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Abstract—We propose a decoding algorithm for color codes
over the quantum erasure channel, which is linear-time maximum
likelihood (ML) when the set of erased qubits satisfies a certain
condition called trimmability. Two methods are proposed for
general erasure sets, either by extending the erasure set to make
it trimmable, or by inactivating some vertices. The former is
linear time but not ML, while the latter is ML but not linear
time. Numerical results are provided to assess the error correction
performance and the complexity of both methods.

I. INTRODUCTION

Error correction is a crucial step for the construction of
a quantum computer. Quantum systems suffer from errors
due to decoherence and noise. By using quantum error cor-
rection, one can prevent quantum information in a quantum
computing device from being destroyed. Many efforts and
improvements have been made to develop and study quantum
error correction codes. Among them, topological codes like
surface codes [1], [2] are expected to be deployed to build
practical quantum computers due to their high thresholds and
locality [3].

Color codes [4] are other promising topological quantum
error correction codes for fault-tolerant quantum computing.
They provide relatively good thresholds that are slightly below
the ones of surface codes [5], [6], [7]. However, unlike
surface codes, transversal Clifford operations can act as logical
Clifford operations [8].

The quantum erasure channel [9], [10] is the simple noise
model, in which some qubits are erased and we are given
which qubits are erased. When a qubit is erased, that qubit
is thought to be affected by a randomly chosen Pauli error.
Having information which qubits are erased might make
developing decoding algorithms less complicated. Recently,
maximum likelihood (ML) decoding of surface codes in linear
time over the quantum erasure channel has been proposed [11],
and it is used as a subroutine for almost-linear time decoding
algorithm of surface codes and color codes [6], by projecting
them onto surface codes [12], [7] to correct both Pauli errors
and erasures.

In this paper, we show that linear-time ML decoding of color
codes over the quantum erasure channel is possible, when a
set of erased qubits satisfies a certain trimmability condition,
and propose a decoding algorithm, which we call trimming
decoding. We also provide the ways how to use the trimming
decoding when the trimmability constraint is not obeyed.

The paper is structured as follows. In Section II, we provide
background knowledge such as the definitions of color codes,
the shrunk lattices and the string operators, and the quantum
erasure channel. In Section III-A, we first define trimmable
erasure sets, and propose a linear time ML decoding for such
erasure sets. Two extensions are then proposed for general
erasure sets, the first by extending the erasure set to make
it trimmable (linear time but not ML), and the second by
inactivating some vertices (ML but not linear time). Finally
in Section IV, we provide the simulation results to assess
the error correction performance and the complexity of both
methods.

II. PRELIMINARIES

A. Color codes

Given a graph (V,E), where V is the set of vertices and
E the set of edges, a tiling of a surface G = (V,E,F) is
the embedding of the graph on a surface, where F is the set
of faces. Color codes [4] are defined by 3-colorable tilings of
closed surfaces (all surfaces are assumed to be orientable, of
arbitrary genus). A tiling is said to be 3-colorable if its faces
can be colored with 3 colors (say red, green, blue), such that
each vertex is incident to exactly one face of each color. Let P
be the Pauli group on |V| qubits, and S 6 P be the subgroup
generated by the Pauli operators SX(f) = ⊗v∈V(f)Xv , and
SZ(f) = ⊗v∈V(f)Zv, times the identity on the remaining
vertices, for each face f ∈ F, where V(f) is the set of vertices
incident to f . The color code associated with the tiling G is
the stabilizer code defined by S. It encodes a number of logical
qubits, k, given by [4]:

k = 4− 2χ = 4g (1)

where χ := |V|− |E|+ |F| denotes the Euler characteristic of
the surface, and g its genus. Since g is a topological invariant
of the surface, k does actually only depend on the surface, and
not on the specific tiling, the latter determining however the
minimum distance of the code (or more generally, the spectrum
of weights of undetectable errors, see below).

A Pauli error is simply a Pauli operator E acting on the |V|
qubits. Since operators in S act trivially on the code space,
we shall assume that E ∈ P \ S. Omitting a global phase
term, we may write E = ⊗v∈VEv ∈ {I,X, Y, Z}⊗|V|, and
define the support and the weight of E, as supp(E) = {v ∈
V|Ev 6= I} and w(E) = | supp(E)|. A Pauli error E is said



to be undetectable if it belongs to Z \S , where Z denotes the
centralizer of S in P . The minimum distance of the code is
defined as the smallest weight of an undetectable error.

As explained in [4], there is a close connection between
the centralizer group Z and the one-dimensional homology
group H1 of the surface, which can be best understood by
considering cycles in the shrunk lattices associated with G.
This connection is briefly explained below, as it is relevant to
the purposes of this paper.

First, we note that any edge e ∈ E borders two faces
f1, f2 ∈ F that must have different colors c1 6= c2 ∈ {r, g, b}.
We color e with the unique color c that is different from both
c1 and c2. Moreover, let v′, v′′ denote the two endpoint vertices
of e, and f ′, f ′′ ∈ F be the two faces such that v′ is incident
to f1, f2, f

′, and v′′ is incident to f1, f2, f
′′. Hence, one may

think at the edge e as connecting the faces f ′ and f ′′, and
these two faces are necessarily of the same color c. The c-
color shrunk lattice is obtained by shrinking each face of color
c to a vertex, which will be referred to in the sequel as a site
(to avoid confusion with the vertices in V), and connecting
them through edges of the same color. Let Γ be a cycle in
the c-color shrunk lattice: it is a closed path, consisting of a
sequence of edges that join a sequence of sites. Since the edges
of the shrunk lattice are actually the edges in E, of color c,
we may define V(Γ) as the set of vertices in V incident to the
edges that Γ contains. We define the following two operators,
referred to as string operators [4]:

Sc,σΓ =
⊗

v∈V(Γ)

σv, for σ ∈ {X,Z} (2)

where σv denotes the σ operator on qubit v. It is easily seen
that string operators commute with the generators of S, and
thus they belong to Z . Moreover, Sc,σΓ′ and Sc,σΓ′′ belong to
the same equivalence class in the quotient group Z/S (hence,
they have the same effect on the code space) if and only if Γ′

and Γ′′ belong to the same equivalence class in the homology
group H1. Hence, we may further define Sc,σγ ∈ Z/S, for any
homology class γ ∈ H1, and the following properties hold [4].

Sr,σγ Sg,σγ Sb,σγ = 1 (3)[
Sc,σγ , Sc

′,σ
τ

]
=
[
Sc,σγ , Sc

′,σ′

γ

]
=
[
Sc,σγ , Sc,σ

′

τ

]
= 0 (4)

Using (3), and since H1 is generated by 2g homology
classes, say γ1, . . . , γ2g , it follows that Z/S is generated
by
{
Sc,σγi | i = 1, . . . , 2g, c ∈ {r, g}, σ ∈ {X,Z}

}
. This gives

a set of 8g = 2k generators, which may be identified to k
logical-X and k logical-Z operators.

B. Channel model and decoding

The channel we consider is the quantum erasure chan-
nel [11]: each qubit independently has a probability pe of
being erased. The set of erased qubits E is known and the
erased qubits are replaced by a totally mixed state I/2 =
1
4 (ρ+XρX+Y ρY +ZρZ), which can be viewed as a uniform
random Pauli error. Thus, we denote by E = ⊗v∈VEv ∈ P ,
such that supp(E) ⊆ E , the error that actually occurred.

For a Pauli error E, each face f ∈ F has syndrome bits
Sσ(f) ∈ {±1}, with σ ∈ {X,Z}, such that Sσ(f) = 1 if E
and Sσ(f) commute, and Sσ(f) = −1, if they anticommute.

Lemma 1. Let E′ and E′′ be two Pauli errors, with syndrome
bits denoted by S′σ(f) and S′′σ(f), respectively. Then,

(i) E′E′′ ∈ Z if and only if E′ and E′′ have the same
syndrome, that is S′σ(f) = S′′σ(f),∀f ∈ F,∀σ ∈ {X,Z}.

(ii) E′E′′ ∈ S if and only if E′ and E′′ have the same
syndrome and supp(E′E′′) does not contain any homolog-
ically non-trivial cycle (i.e., a cycle in some shrunk lattice,
with non-trivial homology class).

Proof. (i) follows from the fact that E′E′′ ∈ Z if and only
if E′E′′ commutes with all Sσ(f), and therefore S′σ(f) =
S′′σ(f),∀f ∈ F,∀σ ∈ {X,Z}. (ii) follows from the fact
that any operator in Z whose support does not contain a
homologically non-trivial cycle, must be in S [4].

ML decoding amounts to determining all the errors E′ hav-
ing the same syndrome as E, and with support supp(E′) ⊆ E .
Errors E′ satisfying the above properties are equally likely
to occur, so that ML decoding may output one randomly
chosen error from the above set of solutions. ML decoding
is successful if all such errors are equivalent to E, up to
stabilizers, which happens if and only if E does not con-
tain homologically non-trivial cycles (Lemma 1). In case E
contains homologically non-trivial cycles, ML decoding fails
with probability 1 − 2a/2b ≥ 1/2, where b the dimension
of the space of solutions, and a is the dimension of the linear
subspace of solutions equivalent to E. Hence, we shall say that
an erasure set E containing homologically non-trivial cycles
is undecodable.

ML decoding can be implemented in O(|V|3) by us-
ing Gaussian elimination (this complexity can be decreased
O(|V|2.367) by using more sophisticated algorithms). This
cost may become prohibitive for large codes, in which case
decoding methods with linear computational complexity are
desirable. One such approach is the peeling decoding, which
tries to solve the decoding problem by recursively searching
for faces with only one incident erased vertex (see Sec-
tion III-A). The trimming decoding algorithm we propose in
this paper extends the peeling decoding, so as to cope with
cases where there is no longer any face with only one incident
erased vertex. The main idea is to “force” a guess on some
vertices, and then reactivate the peeling decoding again.

The following lemma will be needed to prove the validity
of the trimming algorithm.

Lemma 2. Let Γ be a cycle in the shrunk lattice of color c,
such that V(Γ) ⊂ E , and let v ∈ V(Γ). Then, there exists
a Pauli error E′ with the same syndrome as E, such that
supp(E′) ⊂ E and E′v = I .

Proof. If Ev = I , then E′ = E holds. Suppose that Ev 6= I .
Let Sc,σΓ , be the string operator associated with Γ. Then E′ =
Sc,σΓ E, with σ = Ev , satisfies E′v = I . From Lemma 1, E′

and E have the same syndrome, since E′E = Sc,σΓ ∈ Z .



III. TRIMMING DECODING

A. Decoding for trimmable erasure sets

Consider a color code state transmitted over the quantum
erasure channel. Let E denote the erasure set and E the
actual error that occurred, with supp(E) ⊆ E , and S(E) =
(Sσ(f) ∈ {±1} | f ∈ F, σ ∈ {X,Z}) be the syndrome of E.

By a slight abuse of notation, in the following we shall
denote by E both the erasure set and the induced subgraph
(the edges in the induced subgraph are the edges (u, v) ∈ E
with both incident verticies u, v ∈ E). For any face f ∈ F, let
E(f) denote the set of vertices incident to f that belong to E .

Definition 3. An erasure set E is said to be trimmable if for
any f ∈ F, the vertices in E(f) belong to the same connected
component of E .

Put differently, the above definition means that any two
vertices in E(f) can be connected by a path on E . However, it
is worth noticing that such a path needs not be in E(f), that
is, E(f) needs not be connected.

Let T be a spanning tree of a connected component of
E . Hence, T is a subgraph that is a tree and includes all
the vertices of the considered connected component. If E is
not connected, a spanning forest F is a graph consisting of a
spanning tree for each of its connected components.

Our decoding algorithm is described in Algorithm 1. It starts
by constructing a spanning forest F of E . For instance, such a
spanning forest can be effectively determined by running the
Depth-First Search (DFS) algorithm on E . Then, the decoding
procedure is very simple: it suffices to run through the leaves
(vertices of degree 0 or 1 in F) of the spanning forest, and to
either peel the current leaf vertex, whenever this is possible,
or force a guess on it, otherwise.

We say that a vertex v can be peeled if it has at least one
incident face f that is not incident to any other vertices in
E . In such a case, peeling v means that the value of E′v is
set according to the syndrome bits of f . Precisely, we set
E′v = XsX(f)ZsZ(f) where sσ(f) := 1−Sσ(f)

2 ∈ {0, 1}, σ ∈
{X,Z}. Moreover, we shall assume that syndrome bits of the
faces incident to v are updated.

Proposition 4. Assume that E is a trimmable erasure set and
F is a spanning forest of E . Then Algorithm 1 determines a
valid Pauli error E′, that is, an error such that supp(E′) ⊆ E
and S(E′) = S.

Proof. We have to prove that each time in Algorithm 1 we
need to force the identity on some vertex v (line 7), then there
exists indeed a valid error E′, such that E′v = I .

We distinguish several cases, according to the degE(v)
value, the degree of v in the subgraph induced by E . We denote
by T the spanning tree of F containing v.

Case 1) degE(v) = 0. This may only happen if there is only
one vertex left in the tree, that is, T = {v}. In this case,
v can be peeled, by using any of its incident faces. Indeed,
let f be any face incident to v. If there were other erased

Algorithm 1 Decoding for trimmable erasure sets
Input: A trimmable erasure E ⊂ V, and an error syndrome S
Output: A Pauli error E′, with supp(E′) ⊆ E and S(E′) = S

1: Determine a spanning forest F of E ;
2: while F non empty do
3: v ← leaf node of F ;
4: if v can be peeled then
5: Determine E′v by peeling v;
6: else
7: Set E′v = I;
8: end if
9: Remove v from F ;

10: end while

vertices incident to f , they would necessarily belong to another
connected component (since T contains only v). However, this
is impossible, because of the trimmable property of E , which
implies that the erased vertices incident to the same face f
belong to the same connected component.
Case 2) degE(v) = 1. Let us assume that v cannot be peeled
(since otherwise, there is nothing to prove). We know that v is
connected to exactly one vertex in E , which must be its parent
node in T . Let u be the parent node of v in T , and u1, u2 ∈
V \ E be the other two neighbor vertices of v (see figure 1).
Denote by f the unique face incident to v, u1, and u2. Finally,
let c be the color of f . Since v cannot be peeled, there must
be another vertex incident to f that belongs to E . Call this
vertex w1 ∈ E . By the definition of a trimmable set, w1 and v
belong to the same connected component of E . It follows that
w1 ∈ T , and there must be a path p = (w1, w2, . . . , wm) in
T , such that wm = v. In particular, it follows that wm−1 = u,
the parent of v in T , and the edge (u, v) is of the same color
as f , say c. The edges of p of color c determine a cycle Γ
in the shrunk lattice such that v ∈ V(Γ). Therefore, we may
apply Lemma 2, which states that there exists a valid error E′

such that E′v = I .

Fig. 1. Proof of the trimming procedure – case 2) degE(v) = 1

Case 3) degE(v) ≥ 2. In this case, it is easily seen that any
face incident to v must be incident to at least another vertex in
E . Hence, v cannot be peeled and we need to prove that there
exists a valid error E′ such that E′v = I . Since T contains
only one edge incident to v, say (u, v) where u is the parent
node of v in T , there must be an edge incident to v in E , but
which is not in T . Since T is a spanning tree of a connected
component of E , such an edge determines a (fundamental)



cycle C of E , passing through v. Let Γ be the cycle in the
shrunk lattice determined by the edges of C of the same color
as (u, v). Then, from Lemma 2, we may find a valid error E′

such that E′v = I .

The trimming decoding algorithm is ML over the trimmable
erasure set since all possible errors are equiprobable, and its
complexity is linear in the number of vertices. Indeed, the
spanning forest F can be determined by running a DFS on
the subgraph induced by E , which takes linear time. Trimming
leaf nodes is a linear-time procedure since each leaf node is
considered only once, and it is either peeled or the identity is
forced on it.

Two ways to extend the previous algorithm to general
erasure sets are proposed. The first method is to connect some
spanning trees that violate the trimming property, so that the
extended erasure set becomes trimmable. The second method
is to get rid of vertices that violate the trimming property,
and their errors are calculated later by solving a small linear
system.

B. Trimming decoding with extended erasure set

Let F be a spanning forest of E . Each tree in F corresponds
to a connected component of the subgraph induced by E . In
order to have a trimmable erasure set, if different trees share
a same face, we connect them by inserting pseudo-erasures
between them on the border of the shared face. We recursively
repeat the above procedure until we get an extended erasure
set Ē ⊃ E that is trimmable. We then apply Algorithm 1 to Ē .

The decoding complexity remains linear, however inserting
pseudo-erasures may create homologically non trivial cycles
in Ē (that are non in E), thus degrading the error correcting
performance with respect to ML decoding.

C. Trimming decoding with inactivation

The other way is to inactivate vertices, which means that
the errors on some vertices are assumed to be known and
the vertices are removed from the erasure set. The trimming
decoding with inactivating is described in Algorithm 2. Be-
cause the erasure set may not be trimmable, there are three
cases to consider. The first two cases have been already
discussed for the trimming algorithm, when the leaf can either
be peeled, or its pendant face (face f in Figure 1) is touched by
only one spanning tree. The new case is when some vertices
incident to the pendant face of the leaf do not belong to
the spanning tree to which the leaf belongs. In this case v
is inactivated (that is, a variable is assigned to E′v , which is
pretended to be known), and the trimming decoding procedure
is continued. After all the vertices are trimmed or inactivated, a
linear system is constructed with the variables assigned to the
inactivated vertices. Any linear system solver such as Gaussian
elimination returns a valid solution.

The trimming decoding with inactivation is ML, but its
complexity is dominated by the resolution of the linear system.
Therefore the algorithm is not linear time, however numerical
results (see SectionIV) show that the number of inactivated

Algorithm 2 Trimming decoding with inactivation
Input: A trimmable erasure E ⊂ V, and an error syndrome S
Output: A Pauli error E′, with supp(E′) ⊆ E and S(E′) = S

1: Determine a spanning forest F of E ;
2: while F non empty do
3: v ← leaf node of F ;
4: if v can be peeled then
5: Determine E′v by peeling v;
6: else if the pendant face of v is touched by only one

spanning tree then
7: Set E′v = I;
8: else
9: Inactivate v;

10: end if
11: Remove v from F ;
12: end while
13: Solve the linear system determined by inactivated vertices;

vertices is generally small with respect to the total number of
vertices.

IV. NUMERICAL RESULTS

We first show the result of the trimming decoding algorithm
with the erasure set extension in the hexagonal lattice on the
torus. In Fig. 2, the simulation results are shown by plotting
the logical X error rates plX against the erasure rates pe with
several minimum distances d. The trimming decoding with the
erasure set extension gives a threshold of 43% in the hexagonal
lattice on the torus. The threshold obtained using the trimming
algorithm on the extended erasure set is close to the theoretical
limit of the quantum erasure channel since the number of the
pseudo-erasures is not relatively substantial and the trimming
algorithm is ML for the extended trimmable erasure set.

The peeling decoding solely provides the very poor error
correction performance compared to the one of the trimming
decoding. See the dashed line in Fig. 2 for the peeling

Fig. 2. Trimming decoding with extension in the hexagonal lattice on the
torus



Fig. 3. Trimming decoding with inactivation in the hexagonal lattice on the
torus

Fig. 4. The average numbers of the inactivated vertices divided by the
total number of the vertices for trimming decoding with inactivation in the
hexagonal lattice on the torus

decoding when the minimum distance d is 100. Note that the
peeling decoding cannot peel any erasure set that covers a face
border. As a consequence, the logical error rate of the peeling
decoding is lower-bounded by p6

e, and thus the error correction
threshold is zero.

For the trimming decoding with the inactivation, the results
in the hexagonal lattice on the torus are shown in Fig. 3. The
threshold is obviously 50%, since the trimming decoding with
the inactivation is ML.

In order to evaluate the time complexity of the trimming
decoding with the inactivation in the practical regions, the
ratios of the average numbers of the inactivated vertices to the
total number of the vertices for the various minimum distance
are calculated, which are shown in Fig. 4. As the minimum
distance increases, the average ratios of the inactivated vertices
when the logical X error rate PlX is 10−6 tend to converge.

Thus, when the minimum distance is very large, it is expected
that only around 4.8% of the vertices are inactivated, as shown
in Fig. 4. Since the number of the variables of the linear system
is relatively low, the decoding procedure using the trimming
algorithm with the inactivation can be done fast compared to
solving the linear system for all the vertices.

V. CONCLUSION

We proposed the trimming decoding for color codes over the
quantum erasure channel. If the erasure set is trimmable, then
the trimming algorithm is linear-time ML. For the erasure set
that is not trimmable, extending the erasure set and inactivating
some vertices were provided to exploit the trimming property.
The trimming algorithm with extending the erasure set is
of linear time, but ML for the extended erasure set, not
the original erasure set. The trimming decoding with the
inactivation is ML, but the time complexity is not linear
since the linear system needs to be solved. The decoding
algorithm discussed in this paper has the potential to be used
for decoding of color codes over the depolarizing channel by
extending the erasure set as discussed in [6].
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