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Abstract

This paper presents a one shot analysis of the lossy compression problem under average distortion constraints. We calculate

the exact expected distortion of a random code. The result is given as an integral formula using a newly defined functional

D̃(z,QY ) where QY is the random coding distribution and z ∈ [0, 1]. When we plug in the code distribution as QY , this

functional produces the average distortion of the code, thus provide a converse result utilizing the same functional. Two

alternative formulas are provided for D̃(z,QY ), the first involves a supremum over some auxiliary distribution QX which has

resemblance to the channel coding meta-converse and the other involves an infimum over channels which resemble the well

known Shannon distortion-rate function.

I. INTRODUCTION

The single shot approach aims to find informational quantities that govern the optimal performance of an operational problems

of interest, e.g., channel coding and lossy compression. In both cases, the problem settings pose a random object that we want

to control. In the channel coding problem this is the random channel which abstracts the medium we want to use to enable

a reliable communication. In the lossy compression this is the source we want to “compress” to a minimum number of bits

subject to a distortion constraint. The single shot approach tries to solve the problem by providing achievable and converse

bounds without any assumption on the random object.

A “good” solution should have the following properties:

1) Tightness: The relation between the achievable and converse bounds should be clarifies and quantified. Preferably, the

gap between the bounds should be “small”.

2) Computation: The bounds should be computable. Since we generally deal with a high dimensional problem space for

which the exact description might not even be feasible, we relax the computability to convexity, i.e., the bounds should

be presented as a minimization of some convex function on some convex domain. For such a problems, symmetries

might solve the problem entirely or substantially reduce the effective size, see e.g.[1, Theorem 20].

3) Generalization: The bounds can be relaxed to other known bounds.

In this paper we deal with the lossy source coding problem. In [2] we presented a general approach to the one-shot coding

problem. In this paper we borrow and extends ideas from [2] and provide a novel analysis of the lossy compression problem.

We derive an achievable bound using random coding and a corresponding converse bound. Both bounds are given in term

of a newly defined functional D̃(z,QY ) where z ∈ [0, 1] and QY denote a distribution over the reproduction space Y . The

functional D̃(z,QY ) is shown to be convex and has similarity to the channel coding meta-converse [3, Theorem 27].

A. Notation

Throughout this paper, scalar random variables are denoted by capital letters (e.g. X), sample values are denoted by lower

case letters (e.g. x) and their alphabets are denoted by their respective calligraphic letters, (e.g. X ).

The set of all distributions (probability mass functions) supported on alphabet Y is denoted as P(Y). The set of all

conditional distributions (i.e., channels) with the input alphabet X and the output alphabet Y is denoted by P(Y|X ). If X

has distribution PX , we write this as X ∼ PX . The uniform probability distribution over [0, 1] is denoted throughout by U .

The probability (expectation) of an event (random variable) A under the distribution PX is denoted by PPX
{A} (EPX

(A))
respectively, e.g. PPX

{X ≥ α} and EPX
(f(X)). In some cases, we abbreviate the notation and write PX {A} instead of

PPX
{A}, e.g. PX (X ≥ α) = PPX

{X ≥ α}. In some cases, we write Eµ (f(X)) where µ is σ−finite measure and not a

probability measure.
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II. PROBLEM SETTING

Let X denote the random variable on X , representing the source we want to compress. The elements of X are the input

symbols. Denote by PX the distribution of X . Let Y denote the set of reproduction symbols. Let d : X × Y → R
+ denote

the distortion function. Any subset C ⊂ Y is a code and the average distortion associated with this code is:

D(PX , C) , EPX
(min
y∈C

{d(X, y)}) (1)

Let:

D(PX , R) , min
C⊂Y:|C|=eR

D(PX , C) (2)

denote the optimal distortion-rate function. The goal is to find upper and lower bounds on D(PX , R).
Throughout this paper we assume that both X and Y are finite sets. Thus the distribution PX is discrete and the distortion

is bounded by some dmax. The results in this paper can be extended quite straight forwardly to rather general alphabets X , Y
and appropriate σ-algebras, as long as the probability distribution PX is well defined. The boundedness of the distortion can

be relaxed to the following: There exist a “small” finite set R ⊂ Y such that EPX
(min
y∈R

d(X, y)) = dmax < ∞.

III. ACHIEVABILITY BOUND

For the achievable argument we use the random coding approach. Let QY ∈ P(Y) denote a given distribution on Y . A

random code of rate R with M = eR + 1 codewords is C = {Y0, . . . , YeR} where each Yi is drawn from QY independently

of the other code words. The average distortion of the random code is:

D(PX , QY , R) , EC (D(PX , C)) (3)

A. pairwise correct probability

In [2] the pairwise error probability was defined as the random variable representing the probability of error given the

sent and received symbols. Here, we define the pairwise correct probability, which represent the probability of drawing a

reproduction symbol that is better than a given reproduction symbol.

Definition 1. For x ∈ X , y ∈ Y and u ∈ [0, 1] Let:

pc,x,y,u , QY {d(x, Y ) < d(x, y)}

+ u ·QY {d(x, Y ) = d(x, y)} (4)

The pairwise correct decoding probability is the random variable: pc,x,y,U where U ∼ U is uniform over [0, 1].

The following proposition summaries the properties we need about the pairwise correct decoding pc,x,y,u:

Proposition 1.

1) For any w ∈ [0, 1] and x there exist y and τ such that:

w = pc,x,y,τ .

2) d(x, y1) < d(x, y2) ⇒ pc,x,y1,U1
≤ pc,x,y2,U2

. If QY (y1) > 0 or QY (y2) > 0 then pc,x,y1,U1
< pc,x,y2,U2

with probability

1.

3) pc,x,Y,U ∼ W where Y ∼ QY and U,W are uniform over [0, 1].

Proof. To prove (1) note that there must exist a y such that:

QY {d(x, Y ) < d(x, y)} ≤ w ≤ QY {d(x, Y ) ≤ d(x, y)}

If QY {d(x, Y ) = d(x, y)} = 0 then we are done with any τ . If QY {d(x, Y ) = d(x, y)} 6= 0 then

τ =
w −QY {d(x, Y ) < d(x, y)}

QY {d(x, Y ) = d(x, y)}
≤ 1

satisfies the requirement. To prove (2):

pc,x,y1,U1
= QY {d(x, Y ) < d(x, y1)}

+ U1 ·QY {d(x, Y ) = d(x, y1)}

(a)

≤ QY {d(x, Y ) ≤ d(x, y1)}

≤ QY {d(x, Y ) < d(x, y2)}

(b)

≤ QY {d(x, Y ) < d(x, y2)}

+ U2 ·QY {d(x, Y ) = d(x, y2)}

= pc,x,y2,U2



If QY (y1) > 0 then QY {d(x, Y ) = d(x, y1)} > 0 thus we have strict inequality in (a). If QY (y2) > 0 we have strict inequality

in (b). To prove (3) let yw and τw be such that:

w = QY {d(x, Y ) < d(x, yw)}

+ τw ·QY {d(x, Y ) = d(x, yw)}

Then:

PQY
{pc,x,Y,U < w}

=
∑

y:d(x,y)<d(x,yw)

QY (y)PQY
{pc,x,y,U < w}

+
∑

y:d(x,y)=d(x,yw)

QY (y)PQY
{pc,x,y,U < w}

+
∑

y:d(x,y)>d(x,yw)

QY (y)PQY
{pc,x,y,U < w}

If d(x, y) ≶ d(x, yw) and QY (y) > 0 then:

pc,x,y,U ≶ w = pc,x,yw,τ

according to (2). Thus the first sum gives QY {d(x, Y ) < d(x, yw)} and the last sum vanishes. If d(x, y) = d(x, yw) and

QY (y) > 0 then:

PQY
{pc,x,y,U < w} = PQY

{pc,x,yw,U < pc,x,yw,τw}

= P {U < τw} = τw

hence the middle sum gives τw ·QY {d(x, Y ) = d(x, yw)}. Combined:

PQY
{pc,x,Y,U < w} = QY {d(x, Y ) < d(x, yw)}

+ τw ·QY {d(x, Y ) = d(x, yw)}

= w

B. Random coding performance

Proposition 1 suggests that for any fixed x we have a correspondence between the elements of Y and the sub interval

[QY {d(x, Y ) < d(x, y)} , QY {d(x, Y ) ≤ d(x, y)}] ⊂ [0, 1]

given by y ⇐⇒ pc,x,y,U . We define the distortion function d on X × [0, 1] according to:

d̃(x, u) , d(x, y), u = pc,x,y,τ (5)

This correspondence is well defined almost everywhere with respect to the pair (QY , U) since if d(x, y1) 6= d(x, y2), and

QY (y1) > 0 or QY (y2) > 0 the support of pc,x,y1,U1
and pc,x,y2,U2

do not overlap with probability 1. Moreover, this mapping

is order preserving, i.e.,

d(x, y1) < d(x, y2) ⇒ pc,x,y1,U1
≤ pc,x,y2,U2

(6)

The following result provides an exact formula for the average distortion of random code.

Theorem 2 (Exact performance of random coding). The average distortion of random code with M = eR+1 codewords {Yi}
drawn from QY is given by:

EPX ,{Yi} (min d(X,Yi)) =

∫ 1

0

D̃(w,QY )G
′
M (w)dw (7)

where: D̃(w,QY ) = w−1 · EPX×QY

(

d(X,Y ) · 1{pc,X,Y,U≤w}

)

and GM (w) = −(1− w)M−1((M − 1)w + 1).

Corollary 3. For any λ < R:

E (min d(X,Yi)) ≤ D̃
(

e−(R−λ), QY

)

+
(

D̃ (1, QY )− D̃
(

e−(R−λ), QY

))

· e−eλ(eλ + 1)

≤ D̃
(

e−(R−λ), QY

)

+ dmax · e−eλ(eλ + 1)



For z ∈ [D̃(0, QY ), D̃(1, QY )] let:

D̃−1(z,QY ) , inf
{

w ∈ [0, 1] : D̃(w,QY ) ≥ z
}

and:

R̃(z,QY ) , − log D̃−1(z,QY ) (8)

R̃(z,QY ) is the “rate distortion” function associated with the prior distribution QY .

Corollary 4. For any QY , let dreq ∈ (D̃(0, QY ), D̃(1, QY )) denote a desired distortion level. There exist a code with distortion

level dreq and rate R such that:

R ≤ min
z<dreq

R̃(z,QY ) + f−1

(

dreq − z

D̃(1, QY )− z

)

≤ min
z<dreq

R̃(z,QY ) + g

(

D̃(1, QY )− z

dreq − z

)

where f(t) = e−et(et + 1) and g(x) = log log(x) + log
(

2
3

)

+ log

(

1 +

√

1 + 9 (2 log(x))
−1

)

Proof of theorem 2:. To calculate the average distortion of a random code with M codewords we proceed as follow:

E (min d(X,Yi))
(a)
= EPX

(E (min d(X,Yi)|X))

(b)
= EPX

(

E

(

min
i

{

d̃(X, pc,X,Yi,Ui
)|X
}))

(c)
= EPX

(

E

(

d̃(X,min
i

{pc,X,Yi,Ui
})
)

|X
)

(d)
= EPX

(

EWM

(

d̃(X,WM )|X
))

(e)
= EWM

(

EPX

(

d̃(X,WM )|WM

))

(f)
=

∫ 1

0

EPX

(

d̃(X,w)
)

fM (w)dw

(g)
= fM (1)D̃1(1)− fM (0)D̃1(0)

−

∫ 1

0

D̃1(w)f
′
M (w)dw

(h)
= M · (M − 1)

∫ 1

0

D̃2(w)w(1 − w)M−2dw

(i)
=

∫ 1

0

D̃2(w)G
′
M (w)dw

where WM is the minimum of M independent uniform random variables, D̃1(w) =
∫ w

0
EX

(

d̃(X, z)
)

dz and D̃2(w) =

w−1 · D̃1(w).

• (a) is the law of total expectation with respect to X .

• (b) follow since d(x, y) = d̃(x, pc,x,y,U) according to (5).

• (c) follow since pc,x,y,U preserve the order induce by d̃ according to (6).

• (d) follow since pc,x,Yi,Ui
are all independent and uniform over [0, 1].

• (e) is again the law of total expectation with respect to X and WM .

• (f) is the expectation according to the p.d.f fM
1. (see (18) in the appendix).

• (g) is integration by parts.

• (h) follow since D̃1(0) = f(1) = 0 and:

f ′
M (w) = −M · (M − 1)(1− w)M−2

• (i) follow since G′
M (w) = M(M − 1)w(1− w)M−2.

1The p.d.f of WM is fM (w) = M · (1− u)M−1



Finlay:

D̃1(w) =

∫ w

0

EPX

(

d̃(X, z)
)

dz

(a)
= EPX ,W

(

d̃(X,W ) · 1{W≤w}

)

(b)
= EPX×QY

(

d̃(X, pc,X,Y,U) · 1{pc,X,Y,U≤w}

)

(c)
= EPX×QY

(

d(X,Y ) · 1{pc,X,Y,U≤w}

)

= w · D̃(w,QY )

where (a) follow since W is uniform over [0, 1]. (b) follow since for each x, pc,x,Y,U is uniform over [0, 1] and (c) is (5).

Proof of corollary 3:. D̃(w,QY ) is an increasing function, Thus:

E (min d(X,Yi)) =

∫ 1

0

D̃(w,QY )G
′
M (w)dw

≤ D̃(u,QY )

∫ u

0

G′
M (w)dw

+ D̃(1, QY )

∫ 1

u

G′
M (w)dw

= D̃(u,QY )

−
(

D̃(1, QY )− D̃(u,QY )
)

GM (u)

since GM (0) = −1, GM (1) = 0 and:

−GM (u) = (1− u)M−1((M − 1)u+ 1)

≤ e−u·eR(u · eR + 1) = e−eλ(eλ + 1)

where u · eR = eλ. The second bound follow since D̃(1, QY ) ≤ dmax.

Proof of corollary 4:. Using dreq = E (min d(X,Yi)) and z = D̃
(

e−(R−λ), QY

)

in corollary 3 we have:

dreq ≤ z + (D̃(1, QY )− z) · f(λ)

Hence:

λ ≤ f−1

(

dreq − z

D̃(1, QY )− z

)

since f is decreasing. The result follow from:

R̃(z,QY ) = R− λ

The second bound follow from the technical lemma 1, given in the appendix.

The standard rate distortion analysis usually employ a “test” channel WY |X that is used for change of measure during the

achievability proof and also serves as the encoding function when the converse is proved. The following Proposition suggest

such a channel to be used in our achievability theorem.

Proposition 5. Let Ww
Y |X=x

, w−1 ·QY · 1{pc,x,Y,U≤w}, i.e.

Ww
Y |X=x(y) = w−1 ·QY (y) · PU {pc,x,y,U ≤ w}

Then Ww
Y |X=x

is a probability distribution over Y and:

D̃(w,QY ) = EPX×Ww
Y |X

(d(X,Y ))

Proof. Ww
Y |X=x is a distribution since:

w = PQY ,U {pc,x,Y,U ≤ w}

= EQY ,U

(

1{pc,x,Y,U≤w}

)



and:

D̃(w,QY ) = EPX×QY

(

d(X,Y ) · w−1 · 1{pc,x,Y,U≤w}

)

= EPX×Ww
Y |X

(d(X,Y ))

IV. CONVERSE BOUND

The channel Ww
Y |X that was suggested in proposition 5 with the proper distribution QY and parameter w = M−1 can serve

as the encoding function as the next proposition show.

Proposition 6. Let C ⊂ Y be a code with M codewords. Let W̃Y |X denote the optimal encoding of the X to C, i.e.

W̃Y |X = argmin
c∈C

(d(X, c))

where ties are broken arbitrary. Let QC
Y distribute uniformly over the codewords, i.e. QC

Y (y) = M−1 if y ∈ C and QC
Y (y) = 0

otherwise. Then:

W̃Y |X=x = WM−1

Y |X=x

Proof. Recall that

pc,x,y,U = QC
Y (d(x, Y ) < d(x, y)) + U ·QC

Y (d(x, Y ) = d(x, y)) .

Case I: QC
Y (d(x, Y ) < d(x, y)) > 0: In this case there exist y′ 6= y such that d(x, y′) < d(x, y). Thus: W̃Y |X=x(y|x) = 0

since x cannot encode to y (y′ produce lower distortion). From QC
Y (d(x, Y ) < d(x, y)) ≥ M−1 it follow that pc,x,y,U > M−1

with probability 1 and WM−1

Y |X=x
(y|x) = 0 as well.

Case II: QC
Y (d(x, Y ) < d(x, y)) = 0: Let:

QC
Y (d(x, Y ) = d(x, y)) = k ·M−1

where k is integer greater than 0. There are k different symbols y1 = y, . . . , yk ∈ Y such that d(x, yi) = d(x, y) and

W̃Y |X=x(·|x) encode x to one of these symbols randomly. Thus:

W̃Y |X=x(y1|x) = · · · = W̃Y |X=x(yk|x) = k−1

in particular, W̃Y |X=x(y|x) = k−1. Since:

pc,x,y,U = U ·QC
Y (d(x, Y ) = d(x, y)) = U · k ·M−1

we have:

PU

{

pc,x,y,U ≤ M−1
}

= PU

{

U · k ·M−1 ≤ M−1
}

= k−1

thus:

WM−1

Y |X=x(y) = M ·QC
Y (y) · PU

{

pc,x,y,U ≤ M−1
}

= k−1

as required.

Theorem 7. For any code C:

D(PX , C) = D̃(M−1, QC
Y )

in particular:

D(PX , R) ≥ inf
QY ∈P(Y)

D̃(e−R, QY )

Proof.

D(PX , C) = EPX×W̃Y |X
(d(X,Y ))

= E
PX×WM−1

Y |X

(d(X,Y ))

= D̃(M−1, QC
Y )

Let:

D̂(z) , inf
QY

D̃(e−z, QY )



Writing the achievable and converse results in terms of D̂(z), we have:

D̂(R) ≤ D(PX , R) (9)

≤ inf
λ<R

{

D̂(R− λ) + dmax · e−eλ(eλ + 1)
}

(10)

This equation exemplify the tightness of our bounds.

V. VARIATIONAL FORMS OF D̃(z,QY )

In this section we present two alternative presentations of D̃(z,QY ). We first recall some definition. The definition of

βα (P,Q) which represent the optimal performance of a binary hypothesis testing between two σ−finite measures P and Q

over a set W :

βα (P,Q) = min
PZ|W :

∑
w∈W

P (w)PZ|W (1|w)≥α

∑

w∈W

Q(w)PZ|W (1|w), (11)

PZ|W : W → {0, 1} is any randomized test between P and Q. The minimum is guaranteed to be achieved by the Neyman–

Pearson lemma. The functional βα (P,Q) has been proved useful for converse results in channel coding and lossy compression,

e.g. [3, Theorem 26], [4, Theorem 8].

The ∞-order divergences between P and Q is:

D∞(P ||Q) , log inf {λ : P (x) ≤ λQ(x), ∀x} (12)

Theorem 8 (Variational forms of D̃(z,QY )). Let w = e−R. Then:

D̃(z,QY )

= sup
QX

βw (QX ×QY , PX ×QY × d(X,Y )) (13)

= inf
WY |X :D∞(PX×WY |X ||PX×QY )≤R

EPX×WY |X
(d(X,Y )) (14)

Corollary 9. The convexity of D̃(z,QY ) with respect to QY readily follows from (13). Since βw (QX ×QY , PX ×QY × d(X,Y ))
is convex with respect to QY according to [1, Theorem 6] and supremum of convex function is convex as well.

Proof. To prove (13), let 1{pc,X,Y,U≤w} denote a (not necessarily optimal) test between QX ×QY and PX ×QY × d(X,Y ).
Since PQY

{pc,x,Y,U ≤ w} = w for any x, it follow that for any QX we have: PQX×QY
{pc,X,Y,U ≤ w} = w:

βw (QX ×QY , PX ×QY × d(X,Y ))

≤ EPX×QY ×d(X,Y )

(

1{pc,X,Y,U≤w}

)

= EPX×QY

(

d(X,Y ) · 1{pc,X,Y,U≤w}

)

Thus:

sup
QX

βu (QX ×QY , PX ×QY × d(X,Y ))

≤ EPX×QY

(

d(X,Y ) · 1{pc,X,Y,U≤u}

)

To show the reverse inequality, we show that there exist Qc
X such that:

βw (Qc
X ×QY , PX ×QY × d(X,Y ))

= EPX×QY

(

d(X,Y ) · 1{pc,X,Y,U≤w}

)

which will complete the proof. We will construct such a Qc
X and show that the optimal likelihood test between Qc

X ×QY and

PX ×QY × d(X,Y ) matches the test 1{pc,X,Y,U≤w}. The likelihood ratio is:

L(x, y) =
PX(x) ×QY (y) · d(x, y)

Qc
X(x)×QY (y)

=
PX(x)

Qc
X(x)

× d(x, y)

and the likelihood ratio test is:

P (z|x, y) = 1{L(x,y)<λ} +
∑

x′

τx′1{L(x,y)=λ,x=x′}

where λ and τx′ are tuned so that:

PQc
X
×QY

{P (z|X,Y ) = 1} = w

For any x there exist yx and τx such that:

w = QY (d(x, Y ) < d(x, yx)) + τx ·QY (d(x, Y ) = d(x, yx))



Define λ and Qc
X :

λ =
∑

x

PX(x) · d(x, yx)

Qc
X(x) = λ−1 · PX(x) · d(x, yx)

Note that Qc
X is probability distribution and:

L(x, yx) =
PX(x)

Qc
X(x)

· d(x, yx) = λ

To show that the tests matches we have to prove:

P {pc,x,y,U ≤ w} = P {P (z|x, y) = 1}

for any x and y. There are 3 cases to consider:

1) d(x, y) < d(x, yx): In this case:

pc,x,y,U ≤ QY (d(x, Y ) ≤ d(x, y))

≤ QY (d(x, Y ) < d(x, yx))

≤ w

thus: P {pc,x,y,U ≤ w} = 1. On the other hand, since:

L(x, y) =
PX(x)

Qc
X(x)

· d(x, y)

<
PX(x)

Qc
X(x)

· d(x, yx)

= λ

we also have: P {P (z|x, y) = 1} = 1.

2) d(x, y) > d(x, yx): In this case:

pc,x,y,U ≥ QY (d(x, Y ) < d(x, y))

≥ QY (d(x, Y ) ≤ d(x, yx))

≥ w

thus: P {pc,x,y,U ≤ w} = 0. On the other hand, since

L(x, y) =
PX(x)

Qc
X(x)

· d(x, y)

>
PX(x)

Qc
X(x)

· d(x, yx)

= λ

we also have: P {P (z|x, y) = 1} = 0.

3) d(x, y) = d(x, yx): In this case

P {pc,x,y,U ≤ w} = P {pc,x,yx,U ≤ w}

= τx

On the other hand, since

L(x, y) =
PX(x)

Qc
X(x)

· d(x, y)

=
PX(x)

Qc
X(x)

· d(x, yx)

= λ

we also have: P {P (z|x, y) = 1} = τx.

Thus, the test 1{pc,x,y,U≤w} matches the likelihood ratio test and is, in fact, optimal.

To prove (14), recall the channel:

W e−R

Y |X=x = eR ·QY · 1{pc,x,Y,U≤e−R}



For any y such that QY (y) > 0:

log
eR ·QY (y) · P

{

pc,x,Y,U ≤ e−R
}

QY (y)
≤ R

Thus: D∞(PX ×W e−R

Y |X ||PX ×QY ) ≤ R and:

D̃(e−R, QY )

≥ min
WY |X :D∞(PX×WY |X ||PX×QY )≤R

EPX×WY |X
(d(X,Y ))

On the other hand, if WY |X satisfy:

D∞(PX ×WY |X ||PX ×QY ) ≤ R

we have WY |X(y|x)PX(x) ≤ eR · QY (y)PX(x) for each x and y. Thus, to get the minimal EPX×WY |X
(d(X,Y )) we

will have to assign the maximal probability to the minimal distortion, i.e. QY (y) · e
R. This is exactly what the assignment

QY · 1{pc,X,Y,U≤e−R} · e
R does which assign QY (y) · e

R for the smallest distortion values until it exhaust the probability to

one.

Let WY |X denote any channel and let QY denote the marginal distribution of WY |X ×PX . Let i(x; y) =
WY |X (y|x)

QY (y) denote

the information density. Note that in theorem 8 we did not require that QY is the marginal distribution. We might have relaxed

the requirement D∞(PX ×WY |X ||PX ×QY ) ≤ R which amounts to i(x; y) ≤ R for each x and y when QY is the marginal

distribution to the requirement that PPX×WY |X
{i(X,Y ) ≤ R− δ} is close to 1.

Theorem 10. Let WY |X such that:

PPX×WY |X
{i(X,Y ) ≤ R− δ} = e−λ

Then:

D̃(e−(R−δ)−λ, QY ) ≤ EPX×WY |X
(d(X,Y )) · eλ

Proof.

EPX×WY |X
(d(X,Y )) ≥ EPX×WY |X

(

d(X,Y )1{i(x,y)≤R−δ}

)

≥ EPX×W ′
Y |X

(d(X,Y )) e−λ

(a)

≥ D̃(e−(R−δ)−λ, QY ) · e
−λ

where W ′
Y |X = eλ ·WY |X1{i(x,y)≤R−δ} is a probability distribution. Note that:

W ′
Y |X(y|x)

QY (y)
=

eλ ·WY |X(y|x)1{i(x,y)≤R−δ}

QY (y)
≤ eR−δ · eλ

Thus D∞(PX ×W ′
Y |X ||PX ×QY ) ≤ R− δ + λ and (a) follow from (14).

VI. EXCESS DISTORTION

The excess distortion is a spacial case of the average distortion that we have analyzed. Let dth denote the target distortion

level, replacing d(x, y) with 1{d(x,y)>dth}. Let:

D̃(R, dth, QY ) = EPX×QY

(

1{d(X,Y )>dth}1{pc,X,Y,U<e−R}

)

(15)

Note that pc,x,y,u is also defined with respect to the “new” distortion:

pc,x,y,u = QY

(

1{d(x,Y )>dth} < 1{d(x,y)>dth}

)

+ u ·QY

(

1{d(x,Y )>dth} < 1{d(x,y)>dth}

)

equation (14) translates in this case to:

D̃(R, dth, QY )

= inf
WY |X :

D∞(PX×WY |X ||PX×QY )≤R

PPX×WY |X
{d(X,Y ) > dth}

and (8) is:

R̃(δ, z,QY )

= inf
WY |X :

PPX×WY |X
{d(X,Y )>z}≤δ

D∞(PX ×WY |X ||PX ×QY )



VII. RELATION TO KNOWN BOUNDS

The information spectrum approach [5, Theorem 5.5.1] provides a general formula for the rate distortion function. The

general formula takes any channel WY |X and with slight abuse of notation, say that the distortion EPX×WY |X
(d(X,Y )) is

achievable for a code with rate R such that PPX×WY |X
{i(x; y) ≤ R} approach 1 where i(x; y) is the information density.

The achievability is proved by the random coding argument where the distribution used to draw the codewords is the marginal

distribution of PX ×WY |X on Y . In this paper (see also [6]) we started with any distribution QY and analyzed the random

code performance with no channel in mind. For the achievable part, theorem 10 provides the link between the functional

D̃(z,QY ) and the elements in the information spectrum formula. The converse follow since a code C with rate R satisfies

D∞

(

PX × W̃Y |X ||PX ×QC
Y

)

= R

where W̃Y |X and QC
Y were defined in the text.

Much attention has been given to the problem of lossy compression with the excess distortion constraint. The tightest results

(to the best of our knowledge) appeared in [6]. The converse bound [6, Theorem 2] was shown to be tighter than [7, Theorem

8]. In [8] the author demonstrated how the bound [7, Theorem 8] can be relaxed to all other bounds presented there.

The approach in [6] for the achievability was to analyze the random coding for a given prior distribution QY and bound

the performance from above using a change of measure from PX × QY to PX ×WY |X where the marginal distribution of

PX ×WY |X with respect to Y does not necessarily matches QY . Later they optimize for a given channel WY |X the best prior

distribution. Thus, their bounds are given as an optimization over the a set of channels. In [6, Theorem 2] the author defined:

M(PXY ) ,
∑

y∈Y

sup
x∈X :PXY (x,y)>0

PY |X(y|x)

and [6, Lemma 4] reads:

inf
QY ∈P(Y)

D∞(PXY ||PX ×QY ) = logM(PXY )

Hence:

inf
QY ∈P(Y)

R̃(δ, dth, QY )

= inf
WY |X :

PPX×WY |X
{d(X,Y )>dth}≤δ

logM(PX ×WY |X)

and our converse bound matches theirs. Their achievability bound (Theorem 2) is slightly tighter than the bound in corollary

4. While their bound reads:

R ≤ min
δ<ǫ

R̃(δ, dth) + log log

(

1− δ

ǫ− δ

)

our bound is:

R ≤ min
δ<ǫ

R̃(δ, dth) + g

(

1− δ

ǫ− δ

)

where:

g(x) = log log(x) + log

(

2

3

)

+ log

(

1 +

√

1 + 9 (2 log(x))
−1

)

.

The difference smaller than 1 nat for all practical cases. Note that, our bound follow from bounding

D̃(z,QY ) ≤ D̃(u,QY )1{z≤u} + D̃(1, QY )1{z>u}

and evaluating the exact formula with this bound. Using the exact formula directly or bound D̃(z,QY ) using more points

would gives tighter bound. Since their achievability also follow from the random coding, obviously the exact formula is tighter.

VIII. PRIOR OPTIMIZATION

The prior optimization problem is the main drawback of our approach. While the optimization problem is convex, we do not

have a close form solution to the important case of memoryless source (and channel in the channel coding case) and this should

be further investigated. In the channel coding case, the prior optimization problem for memoryless channel is “solved” by [9,

Theorem 10] which shows that for memoryless channel, we can resort to memoryless priors. For our functional D̃(z,QY )
(and the one used in the channel coding problem) we do not have such a theorem. Moreover, simulation results show that this

is not even true, and sometimes, prior with memory are better than the memoryless priors.



IX. CONCLUDING REMARKS

In this paper we presented a novel analysis for the lossy compression problem. We have analyzed the general case of average

distortion constraints. We presented tight achievable and converse bounds. Both bounds are given in terms of the functional

D̃(z,QY ) which has resemblance to the meta-converse in channel coding. The problem of finding distribution minimizing

D̃(z,QY ) is still open in general although the D̃(z,QY ) is convex with respect to QY .

APPENDIX

Lemma 1. For any x ∈ (0, 1) let λ be the solution to x = e−eλ(eλ + 1), then:

λ− log(− log(x)) ≤ log(
2

3
) + log

(

1 +

√

1−
9

2 log(x)

)

(16)

λ− log(− log(x)) ≥ − log(2) + log

(

1 +

√

1−
8

log(x)

)

(17)

Proof. Let t = eλ and z = −log(x). Then:

z = t− log(1 + t)

Using: log(1 + t) ≤ t(6+t)
2(3+2t) ([10, Eq. 22]) we have:

z ≥ t−
t(6 + t)

2(3 + 2t)

=
t2

2 + 4
3 t

For t, z ≥ 0 the only solution to: z = t2

2+ 4

3
t

is: t = 2
3z
(

1 +
√

1 + 9
2z

)

. Thus:

z ≥
3t2

2(3 + 2t)
; t, z ≥ 0 ⇐⇒

t ≤
2

3
z

(

1 +

√

1 +
9

2z

)

Hence:

λ = log(t)

≤ log

(

2

3
z

(

1 +

√

1 +
9

2z

))

= log(− log(x)) + log(
2

3
) + log

(

1 +

√

1−
9

2 log(x)

)

The lower bound follow along the same line using log(1 + t) ≥ 2t
2+t

.

Proposition 11. Let Ui denote M independent uniform random variables and let WM = min
i

{Ui}. The c.d.f of WM is:

fM (w) = M · (1− u)M−1 (18)

Proof.

P {WM ≤ w} = 1− P {min
i

{Ui} > w}

= 1−

M
∏

i=1

P {Ui > w}

= 1− (1− w)M

Thus, the p.d.f. of WM is fM (w) = M · (1− u)M−1.
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