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Abstract—We study the multi-user scheduling problem for
minimizing the Age of Information (AoI) in cellular wireless
networks under stationary and non-stationary regimes. We derive
fundamental lower bounds for the scheduling problem and design
efficient online policies with provable performance guarantees. In
the stationary setting, we consider the AoI optimization problem
for a set of mobile users travelling around multiple cells. In this
setting, we propose a scheduling policy and show that it is 2-
optimal. Next, we propose a new adversarial channel model for
studying the scheduling problem in non-stationary environments.
For N users, we show that the competitive ratio of any online
scheduling policy in this setting is at least Ω(N). We then propose
an online policy and show that it achieves a competitive ratio of
O(N2). Finally, we introduce a relaxed adversarial model with
channel state estimations for the immediate future. We propose a
heuristic model predictive control policy that exploits this feature
and compare its performance through numerical simulations.

I. INTRODUCTION AND RELATED WORK

T he Quality-of-Service (QoS) offered by any wireless net-
work has traditionally been measured along three dimen-

sions, namely, throughput, packet delay, and energy efficiency.
There exists an extensive body of literature addressed to opti-
mizing the cross-layer resource allocations to improve the QoS
along these axes [1]–[5]. However, it has been argued that the
standard QoS metrics are primarily geared towards quantifying
the degree of utilization of the system resources, and less
towards measuring the actual user experience [6]. With the
explosive growth of hand-held mobile devices, Internet of
Things (IoT), real-time AR and VR systems powered by the
emerging 5G technology, the Quality of Experience (QoE) for
the users plays a major role in today’s network design [7]. In
order to integrate QoE with the design criteria, a new metric,
called Age-of-Information (AoI), has been proposed recently
for measuring the freshness of information available to the
end-users [8], [9].

Designing efficient schedulers to minimize the AoI is cur-
rently an active area of research. The papers [10] and [11]
study the average AoI minimization problem for static User
Equipments (UEs) associated with a single Base Station (BS).
In these papers, the authors propose a 4-optimal Max-Weight-
type scheduling policy (Theorem 12 of [10]). The paper [12]
proposes an optimal scheduling policy for the same setup,
where the objective is to minimize the maximum AoI of all
UEs. All of these papers consider a single-hop network model
with static UEs only. The problem of AoI minimization in
a multi-hop network with static UEs has been studied in

[13]. The paper [14] considers the problem of designing an
AoI-optimal trajectory for a mobile agent which facilitates
information dissemination from a central station to a set of
ground terminals. The effect of mobility on the capacity of
wireless networks has been investigated in the classic work of
[15]. It has been shown that mobility, in general, increases
the capacity of ad hoc networks. However, to the best of
our knowledge, the effect of UE-mobility on the Age-of-
Information has not been studied before. One of the main
objectives of this paper is to study the AoI-optimal scheduling
with mobile UEs.

Most of the existing works on wireless networks assume a
stationary channel model for analytical tractability. In rapidly
varying environments, such as high-speed trains and vehicle-
to-vehicle communication, the standard stationary channel
model assumption no longer holds in practice. This is particu-
larly true for the 5G mmWave regime (≥ 28 GHz), which suf-
fers from severe attenuation loss [16], [17]. On the other hand,
designing an accurate and analytically tractable non-stationary
wireless channel model remains an overarching challenge to
the research community [18], [19]. To overcome this diffi-
culty, in the second part of this paper, we propose a simple
adversarial channel model for non-stationary environments and
study the scheduling problem in this model. In addition to the
emerging 5G technology, the adversarial channel model is also
useful for ensuring reliable communication in the presence
of tactical jammers, where the interferers, in reality, behave
adversarially [20], [21].

Our contributions:

We make the following contributions in this paper.
• We study the multi-user scheduling problem in stationary

and non-stationary environments. The stationary environ-
ment is modelled stochastically, and the non-stationary
environment is modelled using an adversarial framework.
To the best of our knowledge, this is the first paper
that considers the AoI-optimal scheduling problem in an
adversarial setting.

• In the stationary setting described in Section II-A, we
design a 2-optimal scheduling policy for mobile UEs. Our
result improves upon the 4-optimality bound known for
static UEs [10], [11].

• Our analytical result enables us to precisely characterize
the effect of mobility on the overall AoI as a function
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of the long-term user mobility statistics. The results may
also be effectively used for small-cell network planning
[22].

• In the non-stationary setting of Section III, we show
that a simple online scheduling policy achieves O(N2)
competitive ratio. Using Yao’s minimax principle, we
show that no online policy can have a competitive ratio
better than Ω(N).

• We propose a heuristic scheduling policy in Section III-B
for the scenario where the future channel states can be
accurately estimated for the next w slots. We validate
the efficacy of the proposed policy through numerical
simulations.

The rest of the paper is organized as follows. In Section II,
we describe the stochastic model and formulate the problem
in the stationary regime. Section II-A and III study the
problem in the Stationary and Non-stationary environments
respectively. In Section IV, we compare the performance of
the proposed scheduling policies via numerical simulations.
Section V concludes the paper with some pointers to open
problems.

II. AOI MINIMIZATION IN STATIONARY ENVIRONMENTS

In this section, we first describe the stochastic system model
and then formulate the optimal scheduling problem. In the rest
of the paper, the abbreviation UE will refer to any generic user
equipment, and the term BS will refer to a Base Station. The
area covered by a BS will be referred to as a Cell.

a) Channel model: We consider a cellular system where
a set of N UEs travel around in an area having M BSs.
Time is slotted, and at every slot, each BS can beam-form
and schedule a packet transmission to one of the UEs in its
coverage area. The wireless link to UEi from the BS in its
current cell is assumed to be a stationary erasure channel with
the probability of successful reception of a transmitted packet
being pi, 1 ≤ i ≤ N . Hence, when a BS schedules a downlink
packet transmission to UEi in its cell, the packet is either
successfully received with probability pi or lost otherwise.

b) Mobility model: We assume that the UE mobility is
modelled by a stationary ergodic process. Formally, let the
random variable Ci(t) ∈ {1, 2, . . . ,M} denote the index of
the cell to which UEi is associated with at time t 1. Then,
according to our assumption, the stochastic process {Ci(t)}t≥1

is a stationary ergodic process with the probability that UEi
is associated with BSj at any time t given by P(Ci(t) = j) =
ψij ,∀i, j, t. The probability measure ψ denotes the stationary
occupancy distribution of the cells by the UEs. The mobility
of different UEs is assumed to be independent of each other.
Many different mobility models proposed in the literature fall
under the above general scheme, including the i.i.d. mobility
model, random walk model, and the random waypoint model
[23]–[26]. See Figure 3 in the Appendix VI-A for a schematic.

1We make the standard assumption that the coverage areas of the cells are
mutually disjoint. Hence a UE is associated with only one BS at any time.

c) Packet arrival model to BS: We consider a saturated
traffic model, where at the beginning of any slot, each BS
receives a fresh update packet from a common external source
(e.g., a high-speed optical backbone network). Since the UEs
are interested in the latest updates only, the BS then deletes
any old packet from its buffer and schedules the fresh packet
for transmission to some UE following a scheduling policy.
The saturated traffic model is standard in applications relying
on continuous status updates [27], such as monitoring and
surveillance with sensor networks [28], velocity and position
updates for autonomous vehicles [29], command and control
information exchange in mission-critical systems, disseminat-
ing stock-index updates and live game scores.

d) System states: For slot t, let ti(t) < t denote the last
time before time t at which UEi received a packet successfully
from any BS. The Age-of-Information hi(t) of UEi at time t
is defined as

hi(t) ≡ t− ti(t).

In other words, the random variable hi(t) denotes the length
of time elapsed since UEi received its last update before time
t. Hence, the r.v. hi(t) quantifies the staleness of information
available to UEi. See Figure 2 in the Appendix for a typical
evolution of hi(t). The state of the UEs at time t is completely
specified by the Age-of-Information of all UEs, given by
the random vector h(t) ≡

(
h1(t), h2(t), . . . , hN (t)

)
, and the

association of the UEs with the cells, represented by the cell-
occupancy vector C(t).

e) Policy space and performance metric: A scheduling
policy π first selects a UE in each cell (if the cell contains any
UE), and then schedules the transmission of the latest packet
from the BSs to the UEs over the wireless erasure channel
described earlier. The scheduling decisions are required to be
causal for it to be implementable in real-time. The set of all
admissible scheduling policies is denoted by Π. Our goal in
this paper is to design a distributed scheduling policy which
minimizes the long-term average AoI of all users. In view of
this, we consider the following average-cost problem:

AoI∗ = inf
π∈Π

lim sup
T→∞

1

T

T∑
t=1

1

N

( N∑
i=1

Eπ(hi(t))

)
. (1)

A. Converse and Achievability

The AoI minimization problem given by (1) is an exam-
ple of an average-cost MDP with countably infinite state-
space [30]. Excepting a few cases with special structures (cf.
[12]), such problems are notoriously difficult to solve exactly.
Moreover, the standard numerical approximation schemes for
infinite-state MDPs typically do not provide theoretical perfor-
mance guarantees. In this paper, we take a different approach
to approximately solve the problem (1). In the following
Theorem, we obtain a fundamental lower bound to the optimal
AoI. Finally, in Theorem 2, we show that a simple online
scheduling policy πMMW achieves the lower bound within a
factor of 2.



Theorem 1 (Converse): In the stationary setup, the
optimal AoI in (1) is lower bounded as:

AoI∗ ≥ 1

2Ng(ψ)

( N∑
i=1

√
1

pi

)2

+
1

2
, (2)

where the quantity g(ψ) denotes the expected number of
cells with at least one UE, where the expectation is taken
with respect to the stationary occupancy distribution ψ.
In particular, since g(ψ) ≤ min{M,N}, we also have
the following (loose) lower bound which is agnostic of
the UE mobility statistics:

AoI∗ ≥ 1

2N min{M,N}

( N∑
i=1

√
1

pi

)2

+
1

2
.

Please refer to Appendix VI-A for a proof of this theorem.
Discussion: Theorem 1 gives a universal lower bound for

the minimum AoI achievable by any admissible scheduling
policy π ∈ Π. Interestingly, it reveals that the lower bound
depends on the mobility of the UEs only through their station-
ary cell-occupancy distribution ψ. Hence, given the stationary
distribution ψ, the lower bound (2) is agnostic of the details
of the mobility model. The appearance of the quantity g(ψ)
in the lower bound should not be surprising as it denotes the
typical number of non-empty cells at a slot in the long run.
Since a BS can transmit a packet only if at least one UE is
present in its coverage area, the quantity g(ψ), in some sense,
represents the multi-user diversity of the system.

Expression for g(ψ): To get a sense of the lower bound (2),
we now work out a closed-form expression for g(ψ) for the
uniform UE mobility pattern. Using linearity of expectation,

g(ψ) = Eψ
M∑
j=1

1(BSj contains at least one UE
)

=

M∑
j=1

Pψ
(
BSj contains at least one UE

)
. (3)

Since the cells are disjoint, we readily conclude from (3) that
g(ψ) ≤ min{M,N}. Recall that ψij denotes the marginal
probability that the UEi is in BSj . Since the mobility of the
UEs are independent of each other, the expected number of
non-empty cells g(ψ) in Eqn. (3) simplifies to:

g(ψ) =

M∑
j=1

(
1−

N∏
i=1

(1− ψij)
)
. (4)

We now evaluate the above expression for the case when
the limiting occupancy distribution of each UE is uniform
across all BSs, i.e., ψij = 1

M ,∀i, j. The uniform stationary
distribution arises, for example, when the UE mobility can be
modelled as a random walk on a regular graph [31]. In this
case, Eqn. (4) simplifies to

g(ψunif) = M

(
1−

(
1− 1

M

)N)
. (5)

For M = 1, we have g(ψ) = 1. For M ≥ 2, we have the
following bounds which are easier to work with

M

(
1− e− N

M

)
≤ g(ψunif) ≤M

(
1− e−1.387 NM

)
. (6)

For a derivation of the bounds in (6), please refer to Appendix
VI-B.

Achievability: We now propose an online scheduling policy
πMMW which approximately minimizes the average AoI (1)
for mobile UEs (the abbreviation MMW stands for “Multi-
cell Max-Weight"). Our policy is a multi-cell generalization
of the 4-approximate single-BS scheduling policy proposed in
[10]. Moreover, using a tighter analysis, we give an improved
2-factor approximation guarantee for πMMW.

The policy πMMW: At every slot, each BS schedules a UE
under its coverage that has the highest index among all other
UEs. The index Ii(t) of UEi is defined as Ii(t) ≡ pih2

i (t).

Theorem 2 (Achievability): πMMW is a 2-approximation
scheduling policy for statistically identical UEs with i.i.d.
uniform mobility (i.e., pi = p, ∀i and ψij = 1

M ,∀i, j).

For a proof of Theorem 2, please refer to Appendix VI-C.
When the BSs employ power-control, all UEs experience the
same SINR, and they become statistically identical. It can be
easily seen that the policy πMMW is fully distributed and may
be implemented with local information only.

Effect of mobility on AoI: Recall that, a BS can schedule a
transmission to only one UE in its cell at every slot. Hence,
if all of the N UEs remain stationary at a single cell, they all
have to contend with each other for scheduling. This naturally
increases the average AoI of the UEs. On the other hand, if the
UEs are mobile, they can take advantage of multiple downlink
transmission opportunities from multiple BSs. This form of
multi-user diversity drastically reduces the overall AoI, by
improving the network resource utilization. Next, we quantify
the effect of mobility on the average AoI.
Define the Mobility Advantage on AoI (α) to be the ratio of
the optimal AoI when all UEs are stationary at a single BS
(i.e., M = 1.) vs. the optimal AoI when the UEs are mobile.
As noted above, for a single BS, we have g(ψ) = 1. From
our achievability result in Theorem 2, we know that the lower
bound in Eqn. (2) is achievable within a factor of 2. This
implies that α = Θ(g(ψ)). From the equation (6), we have

g(ψunif) = M

(
1− e−c NM

)
, (7)

for some constant 1 ≤ c ≤ 1.387. Consider the following three
scaling regime:
• Constant Density: If N and M scale in such a way that

the density of the UEs remains constant, i.e., N
M = ρ,

we see that the average AoI diminishes linearly with the
number of BSs, i.e., α = M(1− exp(−cρ)).

• Under-Loaded BS: If N/M << 1, we have α ≈M
(
1−

1 + cNM
)

= Θ(N).
• Over-Loaded BS: If N/M >> 1, we have α = Θ(M).



III. AOI MINIMIZATION IN NON-STATIONARY
ENVIRONMENTS

In this Section, we consider the problem of AoI-optimal
scheduling with N static users in a non-stationary environ-
ment. Since non-stationary channels are difficult to model and
analyze, we propose a new adversarial channel model in this
setting. Besides being analytically tractable, all positive results
in this model (e.g., Theorem 3) carry over to less adversarial
environments.

Channel model: A set of N UEs are under the coverage
of a single BS (i.e., M = 1). The BS can transmit to any
one UE at a slot. The channel state Chi(t) of any UEi at
any time slot t could be either Good (1) or Bad (0). If the
BS schedules a packet to a UE having a Good channel at
that slot, the UE decodes the packet successfully. Otherwise,
the packet is lost. We assume that, the states of the N
channels (corresponding to N different UEs) are selected by
an omniscient adversary from the set of all possible 2N states
at every slot. The scheduling policy is online and has no
information on the channel states for the current or future
slots. We will partially relax this assumption in Section III-B,
by considering a more general class of adversarial channel
models with future channel estimations. The cost function over
a horizon of T slots is given by:

AoI(T ) =

T∑
t=1

( N∑
i=1

hi(t)

)
. (8)

The packet arrival model to the BS remains the same as in the
stationary environment in Section II.

Performance Metric: As standard in the literature on
online algorithms [32], [33], we gauge the performance of
an online scheduling policy A using competitive ratio (ηA),
which compares the cost of A with that of an optimal
offline policy OPT equipped with hindsight knowledge. More
precisely, let σ ∈ {{0, 1}N}T be a sequence of length
T representing the vector of channel states chosen by the
adversary for the entire horizon. Then, the competitive ratio
of the policy A is defined as [33]:

ηA = sup
σ

(
Cost of the online policy A on σ

Cost of OPT on σ

)
, (9)

where the supremum is taken over all finite-length input
sequences σ, and the cost function is given by (8). In the
definition (9), while the online policy A has only causal
information, the policy OPT is assumed to be equipped with
full knowledge on the entire channel-state sequence σ.

Characterization of the optimal offline (OPT) policy

For a given sequence of channel states σ of length T , the
optimal offline policy OPT may be obtained by using Dynamic
Programming. Let the variable C∗t (h1(t), h2(t), . . . , hN (t))
denote the optimal cost-to-go from time t when the AoIs
of the the N UEs are given by the vector h(t) ≡

(h1(t), h2(t), . . . , hN (t)). Using standard notations, we have
the following backward DP recursion

C∗t (h(t)) =

N∑
i=1

hi(t)︸ ︷︷ ︸
cost for slot t

+ min
i:Chi(t+1)=1

C∗t+1(h−i(t) + 1, 1)︸ ︷︷ ︸
optimal future cost

,

C∗T+1(h) = 0 ∀h, (10)

where the minimization in Eqn. (10) is over all UEs i having a
Good channel at slot t+1. When there is no UE with a Good
channel at slot t+1 (i.e., Chi(t+1) = 0,∀i), the second term
denoting the future cost is replaced with C∗t+1(h(t) + 1).

Comparison with the throughput maximization problem:
It is interesting to note that the competitive ratio for the sum-
throughput maximization problem in this adversarial model
can be arbitrarily bad (i.e., unbounded). It can be understood
from the following. Consider a system with two users. If an
online scheduler A schedules UE1 at any slot, the adversary
can set the channel corresponding to UE1 to Bad and set
UE2’s channel to Good and vice versa. At any slot, the optimal
policy schedules the user with the Good channel state. Hence,
any online scheduler A receives zero throughput, but OPT
achieves the full throughput of unity.
Surprisingly enough, Theorem 3 shows that the Max Age
(MA) scheduling policy, which schedules a user having the
highest age (i.e., Scheduled UE at time t ∈ arg maxi hi(t)),
is O(N2)-competitive for minimizing the AoI.

Theorem 3 (Achievability): In the adversarial setting
with N users, the MA policy is O(N2) competitive for
minimizing the average AoI.

For a proof of Theorem 3, please refer to Appendix VI-D.
On a related note, in our recent work [12], we showed that
the MA policy is exactly optimal for minimizing the maximum
AoI of all UEs in the stochastic setting.

A. A Lower bound to the competitive ratio
In this section, we use Yao’s minimax principle for obtain-

ing a universal lower bound to the competitive ratio (9) in the
adversarial setting. In connection with online problems, Yao’s
minimax principle may be stated as follows:

Theorem 4 (Yao’s Minimax principle [33]): Given any
online problem, the competitive ratio of the best random-
ized online algorithm against any oblivious adversary is
equal to the competitive ratio of the best deterministic
online algorithm under a worst-case input distribution.

Using the above principle, it is clear that a lower bound
to the competitive ratio of all deterministic online algorithms
under any input channel state distribution p yields a lower
bound to the competitive ratio in the adversarial setting, i.e.,

η ≥ Eσ∼p(Cost of the Best Deterministic Online Policy)

Eσ∼p(Cost of OPT)
. (11)



To apply Yao’s principle in our setting, we construct the
following distribution p of the channel states: at every slot t,
a UE is chosen independently and uniformly at random, and
assigned a Good channel. The rest of the UEs are assigned
Bad channels. The rationale behind the above choice of the
channel state distributions will become clear when we compute
OPT’s expected cost in Appendix VI-E. In general, the cost of
the optimal offline policy is obtained by solving the Dynamic
Program (10), which is difficult to analyze. However, with
our chosen channel distribution p, we see that only one UE’s
channel is in Good state at any slot. This greatly simplifies
the evaluation of OPT’s expected cost. The following Theorem
gives the universal lower bound:

Theorem 5 (Converse): In the adversarial set up, the
competitive ratio η of any online policy with N UEs is
lower bounded by N

2 + 1
2N . Further, for N = 2 UEs, the

lower bound can be improved to 1.5.

Please refer to Appendix VI-E for a proof of this Theorem.

B. AoI minimization with Channel Predictions

The converse result in Theorem 5 states that under the
adversarial channel model, any online scheduling policy has
a worst-case competitive ratio η which grows at least linearly
with the number of UEs (N ). This is quite a disappointing
result when the number of UEs is large. On the flip side, the
fully adversarial channel model may also be too restrictive
in practice. To circumvent this situation, we now exploit the
physical fact that wireless channels with block-fading may
often be estimated quite accurately for a few subsequent future
slots [34]. We consider a relaxed adversarial model, where at
any slot t, the BS can estimate the channels perfectly for a
window of the next w ≥ 0 slots. Here, w is an adjustable
system parameter that can be adaptively tuned by the policy
in accordance with the scale of time-variation of the channels
(e.g., fading block length). Similar to the adversarial model in
Section III, we continue to assume that the channel states are
binary-valued and chosen by an omniscient adversary. Thus,
the adversarial model discussed in Section III is a special
case of this model with the window-size w = 0. We now
propose the following policy which exploits the w-step look-
ahead information:
Receding Horizon Control (RHC:) The UE scheduled at each
time t is chosen by minimizing the total cost for the next
w time-steps. Hence, the scheduling decision at time t is
obtained by solving the DP (10) with the boundary condition
C∗t+w+1(h) = 0,∀h.
The RHC policy was considered in [35] in the context of load-
balancing in data centers. It was shown that the RHC policy
has a competitive ratio of 1 + O( 1

w )- approaching 1 as the
prediction window size w is increased. Since the result of [35]
is not directly applicable to our problem, we examine the gain
for AoI due to channel prediction capabilities via numerical
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Fig. 1. Performance comparison between the MA and RHC scheduling
policies in a single BS. Figure 1 (a) shows the reduction in the average
AoI with as few as w = 3 slots channel estimations. Figure 1(b) shows
the reduction in AoI achieved with N = 5 UEs as the prediction window w
is increased.

simulations in the next section. Unsurprisingly, RHC reduces
to the MA policy when the prediction window w = 0.

IV. NUMERICAL SIMULATIONS

In this Section, we perform numerical simulations to com-
pare the performance of the RHC and MA policies in the
adversarial setting. Figure 1 shows the variation of time-
averaged AoI with different number of UEs for T = 500. A
Monte-Carlo simulation with k = 50 iterations was performed
with randomly generated channels, and we plotted the worst-
case AoI in Figure 1(a). For each of these iterations, at every
time step, the number of Good Channels is selected uniformly
at random between 1 and N − 1. From the plots, we see that
RHC outperforms MA by a large margin even with just a small
prediction window of w = 3.

Figure 1(b) shows the variation of the AoI with the window
size (w) for the RHC policy. The number of UEs is N = 5 and
the simulation is performed for T = 500 slots. The window-
size is varied from 1 to 10. Each simulation is repeated for 50
times and we plotted the maximum AoI value at the end of
these iterations. We see that increasing the prediction window
does not significantly decrease the average AoI.

V. CONCLUSION AND FUTURE WORK

This paper investigates the fundamental limits of Age-
of-Information in stationary and non-stationary environments
from an online scheduling point-of-view. In the stochastic
setting, a 2-optimal scheduling policy has been proposed for
mobile UEs. For the non-stationary regime, a new adversarial
channel model has been introduced. Upper and lower bounds
for the competitive ratio have been derived for the adversarial
model. As an immediate extension of this work, the effect
of mobility in the non-stationary environment may be con-
sidered. The gap between the upper and lower bounds of the
competitive ratio may be tightened. Also, it will be interesting
to obtain the competitive ratio for w-step lookahead policies
as a function of the prediction-window w.



REFERENCES

[1] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” Automatic Control, IEEE Transactions on,
vol. 37, no. 12, pp. 1936–1948, 1992.

[2] A. Mandelbaum and A. L. Stolyar, “Scheduling flexible servers with
convex delay costs: Heavy-traffic optimality of the generalized cµ-rule,”
Operations Research, vol. 52, no. 6, pp. 836–855, 2004.

[3] A. Sinha and E. Modiano, “Optimal control for generalized network-
flow problems,” IEEE/ACM Transactions on Networking, vol. 26, no. 1,
pp. 506–519, Feb 2018.

[4] M. J. Neely, “Stochastic network optimization with application to
communication and queueing systems,” Synthesis Lectures on Commu-
nication Networks, vol. 3, no. 1, pp. 1–211, 2010.

[5] U. C. Kozat, I. Koutsopoulos, and L. Tassiulas, “A framework for cross-
layer design of energy-efficient communication with qos provisioning in
multi-hop wireless networks,” in IEEE INFOCOM 2004, vol. 2. IEEE,
2004, pp. 1446–1456.

[6] A. Gurijala and C. Molina, “Defining and monitoring qos metrics in the
next generation wireless networks,” in 2004 IEE Telecommunications
Quality of Services: The Business of Success QoS 2004, March 2004,
pp. 37–42.
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VI. APPENDIX

A. Proof of Theorem 1

Proof: In the proof below, we first follow a sample-path-
based argument to obtain an almost sure lower bound to AoI.
Finally, we use Fatou’s lemma [36] to convert the almost sure
bound to a bound in expected AoI, as defined in Eqn. (1).
Consider a sample path under the action of any arbitrary

scheduling policy π up to time T . See Figure 2. For UEi, let
the r.v. Ni(T ) denote the number of packets received up to
time T , the r.v. Tij denote the time interval between receiving
the (j − 1)th packet and the jth packet, and the r.v. Di denote
the time interval between receiving the last (Ni(T )th) packet
and the time-horizon T . Hence, we have

T =

Ni(T )∑
j=1

Tij +Di. (12)

Since the AoI of any UE increases in step of one at each
slot until a new packet is received (and then it drops to one
again), the average AoI up to time T may be lower bounded
as:

AoIT ≡ 1

NT

N∑
i=1

T∑
t=1

hi(t)

=
1

NT

N∑
i=1

(Ni(T )∑
j=1

1

2
Tij(Tij + 1) +

1

2
Di(Di + 1)

)
(a)
=

1

2NT

N∑
i=1

(
Ni(T )

( 1

Ni(T )

Ni(T )∑
j=1

T 2
ij

)
+D2

i

)
+

1

2

(b)

≥ 1

2NT

N∑
i=1

(
Ni(T )T̄i

2
+D2

i

)
+

1

2
, (13)

where in (a) we have used Eqn. (12), and in (b) we have
defined T̄i = 1

Ni(T )

∑Ni(T )
j=1 Tij and used Jensen’s inequality

afterwards. Rearranging the Eqn. (12), we can express the
random variable T̄i as:

T̄i =
T −Di

Ni(T )
.

BS
1

BS
2

BS
3

Fig. 3. Movement of N = 3 UEs in an area with M = 3 cells

With this substitution, the term within the bracket in Equa-
tion (13) evaluates to

Ni(T )T̄ 2
i +D2

i =
(T −Di)

2

Ni(T )
+D2

i ≥
T 2

Ni(T ) + 1
, (14)

where the last inequality is obtained by minimizing the result-
ing expression by viewing it as a quadratic in the variable Di.
Hence, from Eqns. (13) and (14), we obtain the following
lower bound to the average AoI under the action of any
admissible scheduling policy:

AoIT ≥
T

2N

N∑
i=1

1

Ni(T ) + 1
+

1

2
. (15)

Next, we analyze the resource constraints of the system to
further lower bound the RHS of the inequality (15). Let the
r.v. Ai(T ) denote the total number of transmission attempts
made to UEi by all BSs up to time T . Also, let the r.v. gj(T )
denote the fraction of time that BSj contained at least one
UE in its coverage area. Since, a BS can attempt a downlink
transmission only when there is at least one UE in its coverage
area, the total number of transmission attempts to all UEs by
the BSs is upper bounded by the following global balance
condition:

N∑
i=1

Ai(T ) ≤ T
M∑
j=1

gj(T ) ≡ Tg(T ), (16)

where g(T ) ≡
∑
j gj(T ). Plugging in Eqn. (16), we can

further lower bound the inequality (15) as:

AoIT ≥
1

2Ng(T )

( N∑
i=1

Ai(T )
)( N∑

i=1

1

Ni(T ) + 1

)
+

1

2
.

An application of the Cauchy-Schwartz inequality on the RHS
yields:

AoIT ≥
1

2Ng(T )

( N∑
i=1

√
Ai(T )

Ni(T ) + 1

)2

+
1

2
. (17)

Note that, UEi successfully received Ni(T ) packets out of a
total of Ai(T ) packet transmission-attempts made by the BSs



via the erasure channel with success probability pi. Without
any loss of generality, we may fix our attention on those
scheduling policies only for which limT→∞Ai(T ) = ∞,∀i.
Otherwise, at least one of the UEs receive a finite number
of packets, resulting in infinite average AoI. Hence, using the
Strong law of large numbers [36], we obtain:

lim
T→∞

Ni(T )

Ai(T )
= pi, ∀i w.p. 1. (18)

Moreover, using the ergodicity property of the UE mobility,
we conclude that almost surely:

lim
T→∞

gj(T ) = Pψ
(
BSj contains at least one UE

)
,

where we recall that ψ denotes the stationary cell occupancy
distribution defined earlier. Thus, we have almost surely

lim
T→∞

g(T ) = lim
T→∞

∑
j

gj(T )

=

M∑
j=1

Pψ
(
BSj contains at least one UE

)
≡ g(ψ), (19)

where the function g(ψ) denotes the expected number of
non-empty cells where the expectation is evaluated w.r.t. the
stationary occupancy distribution ψ. Hence, putting equations
(18) and (19) together with the lower bound in (17), we have
almost surely:

lim inf
T→∞

AoIT ≥
1

2Ng(ψ)

(∑
i

√
1

pi

)2

+
1

2
. (20)

Finally,

AoI∗ ≥ lim inf
T→∞

E(AoIT )

(a)

≥ E(lim inf
T→∞

AoIT )

≥ 1

2Ng(ψ)

(∑
i

√
1

pi

)2

+
1

2
,

where the inequality (a) follows from Fatou’s lemma. This
concludes the proof of Theorem 1. Note that the proof con-
tinues to hold even when the mobility of the UEs are not
independent of each other.

B. Derivation of the bounds in Eqn. (6)

For M ≥ 2, we have the following bounds:

e−
β
M

(a)

≤ (1− 1

M
)

(b)

≤ e−
1
M , (21)

where β ≡ log(4) ≤ 1.387. The inequality (b) is standard. To
prove the inequality (a), consider the concave function

f(x) = 1− x− e−βx, 0 ≤ x ≤ 1

2
,

for some β > 0. Since a concave function of a real variable
defined on an interval attains its minima at one of the end
points of the closed interval, and since f(0) = 0, we have

f(x) ≥ 0,∀x ∈ [0, 1
2 ], if f(1/2) ≥ 0, i.e., eβ/2 ≥ 2, i.e.,

β ≥ ln(4). Thus, the inequality (a) holds for M ≥ 2 with
β = ln(4). The inequality (21) directly leads to the bounds in
Eqn. (6).

C. Proof of Theorem 2

Proof: Let the scheduling decisions at slot t be denoted by
the binary control vector µ(t) ∈ {0, 1}N , where µi(t) = 1 if
and only if the following two conditions hold simultaneously:
(1) Ci(t) = j, i.e., UEi is within the coverage area of BSj
at slot t, for some 1 ≤ j ≤ M , and (2) BSj schedules a
transmission to UEi at time t 2. Since a BS can schedule only
one transmission per slot to a UE in its coverage area, the
control vector must satisfy the following constraint:∑

i:Ci(t)=j

µi(t) ≤ 1, ∀j, t.

For performance analysis, we consider the following Lya-
punov function, which is linear in the ages of the UEs:

L(h(t)) =

N∑
i=1

hi(t)√
pi
. (22)

The conditional transition probabilities for the age of UEi may
be written as follows:

P
(
hi(t+ 1) = 1|h(t),µ(t),C(t)

)
= µi(t)pi

P
(
hi(t+ 1) = hi(t) + 1|h(t),µ(t),C(t)

)
= 1− µi(t)pi,

where the first equation corresponds to the event when UEi
was scheduled and the packet transmission was successful,
and the second equation corresponds to its complement event.
Hence, for each UE i, we can compute :

E
(
hi(t+ 1)|h(t),µ(t),C(t)

)
= hi(t)− µi(t)pihi(t) + 1. (23)

From the equation above, we can evaluate the one-step con-
ditional drift as:

E
(
L(h(t+ 1))− L(h(t))|h(t),µ(t),C(t)

)
= −

N∑
i=1

µi(t)
√
pihi(t) +

N∑
i=1

1
√
pi
. (24)

Finally, consider the drift minimizing policy Multi-Cell MW
(MMW), under which, each Base Station BSj schedules a user
UEi having the highest weight

√
pihi(t) in its cell. For the

purpose of the proof, we now define a stationary randomized
scheduling policy RAND, under which every BS randomly
schedules a UE in its cell with probability µRAND

i (t) ∝ 1/
√
pi

3. Comparing MMW with RAND, we have:

E
( N∑
i=1

µMMW
i (t)

√
pihi(t)|h(t),µ(t),C(t)

)

≥
M∑
j=1

∑
i:Ci(t)=j

hi(t)∑
i:Ci(t)=j

1√
pi

.

2Recall that the random variable Ci(t) denotes the index of the BS UEi

is associated with at time t.
3We use the usual convention that summation over an empty set is zero.



Thus, we have the following upper-bound of the drift (24)
under the MMW policy:

EMMW(L(h(t+ 1))− L(h(t))|h(t),C(t)
)

≤ −
M∑
j=1

∑
i:Ci(t)=j

hi(t)∑
i:Ci(t)=j

1√
pi

+

N∑
i=1

1
√
pi
.

Taking expectation of the above drift-inequality w.r.t. the
random cell-occupancy vector C(t), we have

EMMW(L(h(t+ 1))− L(h(t))|h(t)
)

≤ −
M∑
j=1

E(Zj(t)|h(t)) +

N∑
i=1

1
√
pi
, (25)

where Zj(t) ≡
∑
i:Ci(t)=j

hi(t)∑
i:Ci(t)=j

1√
pi

. Our next task is to evaluate

this expectation. Note that, we can alternatively express the
random variable

∑M
j=1 Zj(t) as

M∑
j=1

Zj(t) =

N∑
i=1

hi(t)Yi(t),

where Yi(t) =
(

1√
pi

+
∑
k 6=i

1√
pk
1(Ci(t) = Ck(t))

)−1
.

We can evaluate this expectation exactly for the i.i.d.
uniform mobility model. Recall that C(t) ⊥ h(t). Hence,

E(Yi(t)) =

N−1∑
n=0

∑
S:i/∈S,|S|=n

(
1
√
pi

+
∑
k∈S

1
√
pk

)−1

×

1

Mn

(
1− 1

M

)N−n−1

. (26)

In the special case when all UEs are identical, i.e., pi = p, ∀i,
the summation (26) has a closed-form expression. Clearly, for
all 0 ≤ n ≤ N − 1, we have:

Yi(t) =

√
p

n+ 1
, w.p.

(
N − 1

n

)
1

Mn

(
1− 1

M

)N−n−1

.

To evaluate the expectation of Yi(t), we integrate the binomial
expansion of (1 + x)N−1 in the range [0, β] to obtain the
identity:

1

N

(
(1 + β)N − 1

)
= β

N−1∑
n=0

1

n+ 1

(
N − 1

n

)
βn.

Substituting β = 1
M−1 in the above, we obtain

E(Yi(t)) =
√
p
M

N

(
1−

(
1− 1

M

)N) ≡ Y ∗(say). (27)

From Eqn. (25) and (27), we have

EMMW(L(h(t+ 1))− L(h(t))|h(t)
)
≤ −Y ∗

∑
i

hi(t) +
N
√
p
.

Time t

hi(t)

Sequence of channel states for UEi

1st interval 2nd interval 3rd interval 4th interval

Good 
Channel

Bad 
Channel

∆1 ∆4

Fig. 4. Illustrating the intervals for UEi

Taking expectation of both sides, we have

EMMW(L(h(t+ 1))− L(h(t))
)
≤ −Y ∗

∑
i

Ehi(t) +
N
√
p
.

Summing up the above inequalities and averaging w.r.t. T
slots, we obtain

AoIMMW = lim sup
T→∞

1

NT

T∑
t=1

∑
i

Ehi(t)

≤ N

Y ∗
√
p

=
N

Mp

(
1− (1− 1

M )N
) . (28)

On the other hand, the lower bound from Theorem 1, special-
ized to this case, yields:

AoI∗ ≥ N

2Mp

(
1− (1− 1

M )N
) . (29)

Eqns. (28) and (29), we have

AoIMMW ≤ 2AoI∗.

The above inequality shows that the policy MMW is
2−optimal in the case of statistically identical UEs with
uniform mobility.

D. Proof of Theorem 3

Proof: Let us assume that the MA policy had K ≥ 0
successful transmissions during the entire time-horizon of
length T . We divide the time horizon into K successive
intervals, defined naturally as follows. Let Ti be the time index
at which the MA policy had its ith successful transmission,
0 ≤ i ≤ K, and TK+1 = T . Let ∆i ≡ Ti − Ti−1 denote
the length of the ith interval between the ith and i − 1 th

successful transmissions of the MA policy. For notational
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Fig. 5. Illustrating the scheduling decisions of MA and OPT with N = 3
UEs. User which is scheduled by the MA policy at each slot is denoted by
MA and the user which is scheduled by the offline Optimal policy OPT at
each slot is denoted by OPT and the user which is scheduled by both MA and
OPT at the same instant is denoted by MA as well as OPT. The figure shows
that the MA policy sticks to one user till it gets served and then it switches
over to another user in a round-robin fashion. This figure also shows that how
the optimal algorithm takes advantage of the known channel states.

consistency, we define T0 ≡ 0,∆0 ≡ 0. See Figure 4. We start
our analysis with two simple observations - first, whenever a
successful transmission is made by the MA policy, the optimal
policy OPT also transmits at that slot successfully. Second,
the MA policy is a persistent round robin policy, which
keeps on scheduling a user (having the highest age) until the
transmission is successful. In the immediately following time
slot, the MA policy switches to the other user and continues
the round-robin scheduling cycle. See Figure 5 for a typical
run.

Hence, under the MA policy, the states of the users (in sorted
order) at the beginning of the ith interval is

{1, 1 + ∆i−1, 1 + ∆i−1 + ∆i−2, . . . , 1 +

N−1∑
j=1

∆i−j .}

Since the MA policy continues scheduling the UE having the
highest age, at the end of the kth slot of the ith interval, the
ages of the UEs (in sorted order) are given by:

{k, k+∆i−1, k+∆i−1+∆i−2, . . . , k+

N−1∑
j=1

∆i−j , 1 ≤ k ≤ ∆i.}

Hence, the cost CMA
i incurred by the MA policy during the ith

interval is computed as:

CMA
i =

∆i∑
k=1

k +

∆i∑
k=1

N−1∑
m=1

(
k +

( m∑
j=1

∆i−j
))

= N

∆i∑
k=1

k + ∆i

N−1∑
j=1

(N − j)∆i−j

≤ N

(
∆i(∆i + 1)

2
+

N−1∑
j=1

∆i∆i−j

)
(30)

≤ N

2

(
N∆2

i + ∆i +

N−1∑
j=1

∆2
i−j

)
(31)

where in the last step, we have used the AM-GM inequality
to conclude ∆i∆i−j ≤ 1

2

(
∆2
i + ∆2

i−j
)
, 1 ≤ j ≤ N − 1.

Hence, the total AoI cost incurred by the MA scheduling policy
over the entire time horizon is upper bounded as:

AoIMA(T ) =

K∑
i=1

CMA
i

≤ N

2

K∑
i=1

(
N∆2

i + ∆i +

N−1∑
j=1

∆2
i−j

)

≤ N

2

K∑
i=1

(
2N∆2

i + ∆i

)
.

On the other hand, the cost incurred by OPT during the ith

interval is lower bounded as:

COPT
i ≥ (N − 1)

∆i∑
k=1

1 +

∆i∑
k=1

(1 + k).

≥ 1

2
∆2
i +N∆i, (32)

where we have separately lower bounded the cost incurred
by the UE being scheduled by MA (which was consistently
seeing Bad channels) and the other UEs. Finally, the cost
of the entire horizon may be obtained by summing up the
cost incurred in the constituent intervals. Hence, noting that
∆0 = 0, from Eqns. (30) and (32), the competitive ratio ηMA

of the MA policy may be upper bounded as follows:

ηMA =

∑K
i=1 C

MA
i∑K

i=1 C
OPT
i

(a)

≤

N
2

∑K
i=1

(
2N∆2

i + ∆i

)
∑K
i=1

(
1
2∆2

i +N∆i

)
≤ 2N2.

E. Proof of Theorem 5

Proof:
To apply Yao’s principle, we need to compute the expecta-

tions appearing in the numerator and the denominator of Eqn.
(11).

1) Upper bound to OPT’s expected cost: Let the random
variable Ci(T ) denote the total AoI-cost incurred by the ith

UE up to time T . In other words,

Ci(T ) =

T∑
t=1

hi(t).

Hence, the limiting time-averaged total expected cost incurred
by OPT may be expressed as

C̄(OPT) ≡ lim
T→∞

1

T

N∑
i=1

E
(
Ci(T )

)
=

N∑
i=1

lim
T→∞

E(Ci(T ))

T
, (33)



In the following, we will show that all of the above limits
exist with the assumed choice of the underlying probability
space. We now use the Renewal Reward Theorem [37] in order
to evaluate the RHS of Eqn. (33). Since, under the assumed
channel state distribution p, only one channel is in Good state,
the optimal policy OPT is easy to characterize - at any slot,
OPT schedules the user having Good channel. Under this
probability space, it can be verified that, for each user i, the
sequence of random variables {hi(t)}t≥1 constitute a renewal
process, with the commencement of scheduling of the ith user
constituting renewal instants. A generic renewal interval of
length τ for the ith user consists of two parts - (1) a consecutive
sequence of Good channels of length τG, and (2) a consecutive
sequence of Bad channels of length τB. The AoI cost ci(τ)
incurred by the user i in any generic renewal cycle may be
written as the sum of the costs incurred in two parts:

ci(τ) = ci(τG) + ci(τB)

=

τG∑
t=1

1 +

τB∑
t=1

(1 + t)

= τG +
3

2
τB +

1

2
τ2

B .

Let q ≡ 1
N be the probability that that the channel is Good

for the ith user at any slot. Hence, from our construction, the
random variables τG and τB follows a Geometric distribution
having the following p.m.f.

P(τG = k) = qk−1(1− q), k ≥ 1.

P(τB = k) = q(1− q)k−1, k ≥ 1.

Hence, the expected cost incurred by the ith user at any renewal
cycle is given by

E(ci(τ)) =
1

1− q
+

3

2q
+

2− q
2q2

=
1

q2(1− q)
. (34)

Moreover, the expected length of any renewal cycle is given
by

E(τ) = E(τG) + E(τB) =
1

q(1− q)
. (35)

Using Renewal Reward Theorem [37], we have

lim
T→∞

E(Ci(T ))

T
=

E(ci(τ))

E(τ)
=

1

q
= N, ∀i.

Hence, from (36), we conclude that the time-averaged total
expected cost incurred by OPT is given by

C̄(OPT) = N2. (36)

2) Lower Bound to the AoI for N users: By directly
appealing to the general lower bound in Theorem (1), with
pi = 1

N , ∀i, and M = 1, we conclude that under the assumed
channel state distribution, the time-averaged expected cost for
any online scheduling policy π is lower bounded as

C̄(π) = lim sup
T→∞

1

T

N∑
i=1

E(Ci(T )) ≥ N3 +N

2
. (37)

We should point out that the lower bound in (37) is not
numerically tight. In particular, the following Proposition 1
shows that, using a more careful analysis, the AoI lower bound
for N = 2 users may be improved to 6.

Propostion 1: In the above set up, for any online policy,
the average AoI for N = 2 users with the probability of
successful transmission p1 = p2 = 1

2 is lower bounded
by 6.

For a proof of the above proposition, please refer to Ap-
pendix VI-F below.
Nevertheless, the achievability result in Theorem 2 shows
that the bound in Eqn. (37) is tight within a factor of 2. In
particular, Eqn. (37) has the order optimal dependence on N .
Finally, using Yao’s minimax principle in conjunction with
Eqns. (36) and (37), we conclude that the competitive ratio
η(N) of any online policy is lower bounded as

η(N) ≥ sup
T

CT (π)

CT (OPT)
≥ C̄(π)

C̄(OPT)
≥ N

2
+

1

2N
.

In the case when N = 2, using the result of Appendix VI-F,
the competitive ratio is lower bounded by

η(2) ≥ 6

22
= 1.5.

F. Proof of Proposition 1

Proof:
Define Ft−1 ≡ σ(~h(k), ~µ(k), 1 ≤ k ≤ t − 1) to be the

sigma-algebra generated by the r.v.s of age and control vectors
observed up to time t − 1. Since the policy is online, the
scheduling decision ~µ(t) at time t must be measurable in Ft−1

for all t ≥ 1. Let Hsum(t) ≡ Eπ(h1(t)) + Eπ(h2(t)) be the
expected sum of the ages of the UEs at time t. Let Bt ∈ Ft
be the event for which the UE1 is scheduled under the policy
π. Then, we can write

Eπ
(
h1(t+ 1)|Ft) (38)

=
(
1 +

1

2
h1(t)

)
1(Bt) +

(
1 + h1(t

)
1(Bct )

= 1 +
1

2
h1(t) +

1

2
h1(t)1(Bct )

(a)

≥ 1 +
1

2
h1(t) +

1

2
min{h1(t), h2(t)}1(Bct ), (39)

Similarly, we can also write

Eπ
(
h2(t+ 1)|Ft) ≥ 1 +

1

2
h2(t) +

1

2
min{h1(t), h2(t)}1(Bt). (40)

Since 1(Bt) + 1(Bct ) = 1, from the equations (38) and (40),
we have

Eπ
(
h1(t+ 1) + h2(t+ 1)|Ft) ≥

2 +
1

2
(h1(t) + h2(t)) +

1

2
min{h1(t), h2(t)}.



Taking expectations of both sides of the above equation, we
get

Hsum(t+ 1) ≥ 2 +
1

2
Hsum(t) +

1

2
E
(

min{h1(t), h2(t)}
)
. (41)

Let the random variable S(t) denote the time elapsed since
the last successful transmission (by any UE) before time t.
Clearly,

min{h1(t), h2(t)} ≥ S(t)

(the above inequality holds with equality for the two user
case). Hence, the above inequality implies

Hsum(t+ 1) ≥ 2 +
1

2
Hsum(t) +

1

2
E
(
S(t)

)
.

Summing up the above inequalities for t = 1, 2, . . . , T , and
dividing both sides by T , we obtain

2
Hsum(T + 1)

T
+

1

T

T∑
t=1

Hsum(t) ≥ 4 +
1

T

T∑
t=1

E(S(t)). (42)

It is to be noted that {S(t)}t≥1 is a renewal process with
the time-stamp of successful transmissions constituting the
renewal instants. Let the random variable τ denote the length
of any generic renewal cycle. Hence, using the renewal reward
theorem [37] [38], it follows that

lim
T→∞

1

T

T∑
t=1

E(S(t)). =
E
( ∫ τ

0
S(t)dt

)
E(τ)

=
E(1 + 2 + . . .+ τ)

E(τ)

=
E(τ2) + E(τ)

2E(τ)
= 2,

where the last inequality follows from the fact that the

renewal cycle lengths T are distributed geometrically with
the parameter p = 1/2. Thus, the limit of the RHS of Eqn. (42)
exists and the limiting value is equal to 6. Next, we consider
two possible cases.
Case I: lim infT→∞

Hsum(T+1)
T = 0: In this case, consider a

subsequence {Tk}k≥1 along which limk→∞
Hsum(Tk+1)

Tk
= 0.

For this subsequence, we have from Eqn. (42):

2
Hsum(Tk + 1)

Tk
+

1

Tk

Tk∑
t=1

Hsum(t) ≥ 4 +
1

Tk

Tk∑
t=1

E(S(t)).

Taking k →∞, we conclude that

lim sup
T→∞

1

T

T∑
t=1

Hsum(t) ≥ 6. (43)

Case II: lim infT→∞
Hsum(T+1)

T = α > 0: From the definition
of lim inf , it follows that there exists a finite T0 such that, for
all T ≥ T0, we have

Hsum(T + 1)

T
≥ α

2
. (44)

Thus, for any T ≥ T0, we can write

1

T

T∑
t=1

Hsum(t) ≥ 1

T

T∑
t=T0+1

Hsum(t)
(a)

≥ α

2T

T−1∑
t=T0

t = Ω(T ).

Hence, in this case, we have

lim sup
T→∞

1

T

T∑
t=1

Hsum(t) =∞.

Hence, from Eqns. (43) and (45), we conclude that, in either
case, we have

lim sup
T→∞

1

T

T∑
t=1

Hsum(t) ≥ 6. (45)
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