR) = C(SNR) = N log2(1 + SNR) (34)
= N log2 SNR +O(1). (35)

In contrast, tightly packed arrays would achieve

Cpack(SNR) = log2(1 +N2SNR) (36)
= log2 SNR +O(1). (37)

An N -fold improvement is again obtained, this time by virtue
of spatial multiplexing.

VII. SUMMARY

Properly configured, both ULAs and AOSAs are quasi-
optimal for LOS transmissions. However, the latter exhibit
implementational advantages:
• As opposed to N , only r radio-frequency chains are

needed, one per subarray. Within each subarray, analog
phase shifting can be applied.

• As opposed to N × N , the precoder applied to every
transmit symbol takes the form of an r × r matrix.
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APPENDIX A

Combining (5) and (6) we obtain, as starting point,

C = max∑N−1
n=0 σ

2
n=N2

σ2
n≥0

max∑N−1
n=0 pn=SNR
pn≥0

N−1∑
n=0

log2

(
1 + σ2

n pn
)
. (38)

Defining

σ̄2
n =

σ2
n/N

2 + pn/SNR

2
N2 (39)

p̄n =
σ2
n/N

2 + pn/SNR

2
SNR, (40)



we have that the argument of (38) satisfies, by virtue of the
inequality between the arithmetic and geometric means,
N−1∑
n=0

log2

(
1+σ2

n pn
)
≤
N−1∑
n=0

log2

(
1 + N2SNR

2

(
σ2
n

N2 + pn
SNR

)2)

=

N−1∑
n=0

log2

(
1 + σ̄2

n p̄n
)

(41)

under constraints that are preserved, namely
∑N−1
n=0 σ̄

2
n = N2

and
∑N−1
n=0 p̄n = SNR. From the relationship σ̄2

n = N2

SNR p̄n,

C ≤ max∑N−1
n=0 p̄n=SNR
p̄n≥0

N−1∑
n=0

log2

(
1 +

N2

SNR
p̄2
n

)
. (42)

The solution p̄0, . . . , p̄N−1 satisfies the KKT conditions

2 N2

SNRpn

1 + N2

SNRp
2
n

+ µn + λ = 0 and
N−1∑
n=0

pn = SNR (43)

with p̄n ≥ 0, µn ≥ 0, and µnp̄n = 0. For n such that p̄n > 0,
therefore, µn should be zero and (43) can be rewritten as

λN2

SNR
p̄2
n + 2

N2

SNR
p̄n + λ = 0. (44)

This is a quadratic equation, solved (from Vieta’s formula) by
two values p̄1 and p̄2 satisfying p̄1p̄2 = SNR

N2 . The combination
p̄0, . . . , p̄N−1 that maximizes (42) therefore has the form

p̄0 = . . . = p̄k−1︸ ︷︷ ︸
=p̄1

≥ p̄k = . . . = p̄r−1︸ ︷︷ ︸
=p̄2

> p̄r = . . . = p̄N−1︸ ︷︷ ︸
=0

(45)

where kp̄1 +(r−k)p̄2 = SNR; the argument of (42) becomes

k log2

(
1 +

N2

SNR
p̄2

1

)
+ (r − k) log2

(
1 +

N2

SNR
p̄2

2

)
. (46)

Assume that p̄1 6= p̄2, k ≥ 1, and r − k ≥ 1. Then, from

log2(1 + x2) + log2

(
1 +

1

x2

)
≤ 2 log2

(
1 +

(
x+ 1

x

2

)2
)

with equality if and only if x = 1 and inequality for x > 0,
and from the fact that N2

SNR p̄
2
1 · N

2

SNR p̄
2
2 = 1,

k log2

(
1 +

N2

SNR
p̄2

1

)
+ (r − k) log2

(
1 +

N2

SNR
p̄2

2

)
< (k −1) log2

(
1 +

N2

SNR
p̄2

1

)
+(r−k−1) log2

(
1+

N2

SNR
p̄2

2

)
+ 2 log2

(
1 +

N2

SNR

(
p̄1 + p̄2

2

)2
)
. (47)

The right-hand side of (47) is the evaluation of (42) at

p̄0 = . . . = p̄k−2︸ ︷︷ ︸
=p̄1

> p̄k−1 = p̄k︸ ︷︷ ︸
=
p̄1+p̄2

2

(48)

> p̄k+1 = . . . = p̄r−1︸ ︷︷ ︸
=p̄2

> p̄r = . . . = p̄N−1︸ ︷︷ ︸
=0

,

which contradicts (45). For the remaining cases, i.e., p̄1 = p̄2,
k = 0 or r− k = 0, all positive p̄n are identical, giving (19).

APPENDIX B

Considering SNR ∈ [2−2`+1, 23] ⊃ [c/22`, c] suffices since,
as argued in Section VI-A, the gap vanishes elsewhere. The
bound on the relative gap follows from

min
0≤k≤`

(
min

2−2k+1≤SNR≤2−2k+3

CAOSA(SNR)

C(SNR)

)

≥ min
0≤k≤`

 min
2−2k+1≤SNR≤2−2k+3

2`−k log2(1 + 22kSNR)

2`
√

SNR
c log2(1 + c)


=

√
c

log2(1 + c)
min

0≤k≤`−1

(
min

2≤22kSNR≤8

log2(1 + 22kSNR)√
22kSNR

)
=

√
c

log2(1 + c)
min

2≤x≤8

log2(1 + x)√
x

=

√
c

log2(1 + c)

log2 3√
2
.
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