2005.13711v1 [csIT] 27 May 2020

arxXiv

List Decoding of Arikan’s PAC Codes

Hanwen Yao, Arman Fazeli, and Alexander Vardy
University of California San Diego, La Jolla, CA 92093, USA
{hwyao, avardy, afazelic}@ucsd.edu

Abstract—Polar coding gives rise to the first explicit family of
codes that provably achieve capacity with efficient encoding and
decoding for a wide range of channels. However, its performance
at short block lengths under standard successive cancellation de-
coding is far from optimal. A well-known way to improve the per-
formance of polar codes at short block lengths is CRC precoding
followed by successive-cancellation list decoding. This approach,
along with various refinements thereof, has largely remained the
state of the art in polar coding since it was introduced in 2011.
Last year, Arikan presented a new polar coding scheme, which he
called polarization-adjusted convolutional (PAC) codes. Such PAC
codes provide another dramatic improvement in performance as
compared to CRC-aided list decoding. These codes are based pri-
marily upon the following main ideas: replacing CRC precoding
with convolutional precoding (under appropriate rate profiling)
and replacing list decoding by sequential decoding. Arikan’s sim-
ulation results show that PAC codes, resulting from the combina-
tion of these ideas, are quite close to finite-length lower bounds
on the performance of any code under ML decoding.

One of our main goals in this paper is to answer the following
question: is sequential decoding essential for the superior perfor-
mance of PAC codes? We show that similar performance can be
achieved using list decoding when the list size L is moderately
large (say, L > 128). List decoding has distinct advantages over
sequential decoding in certain scenarios such as low-SNR regimes
or situations where the worst-case complexity/latency is the prim-
ary constraint. Another objective is to provide some insights into
the remarkable performance of PAC codes. We first observe that
both sequential decoding and list decoding of PAC codes closely
match ML decoding thereof. We then estimate the number of low
weight codewords in PAC codes, and use these estimates to appro-
ximate the union bound on their performance under ML decod-
ing. These results indicate that PAC codes are superior to polar
codes and Reed-Muller codes, and suggest that the goal of rate-

profiling may be to optimize the weight distribution at low weights.

Index Terms—coding theory, polar codes, convolutional codes,
successive-cancellation list decoding, sequential decoding

I. INTRODUCTION

Polar coding, pioneered by Arikan [[1]], gives rise to the first ex-
plicit family of codes that provably achieve capacity for a wide
range of channels with efficient encoding and decoding. How-
ever, it is well known that at short block lengths the perform-
ance of polar codes is far from optimal.

For example, the performance of a polar code of length 128
and rate 1/2 on the binary-input AWGN channel under stan-
dard successive cancellation (SC) decoding is shown in Fig-
ure[I] Figure[l] largely reproduces the simulation results pre-
sented by Arikan in [2]]. Codes of length 128 and rate 1/2 serve
as the running example throughout Arikan’s recent paper [2]],
and we will adopt this strategy herein. We make no attempt to
optimize these codes; rather, our goal is to follow Arikan [2]]

To be presented in part at the IEEE International Symposium on Informat-
ion Theory in June 2020 (submitted for review January 15, 2020).

o
w

5 | | —#— Polar Code, SC Decoder
10 —+— Polar Code with CRC Precoding, List Decoder, L=32

—+— PAC Code, Sequential Decoder
PAC Code, List Decoder, L=128
BIAWGN Dispersion Bound Approximation
6 I I I I I I

0 0.5 1 15 2 25 3 35
SNR (dB)

107

Figure 1. Performance of PAC codes versus polar codes

as closely as possible. Also shown in Figure[I]is the BIAWGN
dispersion bound approximation for such codes. This can be
thought of as an estimate of the performance of random codes
under ML decoding (see [14]]). Clearly, at length 128, there
is a tremendous gap between polar codes under SC decoding
and the best achievable performance.

As shown in [20] and other papers, the reasons for this gap
are two-fold: the polar code itself is weak at such short lengths
and SC decoding is weak in comparison with ML decoding.
A well-known way to address both problems is CRC precoding
followed by successive-cancellation list (SCL) decoding. Fol-
lowing [2], the performance of CRC-aided polar codes (with
8-bit CRC) of rate 1/2 under SCL decoding with list-size 32 is
also shown in Figure[I] This approach, along with various re-
finements thereof [11]—[13], has largely remained the state of
the art in polar coding since it was first introduced in [20].

In his Shannon Lecture at the ISIT in 2019, Erdal Arikan pre-
sented a significant breakthrough in polar coding, which boosts
the performance of polar codes at short lengths. Specifically,
Arikan [2] proposed a new polar coding scheme, which he calls
polarization-adjusted convolutional (PAC) codes. Remarkably,
under sequential decoding, the performance of PAC codes is
very close to the BIAWGN dispersion bound approximation.
The performance of PAC codes of length 128 and rate 1/2 is
also shown (in blue and green) in Figure[I]

A. Brief Overview of PAC Codes

Arikan’s PAC codes [2] are based primarily upon the following
two innovations: replacing CRC precoding with convolutional
precoding (under appropriate rate-profiling, to be discussed la-
ter) and replacing list decoding by sequential decoding. The

d Rate v | Convolu- | u Polar X
— .1 .

profiling tion transform

Channel

d Data 0 |Sequentiall m | Metric Y
<« . .

extraction decoding calculator

L 1

metric requests

Figure 2. PAC coding scheme, reproduced from [2]

encoding and decoding of PAC codes are shown schematically
in Figure[2] which is reproduced from [2].

Referring to Figure[2] let’s consider an (11, k) PAC code. On
the encoding side, Arikan uses a rate-1 convolutional precoder
concatenated with a standard polar encoder. Only k out of the
n bits of the input v to the convolutional precoder carry the in-
formation (or data) vector d. The remaining n — k bits of v are
set to 0. Just like for conventional polar codes, the overall per-
formance crucially depends upon which positions in v carry in-
formation and which are frozen to 0. This choice of frozen
positions in v, Arikan has termed rate-profiling. Unlike con-
ventional polar codes, the optimal rate-profiling choice is not
known. In fact, it is not even clear what optimization criterion
should govern this choice, although we hope to shed some light
on this in Section[Vl

The main operation on the decoder side is sequential decod-
ing. Specifically, Arikan employs Fano decoding of the convo-
Iutional code to estimate its input v. The path metrics used by
this sequential decoder are obtained via repeated calls to the
successive-cancellation decoder for the underlying polar code.

B. Our Contributions

One of our main goals in this paper is to answer the following
question: is sequential decoding essential for the superior per-
formance of PAC codes? Is it possible, or perhaps advantage-
ous, to replace the sequential decoder in Figure[2] by an alter-
native decoding method? We show that, indeed, similar per-
formance can be achieved using list decoding, provided the list
size L is moderately large. This conclusion is illustrated in Fig-
ure[I] where we use a list of size L = 128 to closely match the
performance of the sequential decoder. It remains to be seen
which of the two approaches is advantageous in terms of com-
plexity. While a comprehensive answer to this question would
require implementation in hardware, we carry out a qualitative
complexity comparison in Section[IV} This comparison indi-
cates that list decoding has distinct advantages over sequential
decoding in certain scenarios. In particular, list decoding is cer-
tainly advantageous in low-SNR regimes or in situations where
the worst-case complexity/latency is the primary constraint.
Another objective of this paper is to provide some insights in-
to the remarkable performance of PAC codes. Although theo-
retical analysis of list decoding remains an open problem even
for conventional polar codes, it has been observed in numerous
studies that list decoding quickly approaches the performance
of maximum-likelihood decoding with increasing list-size L.

As expected, we find this to be the case for PAC codes as well
(see Figure[7). Fortunately, maximum-likelihood decoding of
linear codes is reasonably well understood: its performance is
governed by their weight distribution, and can be well approxi-
mated by the union bound, especially at high SNRs. Motivated
by this observation, we use the method of [11]] to estimate the
number of low-weight codewords in PAC codes, under polar
and RM rate profiles (introduced by Arikan [2]). We find that
PAC codes with the RM rate-profile are superior to both polar
codes (with or without CRC precoding) and the (128, 64,16)
Reed-Muller code. For more on this, see Table[I] and Figure[J]
These results suggest that the goal of rate-profiling may be to
optimize the weight distribution at low weights.

C. Related Work

Numerous attempts have been made to improve the perform-
ance of polar codes at short block lengths. Various approaches
based on replacing successive-cancellation decoding with more
advanced decoders include list decoding [20], sequential de-
coding [12], and stack decoding [|13]], among others. As shown
later in this paper, in Arikan’s PAC codes, convolutional pre-
coding combined with rate-profiling can be regarded as replac-
ing traditional frozen bits with dynamically frozen bits. Polar
coding with dynamically frozen bits was first studied by Tri-
fonov and Miloslavskaya in [21]], although the dynamic freez-
ing patters in [21]] and [2] are very different. Prior to Arikan’s
paper [2], convolutional precoding of polar codes was propo-
sed in [7] and later studied in [8]. Finally, the work of [15],
which considers Fano and list decoding of PAC codes, is inde-
pendent from and contemporaneous with our results hereirﬂ

D. Paper Outline

The rest of this paper is organized as follows. We begin with an
overview on Arikan’s PAC codes in Section[ll} including both
their encoding process and sequential decoding. In Section[II]
we present our list-decoding algorithm. In Section[[V] we com-
pare it with sequential decoding, in terms of both performance
and complexity. In Section[V] we endeavor to acquire some in-
sight into the remarkable performance of PAC codes. First, we
show empirically that both sequential decoding and list decod-
ing thereof are extremely close to the ML decoding perform-
ance. To get a handle on the latter, we estimate the number of
low-weight codewords in PAC codes (and polar codes) under
different rate profiles. This makes it possible to approximate
the performance of ML decoding with a union bound. We con-
clude with a brief discussion in Section[V1l

II. OVERVIEW OF ARIKAN’S PAC CODES

For details on conventional polar codes under standard SC de-
coding, we refer the reader to Arikan’s seminal paper [1].
Like polar codes, the block length n of a PAC code is also
a power of 2. That is, n = 2" with m > 1. As shown in Fig-
ure the encoding process for an (1, k) PAC code consists of
the following three steps: rate-profiling, convolutional precod-

I'The work of Rowshan, Burg, and Viterbo [[15]], was posted on arxiv.org
in February 2020, while our work was submitted for review in January 2020.

ing, and polar encoding. In the first step, the k data (informa-
tion) bits of the data vector d are embedded into a data-carrier
vector v of length n, at k positions specified by an index set
AC{0,1,...,n—1} with | A| = k. The remaining n — k po-
sitions in v are frozen to zero. Arikan [2]] used rate-profiling
to refer to this step, along with the choice of the index set A.

Just like for polar codes, a careful choice of the index set .4
is crucial to achieve good performance. Arikan has proposed
in [2] two alternative approaches for selecting this set A. The
first approach, called polar rate-profiling, proceeds as follows.
Let Wy, Wy, ..., W,,_1 be the n bit-channels, defined with re-
spect to the conventional polar code of length n. In polar rate-
profiling, A is chosen so that {W; : i € A} consists of the k
best bit-channels in terms of their capacity. In other words, the
capacities of the k bit-channels {W; : i € A} are the k highest
values among I(Wy), I(Wy), ..., I(W,_1). The second app-
roach proposed in [2] is called RM rate-profiling. Let wt(i)
denote the Hamming weight of the binary expansion of an in-
dex i. In RM rate-profiling, we simply pick the k indices of the
highest weight, with ties resolved arbitrarily. In other words,
the set {wt(i) : i € A} consists of the k largest values among
wt(0), wt(1),...,wt(n — 1). Notably, without convolutional
precoding, this choice of A generates Reed-Muller codes (as
subcodes of a rate-1 polar code).

In the second step, the data-carrier vector v resulting from the
rate-profiling step is encoded using a rate-1 convolutional code
generated by ¢ = (cg,c1,...,¢y), with cg = ¢, = 1 (the lat-
ter can be assumed without loss of generality). This produces
another vector u = (ug, u1,...,u, 1) of length n, where

Up = Co0o,
Uy = €ov1 + €10,

Uy = CoU2 + €101 + €20y,
and so on. In general, every bit in # is a linear combination of
(v+1) bits of v computed via the convolution operation:

v
uj = Ecjvi—j (1)
j=0
where for i —j < 0, we set vi_j = 0 by convention. Alternati-

vely, this step can be viewed as a vector-matrix multiplication
u = oT, where T is the upper-triangular Toeplitz matrix:

CO Cl C2"' Cy 0 O

0 cg c1 ¢ -+ ¢y :

0 0 ¢g 7 "+ ¢y

D e e e

T=: @

0 Cop C1 C2

: 0 0 ¢o 1

[0 v ov v ees 00 cp

In the third step, the vector u is finally encoded by a con-
ventional polar encoder as the codeword x = uP,,. Here

®m
10
P, = B,
11
where B, is the n X n bit-reversal permutation matrix, and P,
is known as the polar transform matrix.

With reference to the foregoing discussion, the PAC code in
Figure[I]is obtained via RM rate-profiling using the rate-1 con-
volutional code generated by ¢ = (1,0, 1,1,0,1,1). This pro-
duces the (128,64) PAC code of rate 1/2, which is the code
studied by Arikan in [2]. This specific PAC code will serve as
our primary running example throughout the paper.

On the decoding side, Arikan [2]] employs sequential decod-
ing of the underlying convolutional code to decode the data-
carrier vector v. Under the frozen-bit constraints imposed by
rate-profiling, the rate-1 convolutional code becomes an irreg-
ular tree code. There are many different variants of sequential
decoding for irregular tree codes, varying in terms of both the
decoding metric used and the algorithm itself. Arikan [2] uses
the Fano sequential decoder, described in [6] and [9]]. Notably,
the path metrics at the input to the sequential decoder are ob-
tained via repeated calls to the successive-cancellation decoder
for the underlying polar code, as shown in Figure[2]

III. LisT DECODING OF PAC CODES

One of our main objectives herein is to determine whether seq-
uential decoding of PAC codes (cf. Figure[2) can be replaced
by list decoding. In this section, we show how list decoding of
PAC codes can be implemented efficiently. In the next section,
we will consider the performance and complexity of the result-
ing decoder, as compared to the sequential decoder of [2].

A. PAC Codes as Polar Codes with Dynamic Freezing

To achieve efficient list decoding of PAC codes, we use the list-
decoding algorithm developed in [20]]. The complexity of this
algorithm is O(Lnlogn), where L is the list size. However,
the algorithm of [20]] decodes conventional polar codes. In or-
der to make it possible to decode PAC codes with (a modified
version of) this algorithm, we first observe that PAC codes can
be regarded as polar codes with dynamically frozen bits.

Polar coding with dynamically frozen bits was first intro-
duced by Trifonov and Miloslavskaya in [21]], and later studied
by the same authors in [22]] and [23]]. Let us briefly describe the
general idea. In conventional polar coding, it is common prac-
tice to set all frozen bits to zero. That is, u; = 0 for all i € F,
where 7 C {0,1,...,n—1} denotes the set of frozen indices.
However, this choice is arbitrary: we can set u#; = 1 for some
i € F and u; = 0 for other i € F. Arikan showed in [1]] that
on symmetric channels, this does not affect the performance.
What matters is that the frozen bits are fixed and, therefore,
known a priori to the decoder. In [21]], it was further observed
that in order to be known a priori to the decoder, the frozen
bits do not have to be fixed. Given i € F, we can set

u; = fi(uo,ug, ..., uji—1) (3)

where f; is a fixed Boolean function (usually, a linear function)
known a priori to the decoder. For all i € F, the decoder can
then decide as follows

i, = fi(to, Uy, ..., 0i1) “4)

where iy, i1, . .., 11;_1 are its earlier decisions. The encoding/
decoding process in (3) and (@) is known as dynamic freezing.

Algorithm 1: List Decoder for PAC Codes

Algorithm 2: continuePaths_Unfzn (PAC version)

Input: The received vector y, the list size L,
the generator ¢ = (co,¢1,...,cy) for
the convolutional precoder as global

Output: Decoded codeword ¥

// Initialization
1 --- lines 2-5 of Algorithm 12 in [20]
2 shiftRegisters <— new 2-D array of size L X (v + 1)
3for/=0,1,...,L—1 do
4 L shiftRegister[¢] = (0,0,...,0)

// Main Loop
s forp=0,1,...,n—1do
6 recursivelyCalcP(m, ¢)
7 if uy is frozen then
8
9

for {=0,1,...,L—1do

if activePath[(] = false then
10 | continue
11 left-shift shiftRegister[¢] by one,

with the rightmost position set to 0

12 Ci + getArrayPointerC(m, £)
13 (U(P,V,U(P_Hl,...,v(,,) < shiftRegister[£]

// Set the frozen bit
14 | Cul0][¢ mod 2] = X7 cjvg;
15 else

16 | continuePaths_Unfzn(¢)

17 if ¢ mod 2 =1 then
18 | recursivelyUpdateC(rm, ¢)

// Get the best codeword in the list
19 --- lines 17-24 of Algorithm 12 in [20]
20 return X = (Cp[p] [O])g;[l)

In order to explain how Arikan’s PAC codes [2] fit into the dy-
namic freezing framework, let us first introduce some notation.
With reference to Section fori =0,1,...,n—1, let u; and
v; denote the vectors (ug,uy,...,u;) and (vg, vy, ...,0;), re-
spectively. Further, let T; ; denote the submatrix of the Toepliz
matrix T in (2), consisting of the first (topmost) i + 1 rows
and the first (leftmost) j + 1 columns. With this, it is easy to
see that #; = v;T;; for all i. The matrix T;; is upper triangu-
lar with det T;; = co = 1. Hence it is invertible, and we have
v; = uiT;l.l for all i. Now suppose that i € A€, so that v; is
frozen to zero in the rate-profiling step. Then we have

-1
up =0 1T 1; = (uiflTi—l,i—l)Ti*Li

&)

In particular, this means that the last bit u; of the vector u; is
an a priori fixed linear function of its first 7 bits, as follows:

t

u; = (uo, uy,.. .,u,‘_l) Tlill,ifl(o" . .,O,CV,CV,L. ..,C])

where (0,...,0,cy,¢,_1,...,c1)! represents the last column of
the matrix T;_q ;. Clearly, the above is a special case of dy-
namic freezing in (3). Moreover, it follows that the set F of
indices that are dynamically frozen is precisely the same as in
the rate-profiling step, that is F = A°.

Input: phase ¢

1 --- lines 1-18 of Algorithm 13 in [20]
// Continue relevant paths
2for /{=0,1,...,L—1 do
3 if contForks[(][0] = false and
contForks[(][1] = false then
4 | continue

5 Cm ¢ getArrayPointer_C(m, ()

6 left-shift shiftRegister[¢] by one, with the rightmost
position set to 0

7 (U(P,V,U(P_Vﬂ,...,v(,,) < shiftRegister[£]

8 | if contForks[(][0] = true and contForks[(][1] = true
then

9 Cm[0][¢p mod 2] < Z]V:o CiVy—j

10 ¢ + clonePath(/)

11 shiftRegister[¢'] < shiftRegister[(]

12 flip the rightmost bit of shiftRegister[£']

13 Cpm < getArrayPointer_C(m, (')

14 (U;iv,v¢,v+1,...,vip)u<— shi/ftRegister[é’]

15 Cum[0][¢ mod 2] <= ¥i_ CjvG_j

16 else

17 if contForks[(][0] = true then

18 if Z]V:() ¢jvy—j =1 then

19 | flip the rightmost bit of shiftRegister|[]

20 set Cp[0][¢ mod 2] < 0

21 else

22 if Z]V:o ¢jvy—;j = 0 then

23 | flip the rightmost bit of shiftRegister|[]

24 | set Cyy[0][¢ mod 2] + 1

If i € A, then v; is an information bit, but the value of u; is
determined not only by v; but by v;_1,v;_»,...,v;_, as well.
Thus when representing PAC codes as polar codes, the infor-
mation bits may be also regarded as dynamic.

Finally, note that in implementing the PAC decoder, there is
no need to actually invert a matrix as in (3)). Instead, we succes-
sively compute the vector o = (g, 01, - .., Uy_1) as follows. If
ie AS, set U; = 0. Otherwise, set

14
O = i — Y ¢l (6)
j=1

where the value of i; is provided by the polar decoder. Given
0i,0i_1,...,0i_y, the values of the dynamically frozen bits ii;
for i € A can be computed using . This computation, along
with the one in (6), takes linear time. All that is required is ad-
ditional memory to store the vector ¥ = (T, 01, ...,0y_1).

B. List Decoding of PAC codes

Representing PAC codes as polar codes with dynamically frozen
bits makes it possible to adapt existing algorithms for successive-
cancellation list decoding of polar codes to decode PAC codes.

There are, however, several important differences. For exam-
ple, for conventional polar codes, whenever the list decoder en-
counters a frozen index i € F, all the paths in the list-decoding
tree are extended in the same way, by setting ii; = 0. For PAC
codes, since the freezing is dynamic, different paths are potent-
ially extended differently, depending upon the previous decisi-
ons along the path.

In general, our list decoder for PAC codes maintains the same

data structure as the successive-cancellation list decoder in [20].

In addition, for a list of size L, we introduce L auxiliary shift
registers — one for each path. Each shift register stores the last
v bits of the vector ¥ = (0o, 01, . .., Uy—1), computed as in (6),
for the corresponding path.

Algorithm[I] and Algorithm[2] provide the full details of our
list decoding algorithm for PAC codes. These algorithms fit in-
to the same general mold as Algorithms 12 and 13 of [20], with
the differences highlighted in blue.

IV. L1ST DECODING VERSUS SEQUENTIAL DECODING

We now compare list decoding of PAC codes with sequential
decoding, in terms of both performance and complexity. For
list decoding, we use the algorithm of Section[ITI} For sequen-
tial decoding, we employ exactly the same Fano decoder that
was used by Arikan in [2]]. We are grateful to Erdal Arikan for
sharing the details of his decoding algorithm. We do not dis-
close these details here, instead referring the reader to [2].
Our main conclusion is that sequential decoding is not es-
sential in order to achieve the remarkable performance of PAC
codes: similar performance can be obtained with list decoding,
providing the list size is sufficiently large. As far as complex-
ity, sequential decoding is generally better at high SNRs and
in terms of average complexity, while list decoding is advan-
tageous in terms of worst-case complexity and at low SNRs.

A. Performance Comparison

Figure[3|summarizes simulation results comparing the perform-
ance of Arikan’s Fano decoder from [2|] with our list decoding
algorithm, as a function of the list size L. The underlying PAC
code is the same as in Figure[l} it is the (128,64) PAC code
obtained via RM rate-profiling (see Section[ll). The underly-
ing channel is the binary-input additive white Gaussian noise
(BIAWGN) channel.

As expected, the performance of list decoding steadily im-
proves with increasing list size until we reach a point of dimin-
ishing returns. For L = 128, the list-decoding performance is
very close to that of sequential decoding, while for L = 256 the
two curves virtually coincide over the entire range of SNRs.

It should be pointed out that the frame error rate (FER) re-
ported for sequential decoding in Figures [[|and [3]is due to two
different mechanisms of error/failure. In some cases, the se-
quential decoder reaches the end of the search tree (see Figu-
ref) producing an incorrect codeword. These are decoding er-
rors. In other cases, the end of the search tree is never reached;
instead, the computation is aborted once it exceeds a predeter-
mined cap on the number of cycles. These are decoding fail-
ures. As in [2], the FER plotted in Figure[3|counts all the cases

—+— PAC Code, List Decoder, L=1
—+— PAC Code, List Decoder, L=2
PAC Code, List Decoder, L=4
-3 || =+ PAC Code, List Decoder, L=8
——+— PAC Code, List Decoder, L=16
PAC Code, List Decoder, L=32
—+— PAC Code, List Decoder, L=64
PAC Code, List Decoder, L=128
—+— PAC Code, List Decoder, L=256
—©— PAC Code, Sequential Decoder
BIAWGN dispersion approximation

10
15 2 25 3
SNR (dB)

Figure 3. Performance of PAC codes under list decoding

wherein the transmitted codeword is not produced by the de-
coder: thus it is the sum of the error rate and the failure rate.
The table below shows what fraction of such cases were due to
decoding failures:

SNR [dB]
% of failures

1.00
4.53%

1.25
3.56%

1.50
1.86%

1.75
1.38%

2.00
1.01%

2.25
0.29%

A decoding failure was declared in our simulations whenever
the number of cycles (loosely speaking, cycles count forward
and backward movements along the search tree in the Fano
decoder) exceeded 1,300, 000. This is exactly the same cap on
the number of cycles that was used by Arikan in [2]]. Overall,
the foregoing table indicates that increasing this cap would not
improve the performance significantly.

The FER for list decoding is also due to two distinct error
mechanisms. In some cases, the transmitted codeword is not
among the L codewords generated by our decoding algorithm.
In other cases, it is on the list of codewords generated, but it is
not the most likely among them. Since the list decoder selects
the most likely codeword on the list as its ultimate output, this
leads to a decoding error. We refer to such instances as select-
ion errors. The table below shows the fraction of selection er-
rors for lists of various sizes:

SNR [dB] | 1.50 1.75 2.00 2.25 2.50 2.75 3.00
L =64 32.1% | 32.2% | 32.5% | 32.3% | 29.4% | 36.7% | 39.6%
L =128 | 50.0% | 51.6% | 54.6% | 53.6% | 58.4% | 60.4% | 63.2%
L =256 | 66.2% | 71.0% | 75.2% | 78.0% | 79.9% | 83.6% | 82.8%

This indicates that the performance of list decoding would fur-
ther improve (at least, for L > 64) if we could somehow in-
crease the minimum distance of the underlying code, or other-
wise aid the decoder in selecting from the list (e.g. with CRC).
Finally, we also include in Figures|I|and[3|the BIAWGN dis-
persion-bound approximation for binary codes of rate 1/2 and
length 128. The specific curve plotted in Figures [T|and [3]is the
so-called normal approximation of the dispersion bound of Po-
lyanskiy, Poor, and Verdu [14]. Our curve coincides with those
given in [4, Figure 1] and [|10, Figure 6]. Note that a more ac-
curate bound can be derived using the methods of Erseghe [5]],
but this is not critical for our purposes. It is clear from Figures

v; =0
1

0 0 0

1
lv;:l
1 1

U Uy Uy u3 Uy Us g uy

=} — — o o — — =}
= ol |~ o~ |~ ||~ |lclo |~ |o |~ |~ |

Figure 4. An example of the polar search tree, reproduced from [_2]

and that the performance of the (128,64) PAC code, under
both sequential decoding and list decoding with L > 128, is
close to the best achievable performance.

B. Complexity Comparison

A comprehensive complexity analysis of list decoding versus
sequential decoding of PAC codes in practical applications is
likely to require algorithmic optimization and implementation
in hardware. In the case of list decoding, this should be relat-
ively easy based upon our representation of PAC codes as polar
codes with dynamically frozen bits (see Section[[lI-A)) in con-
junction with existing work on efficient hardware implementa-
tion of polar list decoders (see [16]], [[17], for example). On the
other hand, we are not aware of any existing implementations
of sequential decoding in hardware. Such implementation may
be challenging due to variable running time, which depends on
the channel noise, and complex control logic [3].

In this section, we provide a qualitative comparison of list
decoding versus sequential decoding using two generic com-
plexity metrics: the number of nodes visited in the polar search
tree and the total number of floating-point operations perfor-
med by the decoder. The results we obtain for the two metrics,
summarized in Figures[5]and [f] are consistent with each other.

The polar search tree, shown schematically in Figurefd] rep-
resents all possible inputs u = (19, U1, ..., u,_1) to the polar
encoder. It is an irregular tree with 1 + 1 levels containing 2¢
paths. If i € A° then all nodes at level i have a single outgoing
edge, as u; is dynamically frozen in this case. In contrast with
conventional polar codes, these edges may be labeled differ-
ently (cf. 14 in Figure[d). If i € A then all nodes at level i have
two outgoing edges. In this framework, both list decoding and
sequential decoding can be regarded as tree-search algorithms
that try to identify the most likely path in the tree. The list de-
coder does so by following L paths in the tree, from the root to
the leaves, and selecting the most likely one at the end. The
Fano sequential decoder follows only one path, but has many
back-and-forth movements during the decoding process.

Number of nodes visited in the binary tree
T T T T

—©— Sequential Decoding (average)
—— Decoding t)
—%— List Decoding, L=256
—— List Decoding, L=128
List Decoding, L=64
—— List Decoding, L=32
—— List Decoding, L=16
List Decoding, L=8
102 I I I
0 0.5 1 15 2 25 3 35

SNR (dB)

Figure 5. Sequential decoding vs. list decoding complexity compari-
son: Number of nodes visited in the polar search tree per codeword

Number of floating point operations (+, >< and x)
T T T T

108

10°F k|

\
10° F \ 1

—6— Sequential Decoding (average)
—— ial Decoding
—%— List Decoding, L=256
—— List Decoding, L=128
List Decoding, L=64
104 E —s— List Decoding, L=32 4
—s— List Decoding, L=16
List Decoding, L=8

0 0.5 1 15 2 2.5 3 3.5
SNR (dB)

Figure 6. Sequential decoding vs. list decoding complexity compari-
son: Number of floating-point operations per decoded codeword

For the sake of qualitative comparison, we take the total num-
ber of nodes the two algorithms visit in the tree as one reason-
able proxy of their complexity. In doing so, we disregard the
nodes at the frozen levels, and count only those nodes that have
two outgoing edges (colored blue in Figure); we call them the
decision nodes. Figure[5] shows the number of decision nodes
visited by the two decoding algorithms as a function of SNR.

For sequential decoding, two phenomena are immediately
apparent from Figure[5] First, there is a tremendous gap bet-
ween worst-case complexity and average complexity. For most
SNRs, the worst-case complexity is dominated by decoding fai-
lures, which trigger a computational timeout upon reaching the
cap on the number of cycles (see Section[[V-A). Clearly, reduc-
ing this cap would also reduce the worst-case complexity. On
the other hand, for SNRs higher than 2.50 dB, decoding fail-
ures were not observed. Thus, beyond 2.50 dB, the worst-case
complexity gradually decreases, as expected. Another phenom-
enon apparent from Figure[J] is that the average complexity is
highly dependent on SNR. This is natural since the processing

in the Fano sequential decoder depends on the channel noise.
The less noise there is, the less likely is the sequential decoder
to roll back in its search for a better path.

Neither of the two phenomena above is present for list de-
coding: the worst-case complexity is equal to the average com-
plexity, and both are unaffected by SNR. The resulting curves
in Figures [5| and [6] are flat, since the complexity of list decod-
ing depends only on the list size L and the code dimension k.

In fact, the number of decision nodes visited by the list dec-
oder in the polar search tree can be easily computed as follows.
First assume, for simplicity, that L is a power of 2. As the list
decoder proceeds from the root to the leaves, the number of
paths it traces doubles for every i € A until it reaches L. The
number of decision nodes it visits during this process is given
byl1+2+4+4..--+L =2L—1. After reaching L paths, the
decoder visits L decision nodes at every one of the remaining
k —log, L levels that are not frozen. Thus the total number of
decision nodes visited is L(k+2 —1log, L) —1 = O(kL). If
L is not a power of 2, this counting argument readily general-
izes, and the number of decision nodes visited is given by

L(k+1—[log,L]) 4 22t -1 = O(kL) (1)

As another metric of complexity of the two algorithms, we
count the total number of additions, comparisons, and multipli-
cations of floating-point numbers throughout the decoding pro-
cess. The results of this comparison are compiled in Figure[d
The number of floating-point operations is a more precise mea-
sure of complexity than the number of decision nodes visited
in the search tree. Yet we observe exactly the same pattern as
in Figure[5} For list decoding, it is no longer possible to give
a simple expression as in (7), but the complexity is still inde-
pendent of SNR, resulting in flat curves. For sequential decod-
ing, we observe the same two phenomena discussed earlier in
connection with Figure[5] In particular, the worst-case comple-
Xity remains prohibitive even at high SNRs.

In summary, our qualitative comparison suggests that, for a
similar level of performance, sequential decoding is clearly ad-
vantageous in terms of average-case complexity at high SNRs.
However, list decoding may have distinct advantages in low-
SNR regimes or in situations where the worst-case complex-
ity/latency is the primary constraint.

V. PERFORMANCE ANALYSIS FOR PAC CODES

In this section, we study the performance of PAC codes under
the assumption of maximum-likelihood (ML) decoding. To this
end, we estimate computationally the number of low-weight
codewords in PAC codes (and other codes), then combine these
estimates with the union bound. First, we explain why analysis
of performance under ML decoding makes sense in our setting.

A. Sequential Decoding versus ML Decoding

It has been observed in several papers that for polar codes, list
decoding rapidly approaches the performance of ML decoding
with increasing list-size L. In this section, as expected, we find
this to be the case for Arikan’s (128,64) PAC code as well.

10°

PAC code, List Decoder, L=128
—+— PAC code, Sequential Decoder
—<O— PAC code, ML Decoder (lower bound)

| | |
15 2 25 3 35
SNR (dB)

Figure 7. Performance of the PAC code under ML decoding

Figure[7] shows a bound on the frame error-rate of ML de-
coding obtained in our simulations. This is a lower bound, in
the sense that the actual simulated performance of ML decod-
ing could be only worse — even closer to the other two curves
(for sequential decoding and list decoding) shown in Figure[7]
The bound was generated using the Fano sequential decoder, as
follows. Every time the Fano decoder makes an error, we com-
pare the likelihoods of the transmitted path and the path pro-
duced by the decoder. If the decoded path has a higher path-
metric (likelihood), then the ML decoder will surely make an
error in this instance as well. We count such instances to gen-
erate the lower bound. This method of estimating ML perfor-
mance in simulations is very similar to the one introduced in
[20] for polar codes, except that [20] used list decoding.

Figure[7]provides strong evidence that it makes sense to study
PAC codes under ML decoding in order to gain insights into
their performance under sequential decoding, since the two are
remarkably close. Figure[7] also reveals one of the reasons why
Arikan’s PAC codes are so good at short blocklengths: they can
be efficiently decoded with near-ML fidelity.

B. Weight Distributions and Union Bounds

We now study the weight distribution of the (128, 64) PAC code
in order to develop analytical understanding of its performance
under ML decoding. Specifically, we use the method of [[11] to
estimate the number of low-weight codewords in this code.

Consider the following experiment devised in [/ 1|]. Transmit
the all-zero codeword in the extremely high SNR regime, and
use list decoding to decode the channel output. It is reasonable
to expect that in this situation, the list decoder will produce
codewords of low weight. As L increases, since the decoder is
forced to generate a list of size exactly L, more and more low-
weight codewords emerge. The results of this experiment for
the (128,64) PAC code are shown in Figure[§|as a function of
the list size. We can see that the only weights observed for L
up to 400,000 are 16,18, 20, and 22. Moreover, Aqg = 3120,
Aqg > 2696, and Ay > 95828 (cf. Table[I)). These numbers
are lower bounds on the weight distribution of the code. How-
ever, the fact that the curves in Figure[§|saturate at these values
provides strong evidence that these bounds are exact, and that
codewords of other low weights do not exist.

Low-weight codewords in PAC codes with RM profiling
: :
[E—— T
—x—A18 /

105 A20)2(/ i
—x%— A2

I I
10° 10* 10°
List size L

Figure 8. Low-weight codewords in the (128,64) PAC code

For comparison, we have used the same method to estimate
the number of low-weight codewords in other relevant codes of
rate 1/2, including polar codes (with and without CRC precod-
ing), the self-dual Reed-Muller code, and the PAC code with
polar rate-profile. The results are compiled in Table[I] below.

Asg | An | Asg Ass A Ax
Polar code 4 0 | 68856 0 > 10° -
Polar code, CRC8 | 20 | 173 [>7069 | - - -
Reed-Muller 0 0 | 94488 0 0 0
PAC, polar profile | 48 | 0 | 11032 | 6024 | > 10° -
PAC, RM profile 0 0 3120 | 2696 | 95828 | > 10°

Table 1. Number of low-weight codewords in certain relevant codes

Again, the numbers in Table[I] should be regarded as lower
bounds, which we conjecture to be exact (except for the Reed-
Muller code whose weight distribution is known [19]). Assum-
ing this conjecture, we expect the performance of the (128, 64)
PAC code under ML decoding to be superior to all other po-
lar and PAC codes in the table, since its minimum distance is
twice as high. Interestingly, this code is also superior to the
self-dual Reed-Muller code. The two codes have the same min-
imum distance, but the PAC code has significantly less code-
words at this distance (by a factor of about 30).

These observations are corroborated in Figure[] where we
plot the truncated union bound based on the partial weight dis-
tributions compiled in Table (with all other terms set to zero).
It is well known that the performance of a linear code under
ML decoding is governed by its weight distribution, and can be
well approximated by the union bound or variants thereof [[18]],
especially at high SNRs. The “truncated union bound” is by far
the simplest option, obtained by simply ignoring those terms in
the union bound for which the weight distribution is unknown.
Consequently, it is neither an upper bound nor a lower bound.
Nevertheless, we have found that in the high SNR regime, it
provides a reasonable first-order approximation of performance
under ML decoding for the codes at hand. For example, Figu-
re[IQ shows the truncated union bound for the two PAC codes
in Table[T] along with upper and lower bounds on their perfor-
mance (under ML decoding) obtained in simulations.

Union bound approxi
T T

for certain relevant codes of length 128
T T T T T

w

1075 || —— Polar code: Union bound based on A8, A16 \]
—— Polar code with CRC8: Union bound based on A8, A12
RM code: Union bound based on A16
—— PAC, polar profile: Union bound based on A8, A16, A18
—— PAC, RM profile: Union bound based on A16, A18, A20
N

1078 I I I I I I
0 0.5 1 1.5 2 25 3 3.5 4 4.5

SNR (dB)

Figure 9. Truncated union bound for certain codes of length 128

Union bound approxil for PAC codes of length 128
T T T T T

—6— PAC, polar profile: L=128

— — PAC, Polar profile, ML Bound

10'5 £ —— PAC, polar profile: Union bound based on A8, A16, A18

—©6— PAC, RM profile: L=128

— — PAC, RM Profile, ML Bound

—— PAC, RM profile: Union bound based on A16, A18, A20
T T T T

0 0.5 1 1.5 2 25 3 3.5 4 4.5
SNR (dB)

Figure10. Truncated union bound vs. performance for two PAC codes

Our results in this section also provide potential guidance for
the difficult problem of PAC code design. Since both sequen-
tial decoding and list decoding achieve near-ML performance,
one important goal of rate-profiling should be to optimize the
weight distribution at low weights. The same criterion applies
for the choice of the convolutional precoder as well. As we can
see from Tablel[l] the (128,64) PAC code with RM rate-profile
succeeds at maintaining the minimum distance d = 16 of the
self-dual Reed-Muller code, while “shifting” most of the code-
words of weight 16 to higher weights. This establishes another
reason for the remarkable performance of this code.

VI. CONCLUSIONS AND DISCUSSION

In this paper, we first observe that Arikan’s PAC codes can be
regarded as polar codes with dynamically frozen bits and then,
using this observation, propose an efficient list decoding algo-
rithm for PAC codes. We show that replacing sequential deco-
ding of PAC codes by list decoding does not lead to degrada-
tion in performance, providing the list size is sufficiently large.

We then carry out a qualitative complexity analysis of the two
approaches, which suggests that list decoding may be advanta-
geous in terms of worst-case complexity. We also study the per-
formance of PAC codes (and other codes) under ML decoding
by estimating the first few terms in their weight distribution.
The results of this study provide constructive insights into the
remarkable performance of PAC codes at short blocklengths.

Based upon our results in this paper, we believe further com-
plexity analysis of both sequential decoding and list decoding
of PAC codes is warranted, including implementations in hard-
ware. We hope our work stimulates research in this direction.

Finally, we would like to point out two important (and inter-
dependent) but difficult questions regarding PAC codes that re-
main open. What is the best choice of the rate profile? What is
the best choice of the convolutional precoder? We hope our re-
sults in Section[V] will contribute to further study of these pro-
blems. In turn, effective resolution of these problems should
make it possible to replicate the success of PAC codes at length
n = 128 for higher blocklengths.

ACKNOWLEDGEMENT

We are grateful to Erdal Arikan for tremendous help with this
work. Specifically, we are indebted to him for sharing the data
and the source code of his sequential decoding program.

REFERENCES

[1] E.Arikan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE
Transactions on Information Theory, vol. 55, pp.3051-3073, 2009.

[2] E.Arikan, “From sequential decoding to channel polarization and back
again”, preprint available as arXiv:1908.09594, September 2019.

[3] A.Balatsoukas-Stimming, private communication, August 2019.

[4] M.C.Coskun, G.Durisi, T.Jerkovits, G.L.Liva, W.Ryan, B. Stein, and
F. Steiner, “Efficient error-correcting codes in the short blocklength re-
gime,” Physical Communication, vol. 34, pp.66-79, June 2019.

[5]1 T.Erseghe, “Coding in the finite-blocklength regime: Bounds based on
Laplace integrals and their asymptotic approximations,” IEEE Transac-
tions on Information Theory, vol. 62, pp. 6854—6883, December 2016.

[6]
[7]

[8]

[9]
[10]

(11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

(20]

[21]

[22]

[23]

R. Fano, “A heuristic discussion of probabilistic decoding,” IEEE Trans-
actions on Information Theory, vol.9, pp.64-74, April 1963.
A.Fazeli, K. Tian, and A.Vardy, “Viterbi-aided successive-cancellation
decoding of polar codes,” Proc. IEEE Global Communications Confer-
ence, pp. 1-6, Singapore, December 2017.

A.Fazeli, A.Vardy and H. Yao, “Convolutional decoding of polar codes,”
Proc. IEEE International Symposium on Information Theory, pp. 1397-
1401, Paris, France, July 2019.

R.G. Gallager, Information Theory and Reliable Communication. New
York: Wiley, 1968.

D. Goldin and D.Burshtein, “Performance bounds of concatenated po-
lar coding schemes,” IEEE Transactions on Information Theory, vol. 65,
pp. 7131-7148, November 2019.

B.Li, H. Shen, and D. Tse, “An adaptive successive cancellation list de-
coder for polar codes with cyclic redundancy check,” IEEE Communi-
cations Letters, vol. 16, no. 12, pp.2044-2047, December 2012.

V. Miloslavskaya and P. Trifonov, “Sequential decoding of polar codes,”
IEEE Communications Letters, vol. 16, no.7, pp. 1127-1130, July 2014.
K. Niu and K. Chen, “CRC-aided decoding of polar codes,” IEEE Com-
mun. Letters, vol.16, no. 10, pp. 1668-1671, October 2012.

Y. Polyanskiy, H.V. Poor, and S. Verdu, “Channel coding rate in the finite
blocklength regime,” IEEE Transactions on Information Theory, vol. 56,
pp- 2307-2359, May 2010.

M. Rowshan, A.Burg, and E. Viterbo, “Polarization-adjusted convoluti-
onal (PAC) codes: Fano decoding vs list decoding,” preprint available as
arXiv:2002.06805v1, February 2020.

G. Sarkis, P.Giard, A.Vardy, C.Thibeault, and W.J. Gross, “Increasing
the speed of polar list decoders,” Proc. IEEE Workshop on Signal Pro-
cessing Systems (SiPS), pp. 1-6, Belfast, UK, October 2014.

G. Sarkis, P. Giard, A.Vardy, C. Thibeault, and W.J. Gross, “Fast list de-
coders for polar codes,” IEEE Journal on Selected Areas in Communi-
cations, vol. 34, pp. 318-328, February 2016.

I.Sason and S.Shamai, “Performance analysis of linear codes under
maximum-likelihood decoding: A tutorial,” Foundations and Trends in
Communications and Information Theory, vol.3, nos.1-2, pp.1-225,
NOW Publishers, July 2006.

M. Sugino, Y.Ienaga, Y. Tokura, and T. Kasami, “Weight distribution of
(128,64) Reed-Muller code,” IEEE Transactions on Information The-
ory, vol. 17, pp. 627-628, September 1971.

I. Tal and A.Vardy, “List decoding of polar codes,” IEEE Transactions on
Information Theory, vol. 61, pp.2213-2226, May 2015.

P. Trifonov and V. Miloslavskaya,“Polar codes with dynamic frozen sym-
bols and their decoding by directed search,” Proc. IEEE Information The-
ory Workshop, pp. 1-5, Sevilla, Spain, September 2013.

P. Trifonov and V. Miloslavskaya, “Polar subcodes,” IEEE Journal on Se-
lected Areas in Communications, vol. 34, pp.254-266, February 2016.
P. Trifonov and G. Trofimiuk, “A randomized construction of polar sub-
codes,” Proc. IEEE International Symposium on Information Theory, pp.
1863-1867, Aachen, Germany, July 2017.

	I Introduction
	I-A Brief Overview of PAC Codes
	I-B Our Contributions
	I-C Related Work
	I-D Paper Outline

	II Overview of Arıkan's PAC codes
	III List Decoding of PAC Codes
	III-A PAC Codes as Polar Codes with Dynamic Freezing
	III-B List Decoding of PAC codes

	IV List Decoding versus Sequential Decoding
	IV-A Performance Comparison
	IV-B Complexity Comparison

	V Performance Analysis for PAC codes
	V-A Sequential Decoding versus ML Decoding
	V-B Weight Distributions and Union Bounds

	VI Conclusions and Discussion
	References

