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On the 2-adic complexity of a class of binary
sequences of period 4p with optimal autocorrelation

magnitude ∗

Minghui Yang, Lulu Zhang, Keqin Feng

Abstract-Via interleaving Ding-Helleseth-Lam sequences, a class of binary sequences
of period 4p with optimal autocorrelation magnitude was constructed in [8]. Later, Fan
showed that the linear complexity of this class of sequences is quite good [3]. Recently,
Sun et al. determined the upper and lower bounds of the 2-adic complexity of such
sequences [11]. We determine the exact value of the 2-adic complexity of this class of
sequences. The results show that the 2-adic complexity of this class of binary sequences
is close to the maximum.
keywords-2-adic complexity, optimal autocorrelation magnitude, binary sequences.

1 Introduction

Sequences with good randomness such as long period, low autocorrelation and large
linear complexity are widely used in cryptography, communication, etc. Feedback
with carry shift registers (FCSRs) are a class of nonlinear pseudo random sequence
generators. Due to the rational approximation algorithm [17], 2-adic complexity has
become an important security criteria. Hence, it is interesting to investigate the 2-adic
complexity of some well-known sequences with optimal autocorrelation and large linear
complexity.

The autocorrelation function of binary sequence s = (s0, s1, . . . , sN−1) with period
N is defined by

Cs(τ) =

N−1
∑

i=0

(−1)si+si+τ , τ ∈ Z/NZ.

A sequence s with period N is called an optimal autocorrelation sequence [1] if for any
τ 6= 0,
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(1) Cs(τ) = −1 for N ≡ 3 (mod 4); or
(2) Cs(τ) ∈ {1,−3} for N ≡ 1 (mod 4); or
(3) Cs(τ) ∈ {2,−2} for N ≡ 2 (mod 4); or
(4) Cs(τ) = 0 for N ≡ 0 (mod 4).
Up to equivalence, the only known binary sequence in Type (4) is (0, 0, 0, 1).

Hence, for a sequence with period N ≡ 0 (mod 4), it is natural to consider the case
Cs(τ) ∈ {0,±4}. When τ ranges from 1 to N − 1, s is referred to as a sequence with
optimal autocorrelation value if Cs(τ) ∈ {0,−4} or {0, 4} [12], and s is referred to as
a sequence with optimal autocorrelation magnitude if Cs(τ) ∈ {0,±4} [18].

Interleaved operator that was originally presented by Gong [4] is a powerful tool to
construct sequences with optimal autocorrelation and large period.

Let st = (st0, s
t
1, . . . , s

t
N−1) be a binary sequence of period N , where 0 ≤ t ≤ M − 1.

An N ×M matrix is obtained from these M binary sequences and given by

U =











s00 s10 · · · sM−1
0

s01 s11 · · · sM−1
1

...
...

. . .
...

s0N−1 s1N−1 · · · sM−1
N−1











.

An interleaved sequence u = (uh) of period MN is obtained by concatenating the
successive rows and defined by

uiM+j = Ui,j, 0 ≤ i < N, 0 ≤ j < M.

The sequence u is denoted by

u = I(s0, s1, . . . , sM−1)

for simplicity.
Recently, using Ding-Helleseth-Lam sequences defined in [2] and a binary sequence

b = (b(0), b(1), b(2), b(3)) with b(0) = b(2), b(1) = b(3), Su et al. [8] constructed a
new class of binary sequences of period 4p with optimal autocorrelation magnitude
by interleaving operator. Later, Fan [3] proved that the linear complexity of these
sequences is close to the maximum.

The 2-adic complexity of binary sequences with good autocorrelation has not been
studied so fully as the linear complexity. The 2-adic complexity of sequences in Type
(1) was studied in [6, 13, 15]. Very recently, the 2-adic complexity of Ding-Helleseth-
Martinsen sequence with period 2p in Type (3) was determined in [19] by using “Gauss
periods” and “Gauss sum” on finite field Fq valued in the ring Z22p−1. The 2-adic
complexity of some other sequences with good autocorrelation was studied in [5, 9,
10, 11, 14, 16]. Specially, Sun et al. [11] presented the 2-adic complexity of the
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upper and lower bounds of interleaved sequence u constructed from [8] when b =
(b(0), b(1), b(2), b(3)) = (0, 1, 0, 1) by using Hu’s method [6] that associates with the
autocorrelation function. In the conclusion of their paper, they guessed the upper
bound can be arrived which means gcd(u(2), 22p + 1) = 5 where u(x) = u0 + u1x +
· · ·+ u4p−1x

4p−1.
In this paper, we prove the guess in [11] is right inspired by [19]. Furthermore,

we determine the exact value of the 2-adic complexity of other interleaved sequences
constructed in [8] with binary sequence b = (b(0), b(1), b(2), b(3)) satisfying b(0) = b(2),
b(1) = b(3).

2 Preliminaries

In this section, we will introduce some notations and well-known results.
From now on, we adopt the following notation without special explanation.
• Let u = (u0, u1, . . . , uN−1) be a binary sequence of period N . The set

Bu = {t ∈ ZN : ut = 1}

is called the support of u.
• U(x) =

∑N−1
i=0 uix

i ∈ Z[x], T (x) =
∑N−1

i=0 (−1)uixi.
• u+ 1 is defined by u+ 1 = (u0 + 1, u1 + 1, . . . , uN−1 + 1).
• The cyclic left shift operator of u is defined by

Le(u) = (ue, ue+1, . . . , uN−1, u0, . . . , ue−1),

where 0 ≤ e ≤ N − 1.
• d is a positive integer satisfying 4d ≡ 1 (mod p).
• Let g be a primitive root of p. Define Dj = {gj+4i : 0 ≤ i ≤ p−1

4
−1} for 0 ≤ j ≤ 3.

• Let s1, s2, s3 be the Ding-Helleseth-Lam sequences of period p with supports
D0 ∪ D1, D0 ∪ D3, D1 ∪ D2, respectively, where p = 4f + 1 = x2 + 4y2 is a prime
number, f is odd and y = ±1.

• “ gcd ” denotes the greatest common divisor.
By using the interleaved operator, Su, Yang and Fan [8] designed binary sequence

of period 4p with autocorrelation magnitude. The following result was given by them.
Lemma 2.1([8]) Let b = (b(0), b(1), b(2), b(3)) be a binary sequence with b(0) =

b(2), b(1) = b(3). Then the binary sequence of period 4p constructed by

u = I(s3 + b(0), Ld(s2) + b(1), L2d(s1) + b(2), L3d(s1) + b(3))

is optimal with respect to the autocorrelation magnitude, i.e., Cu(τ) ∈ {0,±4} for all
0 < τ < 4p.
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Assume that

U(2)

2N − 1
=

∑N−1
i=0 ui2

i

2N − 1
=

a

e
, 0 ≤ a ≤ e, gcd(a, e) = 1.

Then the 2-adic complexity Φ2(u) [17] is defined by log2
2N−1

gcd(2N−1,U(2))
. Therefore, de-

termining Φ2(u) is equivalent to determining gcd(2N − 1, U(2)).

3 Main result

In this section, we study the 2-adic complexity of the binary sequence u with optimal
autocorrelation magnitude in Lemma 2.1. Firstly, for a sequence u constructed with
b = (b(0), b(1), b(2), b(3)) = (0, 1, 0, 1), we prove that the guess gcd(U(2), 22p + 1) = 5
proposed by Sun et al. in [11] is right. Then we determine the exact value of the 2-adic
complexity of the sequence u defined in Lemma 2.1.

The following lemma is useful in our paper.
Lemma 3.1 (

∑

i∈F∗

p
( i
p
)24i)2 ≡ p (mod 22p+1

5
), where ( i

p
) is the Legendre symbol

defined by

(
i

p
) =







0, if i ≡ 0 (mod p),
1, if i 6≡ 0 (mod p) and i is the square of an element of F∗

p,
−1, otherwise.

Proof. Since ( i
p
) is a multiplicative character, we have

(
∑

i∈F∗

p

(
i

p
)24i)2 =

p−1
∑

a,b=1

(
ab

p
)24(a+b)

≡

p−1
∑

a,c=1

(
a2c

p
)24a(1+c) (let b = ac)

≡

p−1
∑

a,c=1

(
c

p
)24a(1+c)

≡

p−1
∑

c=1

(
c

p
)

p−1
∑

a=1

24a(1+c) (mod 24p − 1) (3.1)

Since p ≡ 1 (mod 4), we have (−1
p
) = 1 and then the contribution of c = p− 1 to the

right hand side of (3.1) is

p−1
∑

a=1

24ap ≡ p− 1 mod (24p − 1).
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From (−1
p
) = 1 we know

∑p−2
c=1(

c
p
) = −1 and then

(
∑

i∈F∗

p

(
i

p
)24i)2 ≡ p− 1 +

p−2
∑

c=1

(
c

p
)(−1 +

p−1
∑

a=0

24a(1+c)) (mod 24p − 1)

≡ p− 1−

p−2
∑

c=1

(
c

p
) +

p−2
∑

c=1

(
c

p
)

p−1
∑

a=0

24a(1+c) (mod 24p − 1)

≡ p−

p−1
∑

a=0

24a (mod 24p − 1)

≡ p (mod
22p + 1

5
).

Remark : The proof of Lemma 3.1 is similar to Lemma 2.4(1) in [19]. For the
completeness of the paper, we give a proof here.

Let b = (b(0), b(1), b(2), b(3)) be the complement of b = (b(0), b(1), b(2), b(3)). Let
u and u be constructed with b and b respectively in Lemma 2.1. Then u is the
complement of u, i.e., u = u+ 1. Therefore we have

U(2) =u0 + 1 + (u1 + 1) · 2 + · · ·+ (uN−1 + 1)2N−1

=U(2) + 2N − 1 ≡ U(2) (mod 2N − 1).

Thus gcd(U(2), 2N − 1) = gcd(U(2), 2N − 1) and then Φ2(U) = Φ2(U).
There are four cases for b satisfying b(0) = b(2), b(1) = b(3), i.e., b = (b(0), b(1), b(2),

b(3)) = (1, 0, 1, 0), (0, 1, 0, 1), (0, 0, 0, 0), (1, 1, 1, 1). In order to determine the 2-adic
complexity of the sequence with optimal autocorrelation magnitude in Lemma 2.1,
we only need to consider the 2-adic complexity of u′ and u′′ constructed with b =
(b(0), b(1), b(2), b(3)) = (0, 1, 0, 1) and (0, 0, 0, 0), respectively.

In the following, we will denote by u′ and u′′ the sequence constructed with b =
(b(0), b(1), b(2), b(3)) = (0, 1, 0, 1), and (0, 0, 0, 0) in Lemma 2.1, respectively. Denote
U(x), T (x) by U ′(x), T ′(x) and U ′′(x), T ′′(x) for u′ and u′′, respectively.

We determine the 2-adic complexity of u′. The following two lemmas have been
proved by Sun et al. in [11].

Lemma 3.2 ([11]) Let the symbols be the same as before. Then

U ′(2)T ′(2−1)

≡ 2





24p − 1

24 − 1
+ (22p + 1)(2p − 1)− 2p(22p − 1)y

∑

i∈F∗

p

(
i

p
)24i − p



 (mod 24p − 1).
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Lemma 3.3([11]) gcd(U ′(2), 22p − 1) = 1 and 5| gcd(U ′(2), 22p + 1).
The following theorem shows that the guess of Sun et al. in [11] is right.
Theorem 3.4 For the sequence u′, we have gcd(U ′(2), 22p + 1) = 5.

Proof. (i) Assume that p 6= 5.
From Lemma 3.2 we get

U ′(2)T ′(2−1) ≡ 2[−2p(22p − 1)y
∑

i∈F∗

p

(
i

p
)24i − p] (mod

22p + 1

5
).

Suppose that U ′(2) and 22p+1
5

have a common prime factor l. Then

0 ≡ U ′(2)T ′(2−1) ≡ 2[−2p(22p − 1)y
∑

i∈F∗

p

(
i

p
)24i − p] (mod l)

≡ 2[−2p(−2)y
∑

i∈F∗

p

(
i

p
)24i − p] (mod l).

Therefore 2p+1y
∑

i∈F∗

p
( i
p
)24i − p ≡ 0 (mod l). From y = ±1 we get

22p+2(
∑

i∈F∗

p

(
i

p
)24i)2 − p2 ≡ 0 (mod l).

From Lemma 3.1 we get 0 ≡ 22p+2p− p2 ≡ −4p− p2 (mod l) which implies that l = p
or l|p+4. If l = p, by Fermat’s Little Theorem, we get 0 ≡ 22p+1 ≡ 5 (mod p) which
contradicts to the assumption p 6= 5. If l|p + 4, from 22p ≡ −1 (mod l) we know that
l 6= 3 and the order D of 2 (mod l) is 4 or 4p. From D|l− 1 and l|p+ 4 we know that
D 6= 4p. From p 6= 5 and

22p + 1

5
= [1 + (−22) + · · ·+ (−22)p−2 + (−22)p−1] ≡ p (mod 5),

we have gcd(2
2p+1
5

, 5) = 1 which implies that l 6= 5. If D = 4, then 0 ≡ 24 − 1 ≡ 15

(mod l) which contradicts to l 6= 3, 5. Therefore gcd(U ′(2), 22p+1
5

) = 1. From Lemma
3.3, we get

gcd(U ′(2), 22p + 1) = gcd(U ′(2),
22p + 1

5
) gcd(U ′(2), 5) = 5.

(ii) Assume that p = 5.
From F

∗
5 = 〈2〉, we know the cyclotomic classes of order 4 in F5 are D0 = 〈1〉, D1 =

〈2〉, D2 = 〈4〉, D3 = 〈3〉. Since s2 is a binary sequence with support Bs2 = D0 ∪ D3,
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we have BLd(s2) = (D0 ∪ D3) − d and BLd(s2)+1 = (D1 ∪ D2 ∪ {0})− d. From 4d ≡ 1

(mod p), we have −d ≡ p−1
4

(mod p). Then by the definition of u′, we get

U ′(2) =
∑

i∈D1∪D2

24i +
∑

i∈{ p−1
4

}∪(D1∪D2)+
p−1
4

24i+1

+
∑

i∈(D0∪D1)+
p−1
2

24i+2 +
∑

i∈{
3(p−1)

4
}∪((D2∪D3)+

3(p−1)
4

)

24i+3

=
∑

i∈{2,4}

24i +
∑

i∈{1,3,5}

24i+1 +
∑

i∈{3,4}

24i+2 +
∑

i∈{3,2,1}

24i+3

= 2484640

≡

{

15, (mod 25),
40, (mod 41).

Then we have gcd(U ′(2), 22p + 1) = gcd(U ′(2), 210 + 1) = gcd(U ′(2), 25 · 41) = 5.

Theorem 3.5 For b = (b(0), b(1), b(2), b(3)) = (0, 1, 0, 1) or (1, 0, 1, 0), the 2-adic
complexity of the sequence u defined in Lemma 2.1 is

Φ2(u) = log2
24p − 1

5
.

Proof. We need to determine Φ2(u
′) only. From the definition of the 2-adic complexity,

we have Φ2(u
′) = log2

24p−1
gcd(24p−1,U ′(2))

. Since gcd(22p + 1, 22p − 1) = 1, we know Φ2(u
′) =

log2
24p−1

gcd(22p+1,U ′(2)) gcd(22p−1,U ′(2))
. From Lemma 3.3 and Theorem 3.4, we get

Φ2(u
′) = log2

24p − 1

gcd(22p + 1, U ′(2)) gcd(22p − 1, U ′(2))
= log2

24p − 1

5
.

In the following, we will determine the 2-adic complexity of u′′, the following two
Lemmas are useful.

Lemma 3.6 ([6, 11]) Let U(x) and T (x) be defined in Section 2. Then for a binary
sequence u with period N , we have

−2U(x)T (x−1) ≡ N +

N−1
∑

τ=1

Cu(τ)x
τ − T (x−1)(

N−1
∑

i=0

xi) (mod xN − 1).
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Lemma 3.7 [8] Let τ = τ1 + 4τ2, where τ1 = 0, 1 ≤ τ2 ≤ p − 1 or 1 ≤ τ1 ≤ 3, 0 ≤
τ2 ≤ p− 1. Then the autocorrelation function of u′′ is

Cu′′(τ) =























































−4, τ1 = 0, τ2 6= 0,
4, τ1 = 1, τ2 + d ≡ 0 (mod p),
4y, τ1 = 1, τ2 + d (mod p) ∈ D0 ∪D2,
−4y, τ1 = 1, τ2 + d (mod p) ∈ D1 ∪D3,
4, τ1 = 2, τ2 + 2d ≡ 0 (mod p),
0, τ1 = 2, τ2 + 2d 6≡ 0 (mod p),
4, τ1 = 3, τ2 + 3d ≡ 0 (mod p),
−4y, τ1 = 3, τ2 + 3d (mod p) ∈ D0 ∪D2,
4y, τ1 = 3, τ2 + 3d (mod p) ∈ D1 ∪D3.

Lemma 3.8 Let the symbols be the same as before. Then

U ′′(2)T ′′(2−1)

≡ 2





24p − 1

24 − 1
− (22p + 1)(2p + 1) + 2p(22p − 1)y

∑

i∈F∗

p

(
i

p
)24i − p



 (mod 24p − 1).

Proof. From −d ≡ p−1
4

(mod p) and Lemma 3.7, we have

4p−1
∑

τ=1

Cu′′(τ)24τ

=

p−1
∑

τ2=1

Cu′′(4τ2)2
4τ2 +

3
∑

τ1=1

p−1
∑

τ2=0

Cu′′(τ1 + 4τ2)2
τ1+4τ2

= −4

p−1
∑

τ2=1

24τ2 + 4 · 21+4· p−1
4 + 4y

∑

τ2∈(D0∪D2)+
p−1
4

21+4τ2 − 4y
∑

τ2∈(D1∪D3)+
p−1
4

21+4τ2

+ 4 · 22+4· p−1
2 + 4 · 23+4· 3(p−1)

4 − 4y
∑

τ2∈(D0∪D2)+
3(p−1)

4

23+4τ2 + 4y
∑

τ2∈(D1∪D3)+
3(p−1)

4

23+4τ2

≡ −4





24p − 1

24 − 1
− (1 + 22p)(2p + 1)− 2py

∑

i∈F∗

p

(
i

p
)24i + 23py

∑

i∈F∗

p

(
i

p
)24i



 (mod 24p − 1).

From Lemma 3.6 we get

U ′′(2)T ′′(2−1)

≡ 2





24p − 1

24 − 1
− (22p + 1)(2p + 1) + 2p(22p − 1)y

∑

i∈F∗

p

(
i

p
)24i − p



 (mod 24p − 1).
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Lemma 3.9 gcd(U ′′(2), 22p − 1) = 3.

Proof. From Lemma 3.8 we know

U ′′(2)T ′′(2−1) ≡2[−(1 + 22p)(2p + 1)− p] (mod
22p − 1

3
)

≡2[−2(2p + 1)− p] (mod
22p − 1

3
).

Then U ′′(2)T ′′(2−1) ≡ 2(−4− p) (mod 2p − 1) and U ′′(2)T ′′(2−1) ≡ −2p (mod 2p+1
3

).
(1). We prove gcd(U ′′(2), 2p − 1) = 1 firstly. Let l1 be a prime divisor of gcd(2p −

1,−4−p). Then 2p ≡ 1 (mod l1). From Fermat’s theorem, we know that p|l1−1 which
contradicts to l1|−p−4. Therefore gcd(U ′′(2)T ′′(2−1), 2p−1) = gcd(−4−p, 2p−1) = 1
which implies that gcd(U ′′(2), 2p − 1) = 1.

(2). Next we prove that gcd(U ′′(2), 2p+1
3

) = 1. Suppose that l is a common prime
divisor of U ′′(2) and 2p+1

3
. Then, by Lemma 3.8, 0 ≡ U ′′(2)T ′′(2−1) ≡ −2p (mod l)

so that l = p. From −1 ≡ 2p ≡ 2 (mod p) we get p = 3 which contradicts to p ≡ 1
(mod 4). Therefore gcd(U ′′(2), 2

p+1
3

) = 1.
(3). At last, we prove 3|U ′′(2). By the definition of U ′′(2), we get

U ′′(2) =
∑

i∈D1∪D2

24i +
∑

i∈D0∪D3

24(i+
p−1
4

)+1 +
∑

i∈D0∪D1

24(i+
p−1
2

)+2 +
∑

i∈D0∪D1

24(i+
3(p−1)

4
)+3

=
∑

i∈D1∪D2

24i + 2p
∑

i∈D0∪D3

24i + 22p
∑

i∈D0∪D1

24i + 23p
∑

i∈D0∪D1

24i

≡
p− 1

2
−

p− 1

2
+

p− 1

2
−

p− 1

2
(mod 3)

≡ 0 (mod 3).

From (1)-(3) we get

gcd(U ′′(2), 22p − 1) = 3 · gcd

(

U ′′(2)

3
,
2p + 1

3

)

· gcd (U ′′(2), 2p − 1) = 3.

Lemma 3.10 gcd(U ′′(2), 2
2p+1
5

) = 1 for p 6= 5.
The proof of this lemma is similar to Theorem 3.4, we omit it.

Lemma 3.11 gcd(U ′′(2), 22p + 1) = 25 for p = 5.
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Proof. From F
∗
5 = 〈2〉, we know the four cyclotomic classes of order four are D0 = {1},

D1 = {2}, D2 = {4} and D3 = {3}. For a binary periodic sequence s, we have
BLd(s) = Bs − d. From the definition of u′′ we have

U ′′(2) =
∑

i∈D1∪D2

24i +
∑

i∈D0∪D3

24(i+
p−1
4

)+1 +
∑

i∈D0∪D1

24(i+
p−1
2

)+2 +
∑

i∈D0∪D1

24(i+
3(p−1)

4
)+3

=
∑

i∈{2,4}

24i +
∑

i∈{2,4}

24i+1 +
∑

i∈{3,4}

24i+2 +
∑

i∈{4,5}

24i+3

= 9388800

≡

{

0, (mod 25),
5, (mod 41).

Then we have 25|U ′′(2) and then from 22p + 1 = 52 × 41, we get gcd(U ′′(2), 22p + 1) =
25.

Theorem 3.12 For b = (b(0), b(1), b(2), b(3)) = (0, 0, 0, 0) or (1, 1, 1, 1), the 2-adic
complexity of the sequence u defined in Lemma 2.1 is

Φ2(u) =

{

log2
24p−1
75

, p = 5

log2
24p−1
15

, p 6= 5 .

Proof. From p ≡ 1 (mod 4) and 24 ≡ 1 (mod 5) we get 2p ≡ 2 (mod 5). Then by the
definition of u′′,

U ′′(2) =
∑

i∈D1∪D2

24i +
∑

i∈D0∪D3

24(i+
p−1
4

)+1 +
∑

i∈D0∪D1

24(i+
p−1
2

)+2 +
∑

i∈D0∪D1

24(i+
3(p−1)

4
)+3

≡
∑

i∈D0∪D2

1 +
∑

i∈D0∪D3

2 +
∑

i∈D0∪D1

(4 + 8) ≡ 15 ·
p− 1

2
≡ 0 (mod 5).

If p 6= 5, by Lemma 3.9 and 3.10 we get Φ2(u
′′) = log2(

24p−1
C

) where

D = gcd(U ′′(2), 24p − 1) = 5 · gcd

(

U ′′(2)

5
,
22p + 1

5

)

· gcd (U ′′(2), 2p − 1) = 15.

For p = 5, by Lemma 3.11 and 3.9 we get C = gcd(U ′′(2), 22p+1) ·gcd(U ′′(2), 22p−1) =
75.

At the end of this section we give an example to illustrate our main results.
Example Let q = 13 = 32 + 4 · 12, F∗

13 = 〈2〉. The cyclotomic classes of order 4
in F13 are D0 = {1, 3, 9}, D1 = {2, 5, 6}, D2 = {4, 10, 12}, D3 = {7, 8, 11}. Let
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b = (b(0), b(1), b(2), b(3)) = (0, 1, 0, 1). From the definition of the sequence u in Lemma
2.1, we have

U ′(2) =
∑

i∈D1∪D2

24i +
∑

i∈{ p−1
4

}∪((D1∪D2)+
p−1
4

)

24i+1

+
∑

i∈(D0∪D1+
p−1
2

)

24i+2 +
∑

i∈{
3(p−1)

4
}∪((D2∪D3)+

3(p−1)
4

)

24i+3

=
∑

i∈{2,5,6,4,10,12}

24i +
∑

i∈{3,5,8,9,7,0,2}

24i+1 +
∑

i∈{7,9,2,8,11,12}

24i+2 +
∑

i∈{9,0,6,8,3,4,7}

24i+3.

Let b = (b(0), b(1), b(2), b(3)) = (0, 0, 0, 0). From the definition of the sequence u in
Lemma 2.1, we have

U ′′(2) =
∑

i∈D1∪D2

24i +
∑

i∈D0∪D3

24(i+
p−1
4

)+1 +
∑

i∈D0∪D1

24(i+
p−1
2

)+2 +
∑

i∈D0∪D1

24(i+
3(p−1)

4
)+3

=
∑

i∈D1∪D2

24i +
∑

i∈D0∪D3

24(i+3)+1 +
∑

i∈D0∪D1

24(i+6)+2 +
∑

i∈D0∪D1

24(i+9)+3

=
∑

i∈{2,4,5,6,10,12}

24i +
∑

i∈{1,3,9,7,8,11}

24(i+3)+1 +
∑

i∈{1,3,9,2,5,6}

24(i+6)+2

+
∑

i∈{1,3,9,2,5,6}

24(i+9)+3.

Computing with magma, we have gcd(U ′(2), 252−1) = 5 and gcd(U ′′(2), 252−1) = 15.
Then we get Φ2(u

′) = log2
24p−1

5
and Φ2(u

′′) = log2
24p−1

15
which coincides with Theorem

3.5 and 3.12, respectively.
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