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On Top-k Selection from m-wise Partial Rankings

via Borda Counting
Wenjing Chen, Ruida Zhou, Chao Tian, and Cong Shen

Abstract—We analyze the performance of the Borda counting
algorithm in a non-parametric model. The algorithm needs to
utilize probabilistic rankings of the items within m-sized subsets
to accurately determine which items are the overall top-k items
in a total of n items. The Borda counting algorithm simply counts
the cumulative scores for each item from these partial ranking
observations. This generalizes a previous work of a similar nature
by Shah et al. using probabilistic pairwise comparison data.
The performance of the Borda counting algorithm critically
depends on the associated score separation ∆k between the k-
th item and the (k + 1)-th item. Specifically, we show that if
∆k is greater than certain value, then the top-k items selected

by the algorithm is asymptotically accurate almost surely; if
∆k is below certain value, then the result will be inaccurate
with a constant probability. In the special case of m = 2, i.e.,
pairwise comparison, the resultant bound is tighter than that
given by Shah et al., leading to a reduced gap between the error
probability upper and lower bounds. These results are further
extended to the approximate top-k selection setting. Numerical
experiments demonstrate the effectiveness and accuracy of the
Borda counting algorithm, compared with the spectral MLE-
based algorithm, particularly when the data does not necessarily
follow an assumed parametric model.

I. INTRODUCTION

The problem of rank aggregation has drawn considerable at-

tention due to its diverse applications in information retrieval,

recommending system, and social science; see e.g., [2]–[6].

The issue at hand usually involves a total of n items, where

rankings of the items in certain small subsets are observed,

and a target global feature of the full ranking of the n items

needs to be determined. Initial effort focused on the problem

of constructing a full ranking of the n items that is consistent

with the partial rankings which have been observed in a

deterministic manner [7]. Later research attention has turned

to the probabilistic setting, where instead of deterministic

observations on the ranking of a subset of items, ranking

results are observed following certain probability law.

A well studied case is rank aggregation from pairwise

comparisons under certain parametric models. The Bradley-

Terry-Luce (BTL) model [8] has been adopted by many

existing works, e.g., [9]–[12], [14], where each item has an

unknown underlying score, and the probability distribution of

observing one item ranked over the other is simply a Bernoulli
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distribution parametrized by the underlying scores. Under this

parametric model, the rank aggregation problem essentially

reduces to an estimation problem. Instead of pairwise compar-

isons, Jang et al. [15] studied the generalized setting of using

m-wise probabilistic rankings under the parametric Plackett-

Luce (PL) model to select the top-k items [16].

Algorithms based on explicit parametric models are likely

to perform poorly if the data does not match the model. It

is therefore desirable to use algorithms that do not explicitly

rely on any parametric model, i.e., using a non-parametric

model. In a recent work [13], Shah et al. considered a counting

algorithm in such a setting, which simply keeps track of the

number of times each item wins in pairwise comparisons. It

was shown that the method is accurate and robust for top-k
and approximate top-k selections.

In this work, we extend the study of the non-parametric

model to investigate rank aggregation from probabilistic m-

wise partial rankings. The natural algorithm of choice is the

Borda counting method [17]. In this method, observations of

partial rankings for items within subsets of items are collected.

In each (sampled) observation, the item ranked at the i-th
position within the subset is given a score of βi; the eventual

overall ranking of the items are produced using the cumulative

scores obtained by the items. This method has been used in

democratic elections and sports. Two example scenarios are

as follows (see e.g., [18] and [19]):

• In some sports, the athletes are ranked using their com-

petition results in the events that they participate over

a period of time. For example, results in different heats

at a tournament for bicycle track racing can be used to

select athletes into a national team, or in some sports,

athlete ranking results from multiple tournaments over a

full year can be collected for aggregation to generate an

annual ranking.

• In some election systems, the voters are asked to rank the

candidates, and the eventual election results are produced

using Borda counting for aggregation to find the top

candidate or candidates. Two well known scoring systems

are when the candidate ranked at the i-th position is given

a score of n−i, sometimes called the tournament system,

and when the candidate ranked at the i-th position is given

a score of 1/i, sometimes call the Dowdall system.

We studied the error probability of the Borda counting

method, and establish an almost matching pair of the condi-

tions in a similar manner as those given by Shah et al. [13] for

the pairwise setting. We also show that the difference between

the achievable bound and the converse bound depends on m, as
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well as the choice of the scoring system in the Borda counting

procedure.

Although the main technical tools and approaches mostly

follow that of Shah et al. [13], this generalization is by no

means trivial. In the analysis of the error probability, we

observe that the error probability of the counting procedure

can be upper-bounded differently in the high observation

probability regime and low observation probability regime.

More precisely, Hoeffding’s inequality is more effective for

the former while Bernstein’s inequality is a better choice for

the latter. The bound given by Shah et al. relies only on the

Bernstein’s inequality, and thus the proposed bound is a strict

improvement even in the pairwise setting. The new bound

also leads to a reduced gap between the upper and lower

bounds of the error probability, which is particularly evident

in the asymptotic regime of large n. These results are further

extended to the approximate top-k selection setting with a

similar set of upper and lower bounds. Through numerical

simulations, we observe that the Borda counting procedure is

competitive to the spectral MLE-based algorithm, particularly

in the high observation probability regime and on real-world

data where parametric models may be a mistmatch.

In summary, our main contributions are:

• We generalize the non-parametric model from pairwise

comparisons to m-wise partial rankings. Additionally,

justifications for this general non-parametric model are

provided.

• Second, we establish an upper bound of the error prob-

ability, which is in fact tighter in the pairwise case than

[13]. We also established a lower bound through a more

sophisticated construction.

• Lastly, we conduct numerical study to compare the Borda

counting algorithm with the spectral MLE based algo-

rithm. The results show that the Borda counting algorithm

is both efficient and accurate.

The remainder of this paper is organized as follows. In the

next section, we formally introduce the problem. Section III

presents the upper bound and the lower bound of the error

probability and the proof outlines. In Section IV we generalize

the results in Section III to obtain similar bounds when top-k
selection is allowed within certain Hamming distance. Section

V presents experiment results to illustrate the performance

of the Borda counting-based algorithm in comparison to the

spectral MLE-based algorithm. Technical proofs are deferred

to the appendix.

II. NOTATION AND PRELIMINARIES

In this section, we introduce the ranking data collection

setting, the Borda counting algorithm, and the associated score

in the problem.

A. Probabilistic ranking collection

There are a total of n items indexed by [n] := {1, 2, . . . , n}
in the problem setting. Let m be a positive integer where

2 ≤ m ≤ n. Observations of partial rankings are collected

as follows. For each subset of [n] containing m items, say

A ⊆ [n] with |A| = m, a total of r rounds of data collections

are performed. In each round, a random ranking sample of the

items in A is generated. It is then observed with probability

p ∈ (0, 1], and not observed with probability 1 − p. The

ranking observations in different rounds and for different

subsets of items are generated independently. The underlying

unknown probability distribution that generates the random

ranking samples in the subset A = {v1, v2, . . . , vm} is written

as follows.

Mv1,v2,...,vm := Prob(ranking follows v1, v2, . . . , vm). (1)

In the sequel, we denote the vector (v1, v2, . . . , vm) as ~v, and

write ~v
.
= A to indicate that ~v is a permutation of the items

in the set A. It is clear that
∑

~v
.
=A

M~v = 1. (2)

We have a total of
(

n
m

)

such probability distributions in our

system, one for each subset of A. Note that we do not assume a

given generative model from the full ranking of the items to the

partial rankings, i.e., these
(

n
m

)

distributions are not mutually

constraining. The collection of such probability distributions

is denoted as M.

Example 1. Consider the case n = 4, and m = 3. Therefore

the possible sets of A of cardinality 3 are

{2, 3, 4}, {1, 3, 4}, {1, 2, 4}, {1, 2, 3}. (3)

Suppose r = 2, p = 0.5, then rankings within each of

the subsets above are observed with probability 0.5 in each

round. Suppose for the subset A = {1, 3, 4}, the probability

distribution is

M1,3,4 = 0.35,M1,4,3 = 0.1,M3,1,4 = 0.1,

M3,4,1 = 0.1,M4,1,3 = 0.15,M4,3,1 = 0.2. (4)

Then an observation on the ranking is most likely to be (1, 3, 4)
on this subset. Note that the distribution does not need to

follow a parametrized model, and the probability values are

not known a priori.

B. The Borda counting algorithm

The Borda counting algorithm records the cumulative score

of each item in all probabilistic partial ranking observations,

where in each observation an item receives a score βi when

it is ranked in the i-th position. The scoring vector ~β =
(β1, β2, . . . , βm) is a non-decreasing sequence and we assume

1 = β1 ≥ β2 ≥ ... ≥ βm ≥ 0. The score βi represents the

“weight” or “value” of being ranked in position i. After r
rounds of ranking data collection, the items are then ranked

from top to bottom according to the cumulative scores they

receive; the estimate of the top-k set is thus the set of items

with highest cumulative scores. This set is denoted as S̃k.

The ranking results clearly depend on the particular choice

of the scoring systems, i.e., the β vector. As mentioned earlier,

two popular scoring systems are the tournament-style system

where βi = m−i and the Dowdall systems where βi = 1/i. In

the former system, obtaining the top ranking is less important

than in the latter, and thus if the former scoring system is used
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in an election, candidates ranked with less extreme positions

will be scored relatively high even if they do not stand out

among the candidates. The design of the scoring systems is a

frequent point of contention in election systems and in sports,

and it involves other less understood factors such as human

psychology, which is beyond the scope of this study. We shall

assume the scoring system in our problem setting is fixed

before hand.

Example 2. Continuing our previous example, let us suppose

the ranking observations in the two rounds are

[(2, 1, 3), (2, 3, 1)], (3, 2, 4), (3, 4, 1), (1, 2, 4), (5)

and the scoring system is ~β = (1, 0.5, 0). Note that ranking for

the subset {1, 2, 3} was observed twice, and others are only

observed once. The eventual cumulative scores of the items

are

(1.5, 3, 2.5, 0.5). (6)

Therefore, the ranking of the four items at the end is

(2, 3, 1, 4). The top-2 items would be 2, 3 using the Borda

counting method.

To facilitate subsequent analysis, let us denote the score that

item-a receives in the ℓ-th round in the competition among the

items in A = a ∪ A− ⊆ [n] as X
(ℓ)
a,A− , where A− ⊆ [n] has

cardinality m− 1. After r rounds, the total score received by

item-a is therefore

Wa =
∑

ℓ∈[r]

∑

A−⊆[n]\{a}
X

(ℓ)

a,A− . (7)

In the remainder of this work, we use A to enumerate

subsets of [n] with cardinality m without explicitly stating m
in the notation; similarly, A− is used for those of cardinality

m− 1, and A−− for those of cardinality m− 2.

C. The associated scores

Let us consider the observation collection process more

carefully. In the probabilistic ranking among the items in A
with |A| = m, denote the probability that item-a ranks at the

t-th position in the set {a} ∪ A− as Ra,A−(t), and thus

Ra,A−(t) =
∑

~v
.
={a}∪A−

vt=a

M~v. (8)

Then for each item a, the expected cumulative score is

Sa = p
∑

A−⊆[n]\{a}

m
∑

t=1

βtRa,A−(t). (9)

Since βi ≤ 1, we have

Sa ≤ p
∑

A−⊆[n]\{a}

m
∑

t=1

Ra,A−(t)

≤ p
∑

A−⊆[n]\{a}

1 ≤ p

(

n− 1

m− 1

)

. (10)

We define the associated score, i.e., the expected normalized

cumulative score of an item a as

τa =
1

ρn,m

(

∑

A−⊆[n]\{a}

m
∑

t=1

βtRa,A−(t)

)

, (11)

where the normalization factor ρn,m is

ρn,m =

(

n− 1

m− 1

)

. (12)

We will view the “true” top-k items as the set of k items with

the highest associate scores, denoted as S∗
k .

Using this notation, we can write the probability distribution

of X
(ℓ)
a,A− as

Pr(X
(ℓ)
a,A− = β) =

{

pRa,A−(t) β = βt, t = 1, 2, . . . ,m;

1− p β = 0,
(13)

It is then clear that

E

(

X
(ℓ)
a,A−

)

= p
m
∑

t=1

βtRa,A−(t), (14)

and we thus have

EWa = pρn,mτa, (15)

i.e., the cumulative score in the Borda counting algorithm of

an item a is a scaled unbiased estimator of τa.

It should be noted that in non-parametric settings, the

concept of a “true” ranking can be ambiguous, and the total

ranking based on the associated scores is simply one such

choice. Nevertheless, we do expect that if the data is indeed

generated from a parametric model, the ranking based on the

associated score will be consistent with the ranking generated

by the model. We indeed have the following reassuring result,

whose proof is given in the appendix.

Lemma 1. If the partial rankings samples are produced from

the PL model, then the ranking using the associated scores is

consistent with the ranking of the weight vector, regardless of

the score system ~β being used, as long as it satisfies 1 = β1 ≥
β2 ≥ ... ≥ βm ≥ 0.

The difference between the k-th highest associated score

and the (k + 1)-th highest associated score can be written as

∆k = τ(k) − τ(k+1). (16)

This quantity is important because if it is large, we would

expect the top-k items are easy to find. The same observation

has been made in non-parametric models in prior works for

the pairwise setting [13]. In parametric settings, a similar

definition of the k-th threshold was also adopted in [11] [20].

III. TOP-k SELECTION

A. Main Result

Our main result is a pair of almost matching conditions

regarding the accuracy of the Borda counting-based method.
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Before presenting the main result, we first consider the fol-

lowing set of partial ranking probabilities distributions:

Fk(α) =

{

M ∈ M : ∆k ≥ α

√

logn

rpρn,m

}

. (17)

The probability distributions in the set Fk(α) has a relatively

large ∆k, which intuitively suggests that the top-k items may

be easy to identify. This intuition is made formal in the

following theorems.

Theorem 1. For any α > 0, the probability of choosing

incorrect top-k items using the Borda counting-based method

for any items with M ∈ Fk(α) is upper bounded as

sup
M∈Fk(α)

PM [S̃k 6= S∗
k ]

≤







k(n− k)n− α2

(4−2p) 0 < p ≤ p0,

k(n− k)n
− α2p

(2(1−βm)2 m−1
n−1

+n−m
n−1

) p0 < p ≤ 1,

(18)

where p0 , min
(

1
2 , 1−

√

1− (1 − βm)2m−1
n−1 − 1

2
n−m
n−1

)

.

An outline of the proof for Theorem 1 is provided in Section

III-C, and we give the complete proof in Section VI. From

Theorem 1, we see that the bound behaves differently in the

low observation probability regime (0 < p ≤ p0) and the

high observation probability regime (p0 < p ≤ 1). This is

because the bounds in the two regimes are in fact derived

using different concentration inequalities, which are shown to

be more effective in the respective regimes.

Our next result establishes the fundamental limit of the

score-based method.

Theorem 2. Let n and k be chosen with 2k ≤ n. If α ≤
ᾱ(g,m, ~β) ,

√
2
7 g(n,m, ~β)

√

1
h(n,m)ρn,m

, p ≥ logn
4rh(n,m) , and

n ≥ 7, then the error probability of any estimator Ŝk is lower

bounded as

sup
M∈Fk(α)

PM [Ŝk 6= S∗
k ] ≥

1

7
, (19)

where

g(n,m, ~β) =
n

m!

q
∑

t=1

(βt − βm−q+t)A
q−1
k−1A

m−q−1
n−k−1

h(n,m) =
1
(

m
q

)

[(

k − 1

q − 1

)(

n− k

m− q

)

+

(

k

q

)(

n− k − 1

m− q − 1

)]

,

and q , max(1,m− n+ k) and Ak
n = n!/(n− k)!.

Notice that h(n,m) can also be written as h(n,m) =
nq+k(m−2q)

m! Aq−1
k−1A

m−q−1
n−k−1 . This means that the parameters

g(n,m, ~β) and h(n,m) are roughly in the same order. In

particular, when m−n+k ≤ 1, we have q = 1. The parameters

can be simplified further as

g(n,m, ~β) =
n(β1 − βm)Am−2

n−k−1

m!

h(n,m) =
(n+ k(m− 2))Am−2

n−k−1

m!
.
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Fig. 1: The gap between the upper bound and the lower bound

on α in Theorem 1 and Theorem 2 for different m when

p = 0.2. The notch on the dashed line is where the value of

q changes from m− n+ k to 1.

5 10 15 20 25 30 35 40 45 50 55 60
n

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

m = 2 ([13])
m = 2
m = 5
m = 7

Fig. 2: The gap between the upper bound and the lower bound

on α in Theorem 1 and Theorem 2 for different m when p =
0.4. The drops on the dashed line and the line with asterisks

markers are where the value of p0 changes from p0 ≥ p to

p0 ≤ p.

In Figs. 1, 2, and 3, we plot the gap between the upper

bound and the lower bound on α in Theorem 1 and Theorem 2

for different assignments of p. The score function ~β is chosen

to be of uniform spacing and βm = 0, k = 3. The results in

[13] are also included for reference. It can be seen that the gap

monotonically increases with m in general. The gap between

the forward direction and the converse direction is smaller for

large observation probability p in general, mainly because in

this regime we have p ≥ p0, and the bound in Theorem 1 is

tighter. From Figs. 1, 2, and 3, it can be seen that the gap

on α in our new results is greatly reduced compared with the

results in [13] for the pairwise case.

The proof of Theorem 2 is given in Section VII, which relies

on the application of Fano’s inequality on a set of probability

distributions that are difficult to distinguish for the top-k items.
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Fig. 3: The gap between the upper bound and the lower bound

on α in Theorem 1 and Theorem 2 for different m when p = 1.

B. Analysis of the Error Probability Bounds

To develop a better understanding of our main result, we

return to the special case of m = 2 and compare our new

bound with the one derived in [13]. For this case, (β1, β2) =
(1, 0), and it is clear that pρn,m = p(n − 1). We have the

following observations.

1) Theorem 1 for m = 2 is stronger than the bound in the

forward direction in [13]. Theorem 1 can be simplified

to produce the following set

Fk(α) =

{

M ∈ M : ∆k ≥ α

√

logn

rp(n− 1)

}

. (20)

The result in [13] has a slightly different definition of

∆k without the normalization, which can be directly

translated into our notation, and it induces the following

set F
(1)
k (α)

F
(1)
k (α) =

{

M ∈ M : ∆k ≥ α

√

logn

rp(n− 1)

√

n

n− 1

}

.

The error probability bound given in [13] is that when

α ≥ 8,

sup
M∈F

(1)
k

(α)

PM [S̃k 6= S∗
k ] ≤ n−α2/4+2 ≤ n−14. (21)

It is easy to verify that F
(1)
k (α) ⊆ Fk(α). Thus, in order

to show Theorem 1 is stronger than the result in [13] for

m = 2, we only need to show our error probability is

smaller than the right hand side of (21). For this purpose,

we assume α ≥ 8. In the regime 0 < p ≤ p0, we have

k(n− k)n− α2

(4−2p) ≤ n−α2/4+2, (22)

since p > 0. In the regime p0 < p ≤ 1, and for the case

where n ≥ 3, we have p0 = 1−
√

1− n
2(n−1) . Then

k(n− k)n
− α2p

(2(1−β2)2
m−1
n−1

+
n−m
n−1

)

= k(n− k)n
− α2

2(1+
√

1− n
2(n−1)

)

≤ n−α2/4+2. (23)

When n = 2, p0 = 1
2 , the bound in (23) also holds.

We thus come to the conclusion that in both regimes, the

bounds on the error probability in Theorem 1 are stronger

than that in [13].

2) The bound in Theorem 2 for m = 2 is equivalent to the

converse direction result given in [13]. When m = 2, the

assumptions in Theorem 2 reduce to α ≤ 1
7

√

n
n−1 , and

we have p ≥ logn
2rn . It implies that the conditions and the

bound given in Theorem 2 matches precisely those given

in the corresponding converse in [13], after taking into

account the slightly different definition of ∆k between

ours and [13].

3) Theorems 1 and 2 together translate to a reduced gap

between the upper bound and the lower bound on α
than the previous best result in [13]. When p is not

too small and n > 7, the result given in [13] can

be understood as follows: when α ≤ 1/7, the error

probability of Borda counting-based method suffers from

a large probability of error (larger than 1/7), and when

α ≥ 8, the error probability becomes small (less than

n−14, i.e., diminishing in n and extremely small when

n is moderately large). Because of the refined bounds

in Theorem 1, we can reduce the gap further when

keeping the probability of error the same as in [13]. In

the low observation probability regime, it is clear that

when α ≥ 4
√
4− 2p (i.e., a value strictly less than 8), the

error probability is less than n−14; in the high probability

regime where p ≥ p0 = 1 −
√

1− n
2(n−1) ≥ 1−

√

1/2,

Theorem 1 states that α ≥ 4
√

n/p(n− 1) suffices. In

both cases, the gaps between the upper bounds and the

lower bounds on α are reduced, although they do not yet

completely match.

4) The asymptotic gap when n → ∞ can be identified as

follows. If we allow α to be chosen such that

sup
M∈Fk(α)

PM [S̃k 6= S∗
k ] → 0 (24)

in the result of [13], then it is clear that we need α >
2
√
2, while the lower bound remains α ≤ 1/7. With the

result in Theorem 1, we can refine the upper bound to be

α >

{

2
√
2− p 0 < p ≤ p0

√

2/p p0 < p ≤ 1
, (25)

and thus in both regimes the asymptotic gap on α for the

phase change is reduced.

For general m, we can similarly seek the lower bounds on

α, such that the error probability is less than n−γ .

1) For fixed γ (e.g., γ = 14 as in the case m = 2), it can
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be verified that

α >

{√

(2 + γ)(4 − 2p) 0 < p ≤ p0
√

(2+γ)
p (2(1− βm)2m−1

n−1 + n−m
n−1 ) p0 < p ≤ 1

,

(26)

2) For the asymptotic case we can choose γ → 0, then the

same condition as in (25) drives the error probability to

zero when n → ∞.

C. Proof Outline of Theorem 1

Theorem 1 is essentially the combination of the two bounds

in the two corresponding regimes, which are given as two

propositions below.

Proposition 1. For any α > 0 and p ∈ (0, 1], the probability

of choosing incorrect top-k items using the Borda counting-

based method for any items with M ∈ Fk(α) is upper

bounded as

sup
M∈Fk(α)

PM [S̃k 6= S∗
k ] ≤ k(n− k)n

− α2p

(2(1−βm)2 m−1
n−1

+n−m
n−1

) .

(27)

Proposition 2. For any α > 0 and p ≤ 1
2 , the probability of

choosing incorrect top-k items using the Borda counting-based

method for any items with M ∈ Fk(α) is upper bounded as

sup
M∈Fk(α)

PM [S̃k 6= S∗
k ] ≤ k(n− k)n− α2

(4−2p) . (28)

Detailed proofs of these propositions can be found in

Section VI. We are now ready to prove Theorem 1.

Proof of Theorem 1. Notice that the statement that the bound

in Proposition 2 is tighter than that in Proposition 1 is

equivalent to

p

(2(1− βm)2m−1
n−1 + n−m

n−1 )
≥ 1

(4 − 2p)
, (29)

which can be simplified to

p2 − 2p+
(2(1− βm)2 m−1

n−1 + n−m
n−1 )

2
> 0. (30)

Since p ∈ [0, 1], we have p ≤ 1 −
√

1− (1− βm)2 m−1
n−1 − 1

2
n−m
n−1 . Combining the condition

p ≤ 1
2 in Lemma 2, we obtain the result that when

p ≤ p0 = min

{

1

2
, 1−

√

1− (1− βm)2
m− 1

n− 1
− 1

2

n−m

n− 1

}

,

(31)

the bound in Lemma 2 holds and it is tighter than that in

Lemma 1. On the other hand, when p ≥ p0, the bound in

Lemma 1 holds and is tighter. This completes the proof.

IV. APPROXIMATE TOP-k SELECTION

In the previous section, we consider the exact top-k selec-

tion problem. In many cases, it may be sufficient to identify

the top-k set approximately, which we study in this section.

This approximate setting has also been considered previously

in [13] for the special case of m = 2.

A. Main Results

First, we define

Fk,h(α) =

{

M ∈ M : ∆k,h ≥ α

√

logn

rpρn,m

}

, (32)

where ∆k,h := τ(k−h) − τ(k+h). Comparing Fk,h(α) with

Fk(α) in (17), it can be seen that the only difference is that ∆k

in (17) is replaced by ∆k,h, i.e., it was for the case ∆k,0 = ∆k.

We denote the Hamming distance between two subsets A,B
of [n] as

DH(A,B) = |{A ∪B} \ {A ∩B}| . (33)

Theorem 3. For any α > 0, we have

sup
M∈Fk,h(α)

PM [DH(S̃k,S∗
k) > 2h]

≤







(k − h)(n− k − h)n− α2

(4−2p) 0 < p ≤ p0

(k − h)(n− k − h)n
− α2p

(2(1−βm)2
m−1
n−1

+
n−m
n−1

) p0 < p ≤ 1

,

(34)

where p0 has the same definition as in Theorem 1, S̃k is the

top-k estimate generated by the Borda-counting algorithm.

Theorem 4. Let ν1, ν2 ∈ (0, 1) be two constants such

that 2h ≤ 1
1+ν2

min
{

n− k, k, n1−ν1
}

. In the regime p ≥
logn

4h(n,m)r , for any α ≤
√
2

14 g(n,m, ~β)
√

ν1ν2
h(n,m)ρn,m

, any esti-

mator Ŝk has an error probability lower bounded by

sup
M∈Fk,h(α)

PM [DH(Ŝk,S∗
k) > 2h] ≥ 1

7
, (35)

for any n that is larger than a (ν1, ν2)-dependent constant

c(ν1, ν2), and q , max(1,m− n+ k).

Consider again the special case m = 2: it can be verified

that Theorem 3 is slightly stronger than the corresponding

result in [13], and Theorem 4 is precisely the same.

B. Proof Outlines of Theorems 3 and 4

We denote the upper bound of ranking item a lower than

item b as P . Theorem 3 is in fact a direct consequence of

Theorem 1. To see this, note that Theorem 1 implies that

with probability at least 1 − (k − h)(n − k − h)P , S̃k ranks

every item in {1, ..., k − h} higher than every item in the set

{k + h+ 1, ..., n}. Thus, we have either S̃k ⊆ [k + h] or

[k − h] ⊆ S̃k . Either case would lead to |S̃k ∩ [k]| ≥ k − h,

thereby proving Theorem 3.

To prove Theorem 4, we follow the approach in [13]. The

following lemma is instrumental in the proof.

Lemma 2 (Shah et al. [13]). In the regime 2h ≤
1

ν1+ν2
min

{

n1−ν1 , k, n− k
}

for some constants ν1 ∈ (0, 1)
and ν2 ∈ (0, 1), and when n is larger than a (ν1, ν2)-
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dependent constant, there exists a subset b1, ..., bL ⊆ {0, 1}n/2
with cardinality L ≥ L∗ , e

9
10ν1ν2h logn, such that

DH(bj , 0) = 2(1 + ν2)h, DH(bj , bk) > 4h

for all j 6= k ∈ [L].

It was shown in [13] that constructing L∗ different proba-

bility distributions satisfying the two properties below would

prove Theorem 4 when m = 2.

1) For every i ∈ [L∗], let Si
k ⊆ [n] denote the set of top-k

items under the i-th distribution. Then for every k-sized

set S ∈ [n],

L
∑

i=1

1(DH(S,Si
k) ≤ 2h) ≤ 1. (36)

2) If the underlying distribution is chosen uniformly at

random from this set of L∗ distributions, then any

estimator that attempts to identify the underlying

distribution i ∈ [L∗] errs with probability at least 1− 1
7 .

We follow the approach in [13] to construct L∗ different

k-sized subset of [n]. For each i ∈ [L∗], let Bi denote

a [2(1 + ν2)h]-sized subset of
{

n
2 + 1, ..., n

2

}

. The items

in Bi correspond to the 2(1 + ν2)h positions being 1 in

the i-th string as specified by Lemma 2. Define the sets

Ai = {1, ..., k − 2(1 + ν2)h}. The k-sized subset Si
k is

then constructed as Si
k = Ai ∪ Bi, which is valid since

2h ≤ 1
1+ν2

k. By Lemma 2, for any distinct i1, i2 ∈ [L], we

have DH(Ai1 ∪Bi1 , Ai2 ∪Bi2) ≥ 4h+1. This implies that the

condition (36) is satisfied, since otherwise the existence of a

set S that makes the LHS of (36) greater than 1 would make

the two corresponding sets Si1
k and Si2

k differ by strictly less

than (4h+ 1).

We now construct L∗ probability distributions. For every i ∈
[L∗] and the k-sized subset Si

k given above, let the distribution

M i
~v be as in (59), with the conditions replaced by

• C1: ~v1:q ⊆ Si
k and ~vq+1:m ⊆ [n] \ Si

k;

• C2: ~v1:m−q ⊆ [n] \ Si
kand ~vm−q+1:m ⊆ Si

k.

This leads to

∆k,h = ∆k =
g(n,m, ~β)

ρn,m
δ. (37)

For any i1, i2 ∈ [L∗], an upper bound for the Kullback-

Leibler divergence between two probability distributions is

needed. For any A ⊆ [n] where |A| = m, P
i1(V

(ℓ)
A ) 6=

P
i2(V

(ℓ)
A ) only if ∃j ∈ A, such that j ∈ Bi1 ∪ Bi2 . In The-

orem 2, we have shown that DKL(P
i1(V

(ℓ)
A )||Pi2(V

(ℓ)
A )) ≤

(

m
q

)(−1) 8δ2

1−δ2 , from which it follows that

DKL(P
i1 ||Pi2) ≤ 4prh(n,m)(1 + ν2)h

8δ2

1− δ2
. (38)

Under the assumptions on α and p, it can be verified straight-

forwardly that δ ≤
√
2
7 , from which it follows that

DKL(P
i1 ||Pi2) ≤ 3

4
ν1ν2h logn. (39)

Suppose that the underlying distribution is drawn uniformly at

random from the constructed set, and the index is i∗. Using

Fano’s inequality, any estimator î∗ must have error probability

lower bounded by

P(î∗ 6= i∗) ≥ 1−
3
4ν1ν2h logn+ log 2

9
10ν1ν2h logn

≥ 1

7
. (40)

This establishes property 2) for the distributions. The proof of

Theorem 4 can now be completed straightforwardly along the

same line as in [13].

V. NUMERICAL RESULTS

In this section, we evaluate and compare the performances

of three algorithms, including the proposed Borda counting-

based algorithm, via numerical simulations on both synthetic

data and real-world data.

A. Algorithms for Comparison

We compare three algorithms:

1) Borda counting-based algorithm, which is the algo-

rithm studied in this paper. In the experiments we need

to specify the score functions β, and we consider m+ 4
different score functions as given in (41). The subscripts

in the definitions represent the positions of the items in

the ranking. For example, β̄
(i)
j is the score assigned to the

item ranked in the j-th position under the score function

β̄(i). Among these score functions, β̃(i) has the first i
positions set as 1, and other positions set to zero. The

score functions β̌(1) and β̌(2) are inversely proportional

functions of the ranking positions j, the score functions

β̄(1) and β̄(2) are in linear forms, and β̂ is in a quadratic

form.

β̃
(i)
j = 1(j ≤ i), j ∈ [m], i ∈ [m− 1]

β̌
(1)
j =

2m− 2

j +m− 2
− 1, j ∈ [m]

β̌
(2)
j =

1

j
, j ∈ [m]

β̄
(1)
j = 1− j − 1

m− 1
, j ∈ [m]

β̄
(2)
j = 1− j − 1

m
, j ∈ [m]

β̂j =
m2 − j2

m2 − 1
, j ∈ [m]. (41)

2) Borda counting-based algorithm with normalization,

which is similar to the first method, with only one

difference. Here the score obtained from the comparisons

of the same subset is normalized by the number of

observed comparisons for this subset. More precisely, the

score of any item a is

Sa =
∑

A−⊆[n]\{a}

( 1

ZA + 1

∑

ℓ∈[r]

X
(ℓ)
a,A−

)

, (42)

where ZA is the number of observed comparisons for the

set A.
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Fig. 4: Error rates of different β assignments

3) Spectral MLE-based algorithm, which was proposed

in [20]. The spectral MLE based algorithm converts the

m-wise comparison data into pairwise comparison data,

and then uses the pairwise spectral MLE algorithm on

the generated data to select the top-k items.

B. Results with Synthetic Data

We generate the data with n = 10 total items and m = 4
items participating in each comparison. The underlying prob-

ability distribution is based on the well-known Plackett-Luce

(PL) model and a noisy variant of the model, as described in

the following.

1) Plackett-Luce model. See Definition 1 We define the

weight vector ~w = (w1, w2, ..., wn), where wi is the

weight of item i. We use the two kinds of weight

assignments ~w(1) and ~w(2) in our simulation:

w
(1)
i = 15 + i, i ∈ [n]

w
(2)
i = 1.1i, i ∈ [n]. (43)

Notice that by Lemma 1, the ranking given by the

associated scores is indeed consistent with the ranking of

the underlying weight vector, therefore, it can be viewed

as the ground truth.

2) PL model with noise. We create the underlying distri-

bution by first applying the PL model with weights in

equation (43), and then we add some Gaussian noise for

each permutation of each m-wise group.

Mv1,v2,...,vm = M~v = max

{

m
∏

k=1

fk(~v) + ǫ~v, 0

}

, (44)

where ǫ~v ∼i.i.d N (0, σ2). Normalization is then

enforced to ensure
∑

~v
.
=A Mv1,v2,...,vm = 1.

We first evaluate the performance of Borda counting-based

algorithm and Borda counting-based algorithm with normal-

ization under different assignments of score functions β as

in equations (41). We generate the partial ranking data with

observation probability p = 0.8, and the total number of

comparisons for each m-wise group r = 50. The under-

lying distribution follows the PL model with weight vector
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(b) Results of different p (PL model with noise, σ = 0.025)

Fig. 5: Error rates of three algorithms under different value of

p with underlying weight ~w = ~w(1).

~w = ~w(1). The simulation results are presented in Figure 4. It

can be seen that the score assignment β̄(1) has a lower error

rate than others, and thus we fix β̄(1) in the rest of simulations.

We then compare the performance of the three algorithms as

functions of p using the PL model with the underlying weight

assignments ~w = ~w(1) and ~w = ~w(2), respectively. The results

are given in Figures 5a and 6a. Correspondingly, the results

of using the PL model with Gaussian noise are presented in

Figures 5b and 6b. For each p value, every 100 sample trials

were independently run and the errors are averaged over these

runs. We run a total of 1000 such experiments for each p.

The averaged error rate and standard error are calculated over

these 1000 runs. For PL model with noise, we plot the relative

error rate with respect to the spectral MLE-based algorithm.

It is known that the spectral MLE algorithm is suitable and

order-wise optimal for the BTL model [11], and thus we expect

the spectral MLE-based algorithm to perform well for the PL

model, which is a generalized version of the BTL model. From

the numerical result, we first observe that the performance of

Borda counting-based algorithm becomes more competitive to

the spectral MLE-based algorithm when p is large, but less

so when p is small. This behavior appears to being caused by

the larger variation in the number of observed partial rankings
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Fig. 6: Error rates of three algorithms under different value of

p with underlying weight ~w = ~w(2).

for different cases when p is small. This variation worsens the

performance of the Borda counting-based algorithm relatively

more than the spectral MLE-based algorithm1. It can be seen

that by incorporating normalization in the Borda counting-

based algorithm, it is able to remedy this deficiency at smaller

p values. With the noisy PL model, it can be seen that the

performances of all three algorithms are worse than under

the noiseless PL model. However, the relative performances

among the three methods do not change significantly. It should

be noted that the normalized version of the Borda counting-

based algorithm is considerably more complex than the Borda

counting-based algorithm itself, since instead of maintaining

only the accumulated scores for the items, we must also

maintain the number of comparisons for each subset. This

increase in complexity is similarly needed for the spectral

MLE-based algorithm.

C. Results with Real-world Data

The real-world data are collected from the PrefLib web-

site [21]. This dataset (sushi data) contains 5000 complete

1The Borda counting-based algorithm with normalization is in fact moti-
vated by this observation.
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Fig. 7: Error rates of three algorithms under different batch

size i.

rankings of 10 kinds of sushi. Here we use the process below

to find the ground truth: first run the Borda counting-based

algorithm on the entire dataset with m = 10 and the score

function β = β̄(1) as in Eqn. (41), and then sort the total

score of each item to have the complete ranking.

For each batch size i and each trial, we randomly choose

i complete rankings from the dataset as our mini-batch.

In the comparison, since the comparison data are complete

rankings of n items in the sushi dataset, we extract the m-

wise comparison data from the dataset as follows. For each

complete ranking in the dataset, we randomly select an m-wise

group among the total n items, and then use the ranking result

of the chosen items as our m-wise comparison data. Then we

run the three algorithms on the generated m-wise data of the

chosen mini-batch to determine if the top-k estimate is correct.

In the experiment, we choose m = 7, k = 3, and the score

function β = β̄(1) with m = 7. We run 100 trials each time to

calculate the error rate. The eventual error rate and standard

error are calculated over all the error rates in 1000 runs. The

simulation results are plotted in Figure 7. Since the real-world

data is unlikely to follow the PL model, we expect the Borda

counting-based methods to perform better than the spectral

MLE-based method. The numerical results indeed confirm this

expectation.

VI. PROOF DETAILS OF THEOREM 1

As previously discussed in the proof outline, the proof

of Theorem 1 boils down to proving Proposition 1 and

Proposition 2. In this section, we provide the proofs of these

two propositions.

Proof of Proposition 1. Consider any item a ∈ S∗
k and b ∈

[n] \ S∗
k , then define the event that Wb > Wa as Eba, i.e.,

Pr(Eba) = Pr(Wb −Wa > 0). (45)

We start by noting that

Wb −Wa =
∑

ℓ∈[r]

(

∑

A−⊆[n]\{b}
X

(ℓ)
b,A− −

∑

A−⊆[n]\{a}
X

(ℓ)
a,A−

)

.
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It follows that

Wb −Wa =
∑

ℓ∈[r]

∑

A−⊆[n]\{a,b}

(

X
(ℓ)
b,A− −X

(ℓ)
a,A−

)

−
∑

ℓ∈[r]

∑

A−−⊆[n]\{a,b}

(

X
(ℓ)
a,{b,A−−} −X

(ℓ)
b,{a,A−−}

)

. (46)

In order to apply the concentration inequalities, define the

centralized scores. For any a ∈ [n]

X̄
(ℓ)
a,A− , X

(ℓ)
a,A− − E

(

X
(ℓ)
a,A−

)

= X
(ℓ)
a,A− − p

m
∑

t=1

βtRa,A−(t),

and the centralized cross-score

X̄
(ℓ)
{a,b},A−− , X

(ℓ)
a,{b,A−−} −X

(ℓ)
b,{a,A−−}

− E

(

X
(ℓ)
a,{b,A−−}

)

+ E

(

X
(ℓ)
b,{a,A−−}

)

= X
(ℓ)
a,{b,A−−} −X

(ℓ)
b,{a,A−−}

−
(

p

m
∑

t=1

βtRa,{b,A−−}(t)− p

m
∑

t=1

βtRb,{a,A−−}(t)

)

.

(47)

It follows after some simple algebra that

Wb −Wa =
∑

ℓ∈[r]

∑

A−⊆[n]\{a,b}
|A−|=m−1

(

X̄
(ℓ)
b,A− − X̄

(ℓ)
a,A−

)

−
∑

ℓ∈[r]

∑

A−−⊆[n]\{a,b}
|A−−|=m−2

X̄
(ℓ)
{a,b},A−−

+ r
∑

A−⊆[n]\{b}
|A−|=m−1

p

m
∑

t=1

βtRb,A−(t)

− r
∑

A−⊆[n]\{a}
|A−|=m−1

p

m
∑

t=1

βtRa,A−(t),

(48)

Wb −Wa = ∆X̄a,b − rpρn,m(τa − τb), (49)

where for notation simplicity we have defined

∆X̄a,b ,
∑

ℓ∈[r]

∑

A−⊆[n]\{a,b}

(

X̄
(ℓ)
b,A− − X̄

(ℓ)
a,A−

)

−
∑

ℓ∈[r]

∑

A−−⊆[n]\{a,b}

X̄
(ℓ)
{a,b},A−− . (50)

Because a is in the top-k and b is not in the top-k, we have

rpρn,m(τa − τb) ≥ rpρn,m∆k. (51)

Since Wb−Wa ≥ 0 is equivalent to ∆X̄a,b ≥ rpρn,m(τa−τb),
we have

Pr(Wb −Wa ≥ 0) ≤ Pr
[

∆X̄a,b ≥ rpρn,m∆k
]

. (52)

In order to bound the probability on the right hand side, we

need the Hoeffding’s inequality, which is stated in the lemma

below for completeness.

Lemma 3 (Hoeffding’s inequality). Let X1, ..., Xn be in-

dependent random variables with the empirical mean X̄ =
1
n (X1 + · · · + Xn). When it is known that Xi are strictly

bounded by the intervals [ai, bi], we have

Pr
(

X̄ − E
[

X̄
]

≥ t
)

≤ exp

(

− 2n2t2
∑n

i=1(bi − ai)2

)

(53)

Now we view each centralized score and centralized cross-

score in (50) as the random variables Xi in the Hoeffding’s

inequality. It is clear that these centralized scores and central-

ized cross-scores are independent, which allows us to apply the

Hoeffding’s inequality. Moreover, they are zero-mean. These

random variables have the following lower bounds and upper

bounds, due to their definitions.

−EXa,A− ≤ X̄a,A− ≤ 1− EXa,A−

−EXb,A− ≤ X̄b,A− ≤ 1− EXb,A−

βm − 1− c{a,b},A−− ≤ X̄{a,b},A−− ≤ 1− βm − c{a,b},A−− ,
(54)

where c{a,b},A−− = E

(

X
(ℓ)
a,{b,A−−}

)

− E

(

X
(ℓ)
b,{a,A−−}

)

.

With these bounds, we can bound the denominator in the

right hand side of (53) as follows
∑

ℓ∈[r]

∑

A−⊆[n]\{a,b}
|A−|=m−1

1 +
∑

ℓ∈[r]

∑

A−⊆[n]\{a,b}
|A−|=m−1

1

+
∑

ℓ∈[r]

∑

A−−⊆[n]\{a,b}
|A−−|=m−2

(2(1− βm))2

= rρn,m(4(1− βm)2(
m− 1

n− 1
) + 2

n−m

n− 1
). (55)

Applying the Hoeffding’s inequality, we obtain

Pr(Wb −Wa > 0)

≤ exp

(

− (rpρn,m∆k)
2

rρn,m(2(1− βm)2m−1
n−1 + n−m

n−1 )

)

≤ n
− α2p

(2(1−βm)2(m−1
n−1

)+n−m
n−1

)
(56)

Taking a union bound over the possible pairs (a, b) gives the

desired result.

Proof of Proposition 2. The proof of Proposition 2 is similar

to the Proposition 1, and the difference is in the way of

bounding the probability on the right-hand side of (52). Instead

of Hoeffding’s inequality, we invoke Bernstein’s inequality,

which is stated below for completeness.

Lemma 4 (Bernstein’s inequality). Let Y1, ..., Yn be indepen-

dent zero-mean random variables. Suppose that |Yi| ≤ M
almost surely, for all i. Then, for all positive t, we have that

P

(

n
∑

i=1

Yi > t

)

≤ exp

(

−
1
2 t

2

∑

E [Y 2
i ] +

1
3Mt

)

.

Since the centralized scores and centralized cross-scores are

zero-mean and independent, we only need to bound the sum
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of the variances of the centralized random variables, for which

we have the following lemma.

Lemma 5.

ΣX̄a,b
,

∑

A−⊆[n]\{a,b}

(

E

(

X̄
(ℓ)
b,A−

)2

+ E

(

X̄
(ℓ)
a,A−

)2
)

+
∑

A−−⊆[n]\{a,b}

E

(

X̄
(ℓ)
{a,b},A−−

)2

≤ (2p− p2)ρn,m − pρn,m∆k. (57)

The proof of this lemma can be found in the appendix. With

this lemma, we can apply Bernstein’s inequality on Pr(Wb −
Wa > 0), from which we obtain

Pr(Wb −Wa > 0)

≤ exp

(

− 1
2 (rpρn,m∆k)

2

rp(2− p)ρn,m − rpρn,m∆k + 2
3ρn,mrp∆k

)

≤ n− α2

(4−2p) . (58)

Taking the union bound over the possible pairs (a, b) gives the

desired result.

VII. PROOF OF THEOREM 2

For each a ∈ {k, . . . , n}, denote the k-sized subset S∗[a] =
{1, 2, . . . , k− 1} ∪ {a}. In order to prove the converse result,

we construct a probability distribution M ∈ Fk(α) such that

it is difficult for any method to find the top-k items, which is:

Ma
~v =







(m!)−1(1 + δ) if C1

(m!)−1(1− δ) if C2

(m!)−1 otherwise

, (59)

where δ ∈ [0, 1] is a parameter to be specified later, and the

conditions C1 and C2 are given as:

• C1: ~v1:q ⊆ S∗[a] and ~vq+1:m ⊆ [n] \ S∗[a];
• C2: ~v1:m−q ⊆ [n] \ S∗[a] and ~vm−q+1:m ⊆ S∗[a].

The theorem is established through a lemma and a propo-

sition.

Lemma 6. For the distribution Ma
~v , where a ∈ {k, . . . , n},

we have

∆k =
g(n,m, ~β)

ρn,m
δ. (60)

The proof of this lemma can be found in the appendix.

Proposition 3. For any distinct a, b ∈ {k, k + 1, . . . , n},

DKL(P
a||Pb) ≤ rph(n,m)

4δ2

(1 − δ2)
. (61)

We are now ready to prove Theorem 2. Suppose the

underlying distribution is drawn uniformly at random from the

set {Ma|a ∈ [n] \ [k − 1]}, and the true index is a∗. By Fano’s

inequality, any estimator â must have an error probability

lower-bounded by

PM [â 6= a∗] ≥ 1−
rph(n,m) 4δ2

(1−δ2) + log 2

log(n− k + 1)
. (62)

Since α ≤
√
2
7 g(n,m, ~β)

√

1
h(n,m)ρn,m

and p ≥ logn
4rh(n,m) ,

we can choose ∆k =
√
2
7 g(n,m, ~β)

√

1
h(n,m)ρn,m

√

logn
rpρn,m

.

Combining these bounds with (60) in Proposition 6 gives

δ ≤
√
2

7

√

logn

rph(n,m)
≤ 2

√
2

7
. (63)

Finally (62) and (63) give

PM [â 6= a∗] ≥ 1−
rph(n,m)

4(
√

2
7

√

log n
rph(n,m)

)
2

(1−( 2
√

2
7 )

2
)

+ log 2

logn− log 2

≥ 1−
8
41 logn+ log 2

logn− log 2
≥ 1

7
, (64)

where we also used 2k ≤ n and n ≥ 7, and this completes

the proof.

VIII. CONCLUSION

We have considered using the Borda counting algorithm on

noisy m-wise ranking data to select the top-k items, which

is a generalization of a previous work using only pairwise

comparisons. Our analysis confirmed the importance of the

associated score separation ∆k. In high and low observa-

tion probability regimes, our analysis revealed that the error

probability of the algorithm can be bounded differently. The

resultant bound is also tighter than that given by Shah et

al. when we apply the analysis back to the pairwise case.

For the converse direction, we established an error probability

lower bound. The gap between the upper and lower bound was

analyzed. These results were further extended to the approxi-

mate top-k selection problem. Through numerical simulation,

we have observed that the Borda counting-based algorithm is

competitive to the spectral MLE-based algorithm, particularly

in the high observation probability regime.

APPENDIX

In this section, we first establish a relation between the PL

model and the non-parametric model. Recall the definition of

the PL model:

Definition 1. Plackett-Luce model. The PL model is a para-

metric model assuming the existence of a “quality” parameter

wi ∈ R for each item i, and requiring that the probability

of observing the ranking ~v = (v1, v2, ..., vm) for the ranked

comparison among ~v
.
= A is given by a specific function.

More precisely,

Mv1,v2,...,vm = M~v =
m
∏

k=1

fk(~v), (65)

where

fk(~v) =
wvk

∑n
i=k wvi

. (66)

The PL model can also be recovered from the Thurstone

model [22].

Definition 2 ( [22]). A partial ranking σ : [|S|] → S is

generated from {θ∗i , i ∈ S} under the PL model in two steps:
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(1) independently assign each item i ∈ S an unobserved value

Zi , exponentially distributed with mean e−θ∗
i ; (2) select σ

so that Zσ(1) ≤ Zσ(2) ≤ ... ≤ Zσ(|S|) . Here θ∗i = − logwi.

Lemma 7 (Restatement of Lemma 1). If the underlying

distribution follows the PL model, then the ranking of the

associate scores is consistent with the ranking of the weight

vector regardless of the assignment of score vector ~β, i.e., ∀~β
satisfying 1 = β1 ≥ β2 ≥ ... ≥ βm ≥ 0, and ∀a, b ∈ [n], if

wa ≥ wb, we have τa ≥ τb.

Proof. By the definition of associate score, we have

τa − τb =
1

ρn,m

(

∑

A−⊆[n]\{a}

m
∑

t=1

βtRa,A−(t)

)

− 1

ρn,m

(

∑

A−⊆[n]\{b}

m
∑

t=1

βtRb,A−(t)

)

=
1

ρn,m

(

∑

A⊆[n]
a,b∈A

(

m
∑

i=1

∑

~v
.
=A

vi=a

βiM~v −
m
∑

j=1

∑

~v
.
=A

vj=b

βjM~v)

)

+
1

ρn,m

(

∑

A⊆[n]
a∈A,b/∈A

m
∑

i=1

∑

~v
.
=A

vi=a

βiM~v

−
∑

A⊆[n]
b∈A,a/∈A

m
∑

j=1

∑

~v
.
=A

vj=b

βjM~v

)

. (67)

First, we prove 1
ρn,m

(

∑

A⊆[n]
a,b∈A

(
∑m

i=1

∑

~v
.
=A

vi=a
βiM~v −

∑m
j=1

∑

~v
.
=A

vj=b
βjM~v)

)

≥ 0. For any A ⊆ [n] satisfying

a, b ∈ A, we have

m
∑

i=1

∑

~v
.
=A

vi=a

βiM~v −
m
∑

j=1

∑

~v
.
=A

vj=b

βjM~v

=

m
∑

i,j=1

∑

~v
.
=A

vi=a
vj=b

(βi − βj)M~v

=

m
∑

i,j=1
i<j

∑

~v
.
=A

vi=a
vj=b

(βi − βj)M~v +

m
∑

i,j=1
i<j

∑

~v
.
=A

vi=b
vj=a

(βj − βi)M~v

=
m
∑

i,j=1
i<j

∑

(~v1,~v2)∈Ci,j

(βi − βj)(M~v1 −M~v2), (68)

where Ci,j := {(~v1, ~v2) ∈ [n]2m : v1(a) = i, v1(b) =

j, v2(a) = j, v2(b) = i, and v1(x) = v2(x), ∀x ∈ A\{a, b}}.

M~v1 −M~v2 =

m
∏

k=1

fk(~v1)−
m
∏

k=1

fk(~v2)

= (

m
∏

k=1,k 6=i,j

fk(~v2)){fi(~v1)fj(~v1)− fi(~v2)fj(~v2)}

+ (

m
∏

k≤i,k≥j

fk(~v1)){
m
∏

i<k<j

fk(~v1)−
m
∏

i<k<j

fk(~v2)},

(69)

where the second equality follows from the fact that fk(~v1) =
fk(~v2), ∀k < i and ∀k > j.

fi(~v1)fj(~v1)− fi(~v2)fj(~v2)

=
wa

wa +
∑m

t=i+1 wvt

wb

wb +
∑m

t=j+1 wvt

− wb

wb +
∑m

t=i+1 wvt

wa

wa +
∑m

t=j+1 wvt

≥ 0 (70)

Since fk(~v1) ≥ fk(~v2), for i < k < j, we have M~v1 −
M~v2 ≥ 0, and thus 1

ρn,m

(

∑

A⊆[n]
a,b∈A

(
∑m

i=1

∑

~v
.
=A

vi=a
βiM~v −

∑m
j=1

∑

~v
.
=A

vj=b
βjM~v)

)

≥ 0.

Second, we need to prove

1

ρn,m

(

∑

A⊆[n]
a∈A,b/∈A

m
∑

i=1

∑

~v
.
=A

vi=a

βiM~v−
∑

A⊆[n]
b∈A,a/∈A

m
∑

j=1

∑

~v
.
=A

vj=b

βjM~v

)

≥ 0

This is equivalent to proving that
∑m

i=1

∑

~v
.
=A

vi=a
βiM~v is a

non-decreasing function in wa. We denote that ξA−(wa) :=
∑m

i=1

∑

~v
.
=A

vi=a
βiM~v. From the definition of Xa,A− , we have

ξA−(wa) = EXa,A− . Define ~A as an ordered instance of A,

i.e., ~A .
= A. We also define the mapping φa : R

m
+ → [0, 1].

Here φa(z ~A) represents the score item a receives when the

sampled results in Definition 2 is z ~A. From the Thurstonian

representation of the PL model, we have

EXa,A− =

∫

z ~A∈R
m
+

φa(z ~A)dF (z ~A)

=

∫

z ~A∈R
m
+

φa(z ~A− , z)
1

wa
e−

z
wa dF (z ~A−)dz

=

∫

z ~A∈R
m
+

φa(z ~A− , way)e
−ydF (z ~A−)dy.

For fixed y, if wa increases, way increases. This implies

that the ranking result of item a will be non-decreasing, thus

φa(z ~A− , way) is non-decreasing in wa, we then have EXa,A−

is non-decreasing in wa, which concludes the proof.

We next provide the technical proofs for several auxiliary

lemmas and that for Proposition 3.

Proof of Lemma 5. We first calculate the variances of the cen-

tralized random variables as follows. For any A− ∈ [n]\ {a, b}
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and |A−| = m− 1, we have for the centralized scores

E

[

(

X̄
(ℓ)
a,A−

)2
]

= E

[

(

X
(ℓ)
a,A−

)2
]

− E

[

X
(ℓ)
a,A−

]2

= p

m
∑

t=1

β2
tRa,A−(t)− (p

m
∑

t=1

βtRa,A−(t))2

≤ p
m
∑

t=1

βtRa,A−(t)− (p
m
∑

t=1

βtRa,A−(t))2.

(71)

The inequality in (71) holds because for any i ∈ [m], we have

βi ≤ 1, and thus β2
i ≤ βi. Then similarly, for variance of

centralized score related to item b,

E

[

(

X̄
(ℓ)

b,A−

)2
]

≤ p

m
∑

t=1

βtRb,A−(t) (72)

Moreover, we have for any a, b,A−−

E

[

(

X̄
(ℓ)
{a,b},A−−

)2
]

= E

[

(

X
(ℓ)
a,{b,A−−} −X

(ℓ)
b,{a,A−−}

)2
]

−
(

EX
(ℓ)
a,{b,A−−} − EX

(ℓ)
b,{a,A−−}

)2

≤ p− (p

m
∑

t=1

βtR
t
a,{b,A−−} − p

m
∑

t=1

βtR
t
b,{a,A−−})

2. (73)

Thus we have the following bound on the sum of the

variances of centralized scores and the cross-scores

ΣX̄a,b
,

∑

A−⊆[n]\{a,b}
|A−|=m−1

(

E

(

X̄
(ℓ)
b,A−

)2

+ E

(

X̄
(ℓ)
a,A−

)2
)

+
∑

A−−⊆[n]\{a,b}
|A−−|=m−2

E

(

X̄
(ℓ)
{a,b},A−−

)2

≤ p
∑

A−⊆[n]\{a,b}
|A−|=m−1

m
∑

t=1

βtRa,A−(t)

−
∑

A−⊆[n]\{a,b}
|A−|=m−1

(p

m
∑

t=1

βtRa,A−(t))2

+ p
∑

A−⊆[n]\{a,b}
|A−|=m−1

m
∑

t=1

βtRb,A−(t) +
∑

A−−⊆[n]\{a,b}
|A−−|=m−2

p

−
∑

A−−⊆[n]\{a,b}
|A−−|=m−2

p2(

m
∑

t=1

βt(Ra,{b,A−−}(t)−Rb,{a,A−−}(t)))
2.

(74)

Define S
(i)
a,bA−− = p(

∑m
t=1 βt(Ra,{b,A−−}(t) −

Rb,{a,A−−}(t))) for notation simplicity. By the definition of

associate score, we get

ΣX̄a,b
≤ pρn,m(τa + τb)−

∑

A−⊆[n]\{a,b}
|A−|=m−1

(p

m
∑

t=1

βtRa,A−(t))2

+
∑

A−−⊆[n]\{a,b}
|A−−|=m−2

(S
(i)
a,bA−− − (S

(i)
a,bA−−)

2)

− 2p
∑

A−−⊆[n]\{a,b}
|A−−|=m−2

m
∑

t=1

βtRa,b,A−−(t) + p

(

n− 2

m− 2

)

. (75)

By the fact that τa − τb ≥ ∆k, we can get

ΣX̄a,b

≤ 2p
∑

A−⊆[n]\{a,b}
|A−|=m−1

m
∑

t=1

βtRa,A−(t)

−
∑

A−⊆[n]\{a,b}
|A−|=m−1

(p

m
∑

t=1

βtRa,A−(t))2 − pρn,m∆k

+
∑

A−−⊆[n]\{a,b}
|A−−|=m−2

(S
(i)
a,bA−− − (S

(i)
a,bA−−)

2) + p

(

n− 2

m− 2

)

.

(76)

Since
∑m

t=1 βtRi,A−(t) ≤ ∑m
t=1 Ri,A−(t) = 1 holds for

both i = a and i = b, we further have

−p ≤
(

p

m
∑

t=1

βtRa,b,A−−(t)− p

m
∑

t=1

βtRb,a,A−−(t)

)

≤ p.

(77)

According to the assumption in Lemma 2, p ≤ 1
2 we can get

that

S
(i)
a,bA−− − (S

(i)
a,bA−−)

2 ≤ p− p2. (78)

Similarly, we can obtain that

2p

m
∑

t=1

βtRa,A−(t)− (p

m
∑

t=1

βtRa,A−(t))2 ≤ 2p− p2. (79)

It follows that the total variance can be bounded as

ΣX̄a,b
≤













∑

A−⊆[n]\{a,b}
|A−|=m−1

(2p− p2)













− pρn,m∆k + p

(

n− 2

m− 2

)

+













∑

A−−⊆[n]\{a,b}
|A−−|=m−2

(p− p2)













= (2p− p2)ρn,m − pρn,m∆k. (80)

This is the desired result, and the proof is complete.
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Proof of Lemma 6. Let us consider the associated score of

item-k using the distribution M∗, which can be seen as

τ(k) =
1

m
(

n−1
m−1

)

(

n

m− 1

) m
∑

t=1

βt

+
δ

(

n−1
m−1

)

1

m!

q
∑

t=1

(βt − βm−q+t)A
q−1
k−1A

m−q
n−k (81)

Similarly, we have

τ(k+1) =
1

(

n−1
m−1

)

1

m

(

n

m− 1

) m
∑

t=1

βt

+
δ

(

n−1
m−1

)

1

m!

m
∑

t=q+1

(βt − βt−q)A
q
kA

m−1−q
n−k−1 . (82)

It follows that

∆k = τ(k) − τ(k+1), (83)

which leads to the quantity in (60), after the first terms in both

τ(k) and τ(k+1) cancel out each other.

Proof of Proposition 3. For notation convenience, we shall

also define

µ(δ) , p [(1 + δ) log(1 + δ) + (1 − δ) log(1− δ)]

υ(δ) , p
[

log(1 + δ)−1 + log(1− δ)−1
]

,

ωm,q ,

(

m

q

)−1

.

Using the property of the KL-divergence, we can write

DKL(P
a||Pb) =

∑

ℓ∈[r]

p
∑

A⊆[n]:|A|=m

DKL(P
a(V

(ℓ)
A )||Pb(V

(ℓ)
A ))

= rp
∑

A⊆[n]:|A|=m

DKL(P
a(V

(ℓ)
A )||Pb(V

(ℓ)
A )), (84)

where V
(ℓ)
A is the result of the comparison among the elements

in A. It is clear that we need to bound the KL divergence for

each subset A ⊆ [n], which can be done as follows.

1) If a, b /∈ A, then clearly DKL(P
a(V

(ℓ)
A )||Pb(V

(ℓ)
A )) = 0;

2) If a ∈ A but b /∈ A,

a) If A ∩ [k − 1] = q − 1, we have

DKL(P
a(V

(ℓ)
A )||Pb(V

(ℓ)
A )) =

q!(m− q)!

(m!)
µ(δ)

≤ 2ωm,qpδ
2 ≤ 2ωm,q

pδ2

1− δ2
. (85)

b) If A ∩ [k − 1] = q, we have

DKL(P
a(V

(ℓ)
A )||Pb(V

(ℓ)
A )) =

q!(m− q)!

m!
υ(δ)

≤ ωm,qp

( −δ

1 + δ
+

δ

1− δ

)

= 2ωm,qp
δ2

1− δ2
. (86)

c) If A ∩ [k − 1] 6= q − 1 and A∩ [k − 1] 6= q, then

DKL(P
a(V

(ℓ)
A )||Pb(V

(ℓ)
A )) = 0. (87)

3) If b ∈ A but a /∈ A,

a) If A ∩ [k − 1] = q, we have

DKL(P
a(V

(ℓ)
A )||Pb(V

(ℓ)
A )) =

q!(m− q)!

m!
µ(δ)

≤ 2ωm,qpδ
2 ≤ 2ωm,qp

δ2

1− δ2
. (88)

b) If A ∩ [k − 1] = q − 1, we have

DKL(P
a(V

(ℓ)
A )||Pb(V

(ℓ)
A )) =

q!(m− q)!

m!
υ(δ)

≤ 2ωm,qp
δ2

1− δ2
. (89)

c) If A ∩ [k − 1] 6= q − 1 and A ∩ [k − 1] 6= q, then

DKL(P
a(V

(ℓ)
A )||Pb(V

(ℓ)
A )) = 0.

4) If a, b ∈ A,

a) If A ∩ [k − 1] = q − 1, and q > 1,

DKL(P
a(V

(ℓ)
A )||Pb(V

(ℓ)
A )) =

q!(m− q)!

m!
[µ(δ) + υ(δ)]

≤ 4ωm,qpδ
2 ≤ 4ωm,qp

δ2

1− δ2
. (90)

If A ∩ [k − 1] = q − 1, and q = 1,

DKL(P
a(V

(ℓ)
A )||Pb(V

(ℓ)
A ))

=
(m− 2)(m− 2)!

(m!)
[µ(δ) + υ(δ)]

+
(m− 2)!

(m!)
p[(1− δ) log

1− δ

1 + δ
+ (1 + δ) log

1 + δ

1− δ
]

≤ 8ωm,qp
δ2

1− δ2
. (91)

Thus for all q, we have

DKL(P
a(V

(ℓ)
A )||Pb(V

(ℓ)
A )) ≤ 8ωm,qp

δ2

1− δ2
. (92)

b) A∩[k−1] 6= q−1, then DKL(P
a(V

(ℓ)
A )||Pb(V

(ℓ)
A )) = 0.

Summarizing the above bound, we arrive at

DKL(P
a||Pb) = rp

∑

A⊆[n]:|A|=m

DKL(P
a(V

(1)
A )||Pb(V

(1)
A ))

≤ r
4δ2ωm,qp

(1− δ2)

[(

k − 1

q − 1

)(

n− k − 1

m− q

)

+

(

k − 1

q

)(

n− k − 1

m− q − 1

)

+ 2

(

k − 1

q − 1

)(

n− k − 1

m− q − 1

)]

≤ r
4δ2ωm,qp

(1− δ2)

[(

k − 1

q − 1

)(

n− k

m− q

)

+

(

k

q

)(

n− k − 1

m− q − 1

)]

(93)

which is the desired result.
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