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Abstract—Ensemble models are widely used to solve complex
tasks by their decomposition into multiple simpler tasks, each
one solved locally by a single member of the ensemble. Decoding
of error-correction codes is a hard problem due to the curse
of dimensionality, leading one to consider ensembles-of-decoders
as a possible solution. Nonetheless, one must take complexity
into account, especially in decoding. We suggest a low-complexity
scheme where a single member participates in the decoding of
each word. First, the distribution of feasible words is partitioned
into non-overlapping regions. Thereafter, specialized experts are
formed by independently training each member on a single
region. A classical hard-decision decoder (HDD) is employed to
map every word to a single expert in an injective manner. FER
gains of up to 0.4dB at the waterfall region, and of 1.25dB at the
error floor region are achieved for two BCH(63,36) and (63,45)
codes with cycle-reduced parity-check matrices, compared to the
previous best result of [1].

Index Terms—Deep Learning, Error Correcting Codes,
Machine-Learning, Ensembles, Belief Propagation

I. INTRODUCTION

Data-driven applications are essential in scenarios where
mathematical exact models are unknown, or are too com-
plicated to be manually derived [2], [3]. For instance, a
Neural Network (NN) is used in [4] to estimate a tight
lower bound on the mutual information between two high-
dimensional continuous variables. Nonetheless, even where
theoretical models are known, machine-learning models can be
integrated with classical algorithms in order to mitigate non-
linear phenomena and discover high-dimensional and complex
patterns. This is where the space of domain knowledge and the
space of machine-learning intersect.

Lately, active learning [1] was adopted to the Weighted Be-
lief Propagation (WBP) algorithm [5], [6]. The method offered
a trade off: higher decoding gains at inference for the cost of
longer preprocess time solely in training. The intuition for the
additional gains is that not all samples are equally important
for the training of the decoder. The selection of training data
is highly based on domain knowledge, as an expert-guided
solution. This guidance differs the proposed methods from
generic active learning methods that lack specific domain
guidance.

Accordingly, selection of data may prove useful not merely
to a single WBP-model, but to an ensemble of them. The main
intuition behind this divide-and-conquer approach is that com-
bination of multiple diverse members is expected to perform
better than all individual basic algorithms that compose the
ensemble. See Figure 1 for an ensemble of decoders, whose
architecture will be detailed in the next section. This paper
addresses several issues with regard to ensembles:

• How to encourage diversity among all members? Our
approach in Section III-A suggests a partition of the
data distribution, hereafter each member specializes on a
different part of the distribution.

• To which specialized decoder should a received word be
mapped? Section III-B introduces the concept of gating,
discussing how to map any received channel word to the
most-fitting decoder. Exploiting domain knowledge with
an HDD is empirically seen as a reliable prior.

At last, we demonstrate the performance of the proposed
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Fig. 1: Data-Driven Ensemble of Decoders
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methods in Section IV.

II. BACKGROUND

A. Motivation

We outline the motivation for ensemble-decoding by pre-
senting main differences from a more familiar topic - the
list decoding. For example, consider the belief propagation
list (BPL) decoder for polar codes by Elkelesh et al. [7].
All decoders in the BPL run in parallel since ”there exists
no clear evidence on which graph permutation performs best
for a given input” as the authors indicate. Were the decoders
input-specialized, one could simply map each word to a single
decoder, preserving computation resources.

Furthermore, Arli and Gazi [8] suggest adding stochastic
perturbations with varying magnitudes to the received channel
word, followed by applying the same Belief Propagation
(BP) algorithm on each of the multiple copies. In fact, each
BP decoder is introduced with a modified input distribution.
Ambiguity arises with respect to the optimal choices for the
magnitudes of the artificial noises. One would want each
decoder to correctly decode a different part of the original
input distribution, such that the list-decoder covers the entire
input distribution in an efficient manner.

B. Notation

We denote the ith element of a vector v with a subscript vi.
Further, vi,j corresponds to an element of a matrix. However,
denoted with a superscript, v(i) presents the ith member of a
set.

We present all elements of a classical encoder-decoder
network. Let u ∈ {0, 1}k be a message word encoded with
function U : {0, 1}k → {0, 1}V to form codeword c, with k
and V being the information word’s length and the codeword’s
length, respectively. Denote by x the BPSK-modulated (0 →
1, 1 → −1) transmitted word. After transmission through the
AWGN channel the received word is y = x + n, where
n ∼ N(0, σ2I) is the white noise. Next, log-likelihood ratio
(LLR) values are considered for decoding by ` = 2

σ2 · y. At
last, a decoding function F : RV → {0, 1}V is applied to the
LLR values to form the decoded codeword ĉ = F(`). Also,
one usually employs a stopping criterion after each decoding
iteration.

We hereby introduce the components of data-driven ensem-
bles for decoding. All relevant components are depicted in Fig-
ure 1. Consider a decoder F parameterized by weights w, ob-
tained by training F over dataset D until convergence. Notate
this decoder Fw,D. Now, let {Fw(1),D(1)

1 , . . . ,Fw(α),D(α)

α } be
a set of α weighted decoders, each decoder trained on a differ-
ent dataset hence obtaining different parameters. Each decoder
Fw(i),D(i)

i is notated Fi in short. A word entering the ensemble
is first mapped by a mapping function G : RV → {0, 1}α.
Next, decoder i tries to decode ` if G(`)i = 1. As such, G
is referred to as the gating function. After decoding, a score
function C : {0, 1}V → R is employed, used to rank each of
the decoded words. The decoded word maximizing this score
among all valid candidates (a valid candidate is a codeword) is

chosen as the final decoded word. If no valid candidates exist,
all candidates are considered. The output of the ensemble can
be explicitly written as:

ĉ = arg max
ĉ(i),i∈{j:G(`)j=1}

C(ĉ(i)) (1)

ĉ(i) = Fi(`)

We choose G such that for every `, at least one decoder is
active.

C. WBP

The BP [9] is an inference algorithm used to decode
corrupted codewords in an iterative manner. The algorithm
passes messages over the nodes of the Tanner graph until
convergence or a maximum number of iterations is reached.
The nodes in the Tanner graph are of two types: variable and
check nodes. An edge exists between a variable node v and a
check node h iff variable v participates in the condition defined
by the hth row in the parity check matrix H. Nachmani et al.
[5], [6] assigned learnable weights to the BP algorithm. This
formulation unfolds the BP algorithm into an NN, referred
to as WBP. For a comprehensive explanation of the subject,
please refer to [5], [6].

III. ENSEMBLES

Ensembles composed of weighted BP decoders allow for
input-specialized experts. An optimal ensemble of decoders
covers as much of the input distribution as possible, while
minimizing the number of required decoders. We formulate
the ensemble of decoders framework, presenting main com-
ponents:
(A) Data partitions motivated by domain knowledge - how to

exploit domain knowledge in order to partition the input
distribution into similar-context distributions.

(B) Gating function - the choice of a function mapping from
a received word to a distinct decoder.

(C) Combiner mechanism - the ranking of candidate decoded
codewords.

We highly recommend the book [10] and survey [11] for a
tutorial on ensembles in machine-learning.

A. Data Partitions Motivated By Domain Knowledge

The diversity of the ensemble refers to the notion that each
classifier specializes on a specific region of the data distribu-
tion. Rokach [10] indicated that diversity may be obtained by
altering the presentation of the input space (distribution).

Consider the distribution P (e) of binary errors
e = yHD ⊕ c at the channel’s output, where yHD is the
received word after a hard-decision rule (R+ → 0,R− → 1).
Denote by E = {e(1), . . . , e(K)} the set of K observable
binary error patterns, only used in training. We seek a
partition of E into α different error-regions:

E =

α⋃
i=1

X (i) : X (i) ∩ X (j) = ∅,∀i 6= j.



These regions induce α datasets {D(1), . . . ,D(α)} — one
training dataset per decoder — according to the next relation:

D(i) = {`(κ) : e(κ) ∈ X (i)}. (2)

The choice of the above partition is crucial not only to
the performance of the single decoder, but to the generative
capabilities of the overall ensemble. The rest of this section is
devoted to the proposal of two different partitions.

1) Hamming Distance Partition: The Hamming distance
dH is a widely-known metric encapsulating important knowl-
edge - the number of bits positions differed between the hard-
decision of the received word and the correct word. One simple
approach is to partition the errors by the Hamming distance
from the zero-errors vector:

X (i) = {e(κ) : e(κ) has i non-zero bits}.

with the datasets induced as in equation (2). Furthermore, all
patterns e(κ) with more than α non-zero bits are assigned to
X (α).

2) Syndrome-Guided EM Partition: Though the above par-
tition is straightforward, we argue it is also too restrictive. The
number of errors in a word is merely a single feature; one
should consider all latent features responsible for successful
decoding. This, unfortunately, is analytically infeasible.

Instead, we suggest to cluster together similar error patterns
with the expectation-maximization (EM) [12], [13] algorithm.
Each cluster defines an error-region X (i). Then, every decoder
specializes in decoding words with similar errors: ones that
belong to the same cluster. We elaborate on this below.

Let µ(i) ∈ [0, 1]V be a multivariate Bernoulli
distribution corresponding to region X (i). Let R =
{(µ(1), π1), . . . , (µ(α), πα)} be a Bernoulli mixture with πi ∈
[0, 1] being each mixture’s coefficient such that

∑α
i=1 πi = 1.

We assume that each error e is distributed by mixture R:

P (e|R) =

α∑
i=1

πiP (e|µ(i))

where the Bernoulli prior is:

P (e|µ(i)) =

V∏
v=1

(µ(i)
v )ev (1− µ(i)

v )1−ev .

At first, all µ(i) and π are randomly initialized. Then, the
EM algorithm is applied to infer parameters that maximize the
log-likelihood function over K samples:

log (E|R) =

K∑
κ=1

log
(
P (e(κ)|R)

)
. (3)

See Bishop [12] for more details on the EM algorithm.
This clustering is performed once as a preprocess phase.

Upon convergence to some final parameters, region X (i) is
assigned with patterns more probable to be originated from
cluster i than from any other cluster j:

X (i) = {e(κ) : πiP (e(κ)|µ(i)) > πjP (e(κ)|µ(j)),∀j 6= i}.

Thereafter, each D(i) is formed following equation (2).

Proposition 1. Let E be formed of error patterns drawn from α
different AWGN channels σ(1), . . . , σ(α). Let K be the number
of total patterns, where an equal number is drawn from each
channel. Then, for α desired mixture centers and as K tends
to infinity, the global maximum of the likelihood is attained
at parameters µ(i) =

(
Q( 1

σ(i) ), . . . , Q( 1
σ(i) )

)
, Q(·) being the

Q-function.

Proof. We shortly sketch the proof; see Appendix A for further
details. First, the true centers of the mixture were derived,
recalling that the AWGN channel may be viewed as a binary
symmetric channel with a crossover probability of Q( 1

σ(i) ).
Second, the parameterized centers were shown to attain the
global maximum of the likelihood function when identical to
the true centers, similarly to the analysis in [14].

Proposition 1 indicates that though one is inclined to model
the distribution of binary errors at the channel’s output with
a mixture of multivariate Bernoulli distribution, a naive appli-
cation of the EM tends to converge to a trivial solution. This
trivial solution fails to adequately cluster complex classes.

We suggest using the code structure, which can be seen as
a priori knowledge, to find non-trivial latent classes. For each
error, we first calculate the syndrome, s = He. Thereafter,
each index v is given a label in {0, 1} based on the majority
of either unsatisfied or satisfied conditions it is connected to:

qv = arg max
b∈{0,1}

∑
i∈N (v)

1si=b (4)

with N (v) being the indices of check nodes connected to v in
the Tanner graph and 1 denotes the indicator function (which
has value 1 if si = b and 0 otherwise).

Assume each latent class i, which corresponds to a sin-
gle error-region, is modeled with two different multivariate
Bernoulli distributions µ(i,0),µ(i,1). Label qv determines for
each index v it’s Bernoulli parameter µ(i,qv)

v . Under this new
model, the Bernoulli mixture Rsyn is:

Rsyn = {(µ(1,0),µ(1,1), π1), . . . , (µ(α,0),µ(α,1), πα)}

having α latent classes:

P (e|Rsyn) =

α∑
i=1

πiP (e|φ(i))

where:

P (e|φ(i)) =

V∏
v=1

(µ(i,qv)
v )ev (1− µ(i,qv)

v )1−ev .

To derive the new E and M steps, we follow Bishop [12]. We
introduce an α-dimensional latent variable z = (z1, . . . , zα)
with binary elements and

∑α
i=1 zi = 1. Then the log-



likelihood function of the complete data given the mixtures’
parameters is:

E
[

logP (e(1), q(1), z(1), . . . , e(K), q(K), z(K)|Rsyn)

]
=

=

K∑
κ=1

α∑
i=1

Resκ,i

[
log πi+

+

V∑
v=1

(
e(κ)
v logµ

(i,q(κ)v )
v + (1− e(κ)

v ) log(1− µ(i,q(κ)v )
v )

)]
.

The E-step becomes:

Resκ,i =
πiP (e(κ)|φ(i))

P (e(κ)|Rsyn)
, (5)

where Resκ,i ≡ E[z
(κ)
i ] is the responsibility of distribution i

given sample κ.
The new M-step is:

µ(i,b)
v =

K∑
κ=1

1
q
(κ)
v =b

Resκ,ie
(κ)
v

K∑
κ=1

1
q
(κ)
v =b

Resκ,i

, πi =

∑K
κ=1 Resκ,i
K

(6)

with b ∈ {0, 1}. In equation (6), only the indices with active
qv in µ(i,qv) are updated with the new responsibilities. The
data partition that follows this clustering is referred to as the
syndrome-guided EM approach.

B. Gating Function
We consider three gating functions - (i) single-choice gating,

(ii) all-decoders gating and (iii) random-choice gating.
(i) In reality, one does not have full knowledge of e

at the decoder. To compensate for this knowledge-gap, we
propose employing a classical non-learnable HDD between
the channel’s output and the ensemble. In this work, we chose
to work with the Berlekamp-Massey algorithm [15]. The HDD
is employed to output estimated codeword c̃, from which
estimated error ẽ = yHD⊕c̃ is calculated. Then for each `, we
set G(`)j = 1 for index j realizing ẽ ∈ X (j) and G(`)i = 0
otherwise.

(ii) In comparison, the all-decoders gating function simply
assigns G(`)j = 1 for all j. The HDD remains unused. This
gating serves as a baseline: the FER in the single-gating case
is lower-bounded by the FER achievable by employing all
decoders in an efficient manner.

(iii) The second baseline adopted is the random-choice
gating method, which assigns G(`)j = 1 for a random j and
G(`)i = 0 otherwise. Its target is to prove the significance of
the single-choice gating.

C. Combiner Mechanism
The combination of decoded words is only considered in

the case of the all-decoders gating:

Proposition 2. Take the score function C(ĉ(i)) = ĉ(i)`T. Then
the combination rule becomes:

ĉ = arg minĉ(i)∈{ĉ(1),...,ĉ(α)}ĉ
(i)`T (7)

TABLE I: Training Hyperparameters

Hyperparameters Values
Architecture Feed Forward
Initialization as in [5]

Loss Function Binary Cross Entropy with Multiloss
Optimizer RMSPROP
ρt range 4dB to 7dB

From-Scratch Learning Rate 0.01
Finetune Learning Rate 0.001

Batch Size 1000 words per SNR
Messages Range (−10, 10)

This particular score function has greater values for code-
words than for pseudo-codewords (see proposition 2.12 in
[16]). Therefore, it mitigates the effects of the pseudo-
codewords, which are most dominant at the error floor region
as indicated in [17].

IV. RESULTS

We present results of simulating the ensembles based on the
Hamming distance and the syndrome-guided EM approaches
for two different linear codes BCH(63,45) and BCH(63,36).
We use the cycle-reduced (CR) parity-check matrices as in
[18]. Every WBP member is trained until convergence. The
vectorized Berlekamp-Massey algorithm we have used is
based on [19]. Training is done on zero codewords only, due
to the symmetry of the BP (see [6] for further details). We
consider 5-iterations only for BP decoding as the common
benchmark. Syndrome based stopping criterion is applied after
each BP-iteration. The validation dataset is composed of SNR
values of 1dB to 10dB, at each point at least 100 errors are
accumulated.

The number of decoders chosen was α = 3 for both
methods, as adding decoders did not boost performance signif-
icantly. For the Hamming approach, the three regions chosen
were X (1),X (2),X (3). Training is done by finetuning, starting
from weights of the BP-FF in [6], with a smaller learning rate
as specified in Table I. For the syndrome-guided EM approach,
all decoders are trained from scratch, as finetuning yielded
lesser gains. In the training phase, one assumes knowledge of
the transmitted word. Thus, all datasets contained the known
errors (no HDD employed in training). We empirically chose
K = 106, equally drawn from SNR values of 4dB to 7dB.
These SNR values neither have too noisy words nor too many
correct words [20]. Relevant training hyperparameters appear
in Table I.

Figure 2 presents the results of the simulation. One may
observe that our proposed approaches compare favorably to
the previous best results from [1] (the BP-Reliability approach)
up to SNR of 7dB, and surpasses it thereafter. FER gains
of up to 0.4dB at the waterfall region are observed for
both approaches in the two codes. At the error floor region,
the improvement varies from 0.5dB to 1.25dB in the CR-
BCH(63,36), while a constant 1dB is observed in the CR-
BCH(63,45). No improvement is achieved in the low-SNR



(a) CR-BCH(63,36)

(b) CR-BCH(63,45)

Fig. 2: FER comparison: Hamming distance approach on the left side and syndrome-guided EM approach on the right side

regime. We attribute this to the limitation of the model-based
approach, also seen in other model-based approaches [1], [6].

The two methods have non-negligible performance differ-
ence only at SNR of 9dB and 10dB. The Hamming distance
approach surpasses the syndrome-guided EM one in the CR-
BCH(63,36) with the reverse situation in the CR-BCH(63,45).
The gating for the Hamming approach is optimal, as indicated
by the single-choice gating curve that adheres to the all-
decoders lower-bound. The syndrome-guided gating is sub-
optimal over medium SNR values, as indicated by the gap
between the single-choice gating and the all-decoders curves,
having potential left for further investigation and exploitation.

Lastly, comparing the random-choice gating for the two
approaches, one can see that though the random-choice gating
is worse for the syndrome-guided EM ensemble than for the
Hamming distance ensemble, the gains of the two ensembles
are quite similar. This hints that each expert in the EM method
specializes on a smaller region of the input distribution, yet as
a whole these experts complement one another, such that the

syndrome-guided EM ensemble covers as much of the input
distribution as the Hamming distance ensemble. This notion
requires further exploration.

V. CONCLUSIONS AND FURTHER WORK

This paper introduces a novel approach to machine-learning
based channel decoding: the ensemble of decoders. This
ensemble combines classical and trainable decoders in a
hybrid manner. We have shown that remarkable gains may
be achieved using this hybrid approach, therefore encouraging
further research of this direction. Another open question is
how to apply the framework to longer codes, while keeping the
number of decoders moderate. As the complexity of the data
will increase, more sophisticated partitions must be designed.
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APPENDIX

A. Proof Of Proposition 1

The proof is divided to two parts. First, we derive the true
centers of the mixture. Second, we show that the parameterized
centers attain the global maximum of the likelihood function
when identical to the true centers.

Concerning the first part, recall that the symmetric AWGN
can be viewed as a binary symmetric channel (BSC) with
crossover probability of Q( 1

σ(i) ) per bit. In white noise set-
tings, the i.i.d. claim holds, thus the vectorized crossover prob-
abilities are (Q( 1

σ(i) ), . . . , Q( 1
σ(i) )) per word. Lastly, taking

into account that the zero-errors vector is the one transmitted
(as one always transmits a codeword), we can denote µ̄(i) =
(Q( 1

σ(i) ), . . . , Q( 1
σ(i) )) and indeed every error drawn from

channel i is Bernoulli distributed with parameters µ̄(i). This
analysis is valid for each of the α channels separately, hence
R̄ = {(µ̄(1), π̄1), . . . , (µ̄(α), π̄α)} denotes the true mixture
(and see that π̄i = 1

α for all values of i).
Regarding the second part, due to the fact that the log(·)

function is monotonic increasing, one can instead show that
the global maximum is attained for the log-likelihood function.
Let us consider the log-likelihood function of the data samples
given the parameters (equation (3)). At the infinite samples
limit, the log-likelihood becomes:

lim
K→∞

logP (E|R) = E
e∼R̄

[
logP (e|R)

]
.

Now, plugging the entropy H and the KullbackLeibler (KL)
divergence denoted KL:

E
e∼R̄

[
logP (e|R)

]
= −KL(P (e|R̄) ‖ P (e|R))−H(P (e|R̄)).

As we are interested in parameters R, the entropy term can
be omitted:

arg max
R

E
e∼R̄

[
logP (e|R)

]
=

arg min
R

KL(P (e|R̄) ‖ P (e|R)).

At last, as the KL divergence is non-negative, the global
maximum is attained when R contains the same centers as
R̄. Put in different words, µ(i) =

(
Q( 1

σ(i) ), . . . , Q( 1
σ(i) )

)
, ∀i.

This last part is motivated by the analysis in [14].
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