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Abstract—Partially information coupled turbo codes (PIC-
TCs) is a class of spatially coupled turbo codes that can approach
the BEC capacity while keeping the encoding and decoding
architectures of the underlying component codes unchanged.
However, PIC-TCs have significant rate loss compared to its
component rate- 1

3
turbo code, and the rate loss increases with

the coupling ratio. To absorb the rate loss, in this paper, we
propose the partially information coupled duo-binary turbo codes
(PIC-dTCs). Given a rate- 1

3
turbo code as the benchmark, we

construct a duo-binary turbo code by introducing one extra input
to the benchmark code. Then, parts of the information sequence
from the original input are coupled to the extra input of the
succeeding code blocks. By looking into the graph model of PIC-
dTC ensembles, we derive the exact density evolution equations
of the PIC-dTC ensembles, and compute their belief propagation
decoding thresholds on the binary erasure channel. Simulation
results verify the correctness of our theoretical analysis, and
also show significant error performance improvement over the
uncoupled rate- 1

3
turbo codes and existing designs of spatially

coupled turbo codes.

I. INTRODUCTION

Spatial coupling is a class of code construction techniques
which connects a sequence of component codes to form a
long codeword chain. It was firstly introduced in [1] for
constructing convolutional low-density parity-check (LDPC)
codes, which is also known as spatially coupled LDPC (SC-
LDPC) codes. Extensive research has been conducted on
SC-LDPC codes (see [2]–[4] and the references therein)
since then. In addition, the spatial coupling technique has
also been applied to turbo-like codes (SC-TCs), including
parallel and serially concatenated convolutional codes [5],
hybrid concatenated convolutional codes [6], laminated turbo
codes [7], and braided convolutional codes [8]. All the
above works have reported that the spatially coupled codes
can provide close-to-capacity performance and perform much
better than their uncoupled counterparts. Most notably, it has
been theoretically proven in [2] that the belief propagation
(BP) decoding thresholds of SC-LDPC codes can converge
to the maximum-a-posteriori (MAP) decoding thresholds of
their underlying component codes, namely the threshold
saturation phenomenon. In [5], the authors also proved that
their proposed SC-TCs have threshold saturation. Apart from
the performance improvement, another advantage of spatially
coupled codes is that they can be decoded by a windowed
decoder with lower decoding latency compared to decoding
the whole codeword block. Due to these reasons, it is believed

that spatially coupled codes would have a wide range of
applications in communications.

In this work, we focus on a particular spatial coupling
technique, namely the partially information coupling (PIC).
PIC was firstly introduced in [9] with LTE turbo codes as
component codes (PIC-TCs). In a PIC code, consecutive
component code blocks (CBs) are coupled by sharing a
portion of the information bits between each other. Apart
from turbo codes, PIC can be directly applied to various
types of component codes, such as LDPC codes [10] and
polar codes [11], [12], without changing the encoding and
decoding architectures of the underlying component codes.
However, due to the coupling, (i.e., the same information
sharing between CBs), PIC codes have significant rate loss
compared to its component codes. For example, in [9], [13],
with a rate- 13 turbo code as component code, the PIC-TC
ensembles have a code rate of 1

5 when half of the information
bits are coupled.

In this paper, we propose a new class of PIC codes, namely
the partially information coupled duo-binary turbo codes (PIC-
dTCs). Such codes do not have the rate-loss as appeared in
the conventional PIC-TCs. More importantly, they can retain
the same rate regardless of the couple-ratio. Given a rate- 13
benchmark turbo code, i.e., a parallel concatenation of two
rate- 12 recursive systematic convolutional (RSC) code, we
construct a duo-binary turbo code [14], [15] by introducing
one extra input to the component RSC code. After that, we
apply partially information coupling to a shortened duo-binary
turbo code. The resultant PIC-dTCs have the same code rate
as the benchmark turbo code. We study the performance
of the PIC-dTCs over the binary erasure channel (BEC).
We first look into the graph model of the code ensembles.
Based on the graph representation, we derive the exact density
evolution (DE) equations for the PIC-dTC ensembles with any
given coupling ratio and coupling memory. The DE analysis
shows that our codes are within a gap of 0.001 to the BEC
capacity . Simulation results confirm our theoretical analysis,
and also show significant error performance improvement over
the benchmark turbo code and existing designs of spatially
coupled turbo codes.

II. PARTIALLY INFORMATION COUPLED DUO-BINARY
TURBO CODES

In this section, we introduce the architecture of PIC-dTCs.
We first present the construction of the uncoupled duo-binary
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turbo codes. Then, we describe the encoding of PIC-dTCs with
coupling memory m = 1, i.e., a CB only shares information
with between two consecutive CBs. After that, we will give a
general description on the encoding and decoding of PIC-dTCs
with coupling memory m ≥ 1.

A. Construction of Duo-Binary Turbo Codes

We consider a rate- 13 turbo code (referred to as TC1), which
is a parallel concatenation of two identical rate- 12 RSC code
(referred to as RSC1). To build PIC-dTCs from TC1, the first
step is to construct a rate- 12 duo-binary turbo code (referred
to as TC2), which is a parallel concatenation of two identical
rate- 23 RSC code (referred to as RSC2).

Let gf and gb denote the forward and feedback generator
polynomial of RSC1, respectively. The generator matrix of
RSC1 can then be written as

GRSC1 =
[
1

gf

gb

]
. (1)

Let u denote an information sequence of length K. When we
encode u with RSC1, the output is u ·GRSC1 =

[
u v

]
, where

v =
u·gf

gb
is the parity sequence.

By introducing one extra input u′ to RSC1, the generator
matrix of RSC2 is in the form of

GRSC2 =

[
1 0

gf

gb

0 1
g′
f

gb

]
, (2)

where gf and g′f are the forward generator polynomial of
the two information sequences u and u′, respectively, and
gf 6= g′f . Both information sequences share the same feedback
generator polynomials gb so that RSC1 and RSC2 have the
same number of states. The encoder output of RSC2 is
computed as u ·GRSC2 =

[
u u′ v

]
, where v =

u·gf

gb
+

u′·g′
f

gb
.

This ensures RSC1 can be obtained by shortening RSC2,
i.e., when u′ = 0, the parity sequence from RSC2 is the
same as that of RSC1. Consequently, TC1 can be obtained by
shortening TC2 in the same manner.

An example is shown in Fig. 1, where GRSC1 =
[
1 5

7

]
,

and GRSC2 =
[
1 0 5

7

0 1 3
7

]
, respectively. Here, g′f = 3 is obtained

by exhaustive search to ensure that RSC2 has a good
distance spectrum, and the resultant TC2 has a good decoding
threshold. The extra input u′ are highlighted in red.

B. Encoding of PIC-dTCs with Coupling Memory m = 1

In the PIC-dTC encoding process, the information sequence
u is divided into L sub-sequences u1, . . . ,uL. For the time
instance t = 1, . . . , L, let CBt represent the t-th CB. The block
diagram of the PIC-dTC encoder at time t with coupling
memory m = 1 is depicted in Fig. 2. The CB encoder takes the
t-th sub-sequence, i.e., ut, as the first input sequence, and takes
u′t = [ut−1,t,0] as the second input sequence. Here, ut−1,t is
the coupled information sequence shared between CBt and
CBt−1, and shortened bits 0 are inserted in the second input
sequence so that the length of ut and u′t are equal. Then,
ut is decomposed into ut,t and ut,t+1, where ut,t represents
the uncoupled information sequence, i,e. the information only
stays in CBt, and ut,t+1 represents the coupled information
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Fig. 1: Block diagram of the rate- 23 RSC encoder.

1,t tu

t-th CB

Encoding

t
u

[ , ]t tu v0

, 1t tu

,t tu
tu

Fig. 2: Block diagram of PIC-dTC encoder at time t.

sequence shared between CBt and CBt+1. After CB encoding,
the codeword of CBt is obtained as [ut,vt], where vt is
the parity sequence. Note that ut−1,t is not included in the
codeword of CBt because it is included in the codeword of
CBt−1. To terminate the coupling, both ends of the coupling
chain are set to zero, i.e., at time t = 1, u0,1 = 0, and at time
t = L, uL,L+1 = 0.

In CBt, the information length is K = ‖ut‖ = ‖u′t‖, the
length of coupled sequence is Kc = ‖ut−1,t‖ = ‖ut,t+1‖, and
the length of parity sequence is 2K = ‖vt‖. The code rate of
PIC-dTC is

R =
KL−Kc

3KL−Kc
=

L− λ
3L− λ

L→∞
=

1

3
. (3)

We define λ , Kc

K as the coupling ratio, and λ ∈ [0, 1]. It is
an important parameter that determines the decoding threshold,
which will be discussed later.

C. Encoding of PIC-dTCs with Coupling Memory m ≥ 1

For coupling memory m ≥ 1, CBt are coupled with m
preceding CBs (from CBt−m to CBt−1) and m succeeding
CBs (from CBt+1 to CBt+m). The length of coupled sequence
becomes Kc

m . Specifically, at time t, the CB encoder takes ut
as the first input sequence, and u′t = [ut−1,t, . . . ,ut−m,t,0]
as the second input sequence. In the mean time, ut is decom-
posed into ut,t,ut,t+1, . . . ,ut,t+m, where ut,t+1, . . . ,ut,t+m
are passed to m succeeding CBs, respectively. After CB
encoding, the codeword of CBt is obtained as [ut,vt], i.e.,
ut−1,t, . . . ,ut−m,t is not included in the codeword. The code
rate of PIC-dTC is

R =
KL−

∑m
i=1

i·Kc

m

3KL−
∑m
i=1

i·Kc

m

=
L− m+1

2 λ

3L− m+1
2 λ

L→∞
=

1

3
. (4)

Remark: We compare the construction of the PIC-dTCs
with that of the PIC-TCs [9], [13]. For the PIC-TCs with TC1
as component code, the CB encoder only has one information
sequence. Hence, there is a rate loss related to the coupling
ratio λ. Specifically, the code rate of PIC-TCs is given by 1−λ

3−λ ,



where λ ∈ [0, 12 ]. Puncturing is required in order to increase
the code rate of PIC-TCs to 1

3 .
For the PIC-dTCs, the CB encoder takes two input

sequences ut and u′t. Unlike the PIC-TCs, we add an extra
input to the TC1, resulted in TC2, and put the coupled
sequence from previous CBs into the extra input sequence.
This design can absorb the rate loss as appeared in the PIC-
TCs. Hence, it allows the resultant PIC-dTCs to maintain the
rate of TC1, i.e., 1/3, without rate loss. In addition, the PIC-
dTCs can attain the close-to-capacity performance which will
be shown in our performance analysis and numerical results
later.

D. Decoding of PIC-dTCs

The decoding of PIC-dTCs can be accomplished by a feed-
forward and feed-back (FF-FB) scheme [9], [13] in an iterative
manner. In short, it employs a serial scheduling by decoding
from the first CB to the last CB serially and then decoding
backwards from the last CB to the first CB if necessary. For
CBt, the decoder takes the received signal associated with
the codeword [ut,vt] as well as the extrinsic information
associated with ut−m,t, . . . ,ut−1,t and ut,t+1, . . . ,ut,t+m
as input, and outputs the soft-decision estimation of the
information sequences. The decoding of RSC2 is realized by
the BCJR algorithm [16] [17].

III. PERFORMANCE ANALYSIS OF PIC-dTCS

In this section, we analyse the decoding performance of the
PIC-dTCs by using density evolution. We first look into the
corresponding graph model of the PIC-dTC. Later, the exact
DE equations are then derived based on the graph model.

A. Graph Model Representation

For the ease of presentation, we first consider the coupling
memory m = 1 and then extend to the coupling memory
m ≥ 1. Fig. 3a shows the compact graph representation [5]
of the uncoupled TC2. In the compact graph, at time t, the
two information sequences ut and u′t are represented by
two different variable nodes. We use two factor nodes fU

and fL to represent the upper and the lower RSC decoders,
respectively. Each of the variable nodes is connected with
the upper and lower factor nodes, meaning that the extrinsic
information is passed between the upper and lower decoder
via the corresponding variable node. The parity sequences
enter the upper and lower decoder are denoted by vUt and
vLt , respectively. The interleaver is represented by a slash on
the edge between the variable nodes and the lower factor node.

Fig. 3b shows the compact graph of PIC-dTC with coupling
memory m = 1. For each CB, we treat the uncoupled
information, the coupled information, and the shortened bits
node (denoted by 0 in Fig. 3b) separately. At time t, we use
two variable nodes to represent u′t, i.e., we treat ut−1,t and
0 as two separate nodes. Also, we use two variable nodes to
represent ut by treating ut,t and ut,t+1 separately. As ut−1,t
is shared by ut−1 and u′t, the node representing ut−1,t is
connected to both CBt−1 and CBt, meaning that ut−1,t is
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Fig. 3: Compact factor graph of (a) uncoupled turbo codes, and
(b) PIC-dTC with coupling memory m = 1, and (c) PIC-dTC
with coupling memory m ≥ 1.

encoded twice at time t− 1 and time t. Due to the similar
reason, the node ut,t+1 is connected to both CBt and CBt+1.

In summary, the compact graph shows that the extrinsic
information of ut−1,t is passed between the upper and lower
factor nodes of CBt−1 and CBt; the extrinsic information of
ut,t+1 is passed between the upper and lower factor nodes of
CBt and CBt+1; and the extrinsic information of ut,t is passed
between the upper and lower factor nodes of CBt only.

B. Density Evolution for Coupling Memory m = 1

For transmission over the BEC, the asymptotic behaviour
of the PIC-dTCs can be analysed by tracking the evolution of
the erasure probability over decoding iterations. Here, we first
consider coupling memory m = 1.

Let ε denote the channel erasure probability. At time t

and the i-th iteration, let p̄(i)1,L,t and p̄(i)2,L,t denote the average
extrinsic erasure probability passed from ut and u′t to fU ,
respectively. Let p(i)1,U,t and p(i)2,U,t denote the extrinsic erasure
probability from fU to ut and u′t, respectively. Likewise,
let p̄

(i)
1,U,t and p̄

(i)
2,U,t denote the average extrinsic erasure

probability passed from ut and u′t to fL, respectively. Let
p
(i)
1,L,t and p(i)2,L,t denote the extrinsic erasure probability from
fL to ut and u′t, respectively.

Based on the graph model in Fig. 3b, p̄
(i)
1,L,t is the

weighted sum of the erasure probabilities of variable node
ut,t and ut,t+1, and p̄(i)2,L,t is the weighted sum of the erasure
probabilities of variable node ut−1,t and 0. For p̄(i)1,L,t, ut,t
can only obtain extrinsic information from fL at time t, while
ut,t+1 can obtain extrinsic information from fL at time t, as
well as from fL and fU at time t+ 1. It is computed as

p̄
(i)
1,L,t = ε · p(i)1,L,t ·

(
1− λ+ λ · p(i−1)2,U,t+1 · p

(i)
2,L,t+1

)
. (5)

For p̄(i)2,L,t, the erasure rate of 0 is 0, while ut−1,t can collect
extrinsic information from fL at time t, as well as fU and fL

at time t− 1. It is computed as

p̄
(i)
2,L,t = ε · λ · p(i)2,L,t · p

(i−1)
1,U,t−1 · p

(i)
1,L,t−1. (6)

Likewise, the average erasure probability from ut and u′t to



fL is computed as

p̄
(i)
1,U,t = ε · p(i)1,U,t ·

(
1− λ+ λ · p(i)2,U,t+1 · p

(i−1)
2,L,t+1

)
, (7)

and
p̄
(i)
2,U,t = ε · λ · p(i)2,U,t · p

(i)
1,U,t−1 · p

(i−1)
1,L,t−1, (8)

respectively. The erasure probability of vUt and vLt are the
same as the channel erasure probability because no extrinsic
information is passed to the parity nodes.

Let FU1 andFU2 represent the information sequence transfer
functions of fU , and FL1 and FL2 represent the information
sequence transfer functions of fL, which are derived following
[18], respectively. At time t and the i-th iteration, the evolution
of the erasure probability for ut and u′t inside fU is

p
(i)
1,U,t = FU1

(
p̄
(i)
1,L,t, p̄

(i)
2,L,t, ε

)
, (9)

p
(i)
2,U,t = FU2

(
p̄
(i)
1,L,t, p̄

(i)
2,L,t, ε

)
, (10)

and the evolution of erasure probability inside fL is

p
(i)
1,L,t = FL1

(
p̄
(i)
1,U,t, p̄

(i)
2,U,t, ε

)
, (11)

p
(i)
2,L,t = FL2

(
p̄
(i)
1,U,t, p̄

(i)
2,U,t, ε

)
. (12)

The a-posteriori erasure probability of ut after i iterations is

p(i)ut
= ε·p(i)1,U,t ·p

(i)
1,L,t ·

(
1− λ+ λ·p(i)2,U,t+1 ·p

(i)
2,L,t+1

)
. (13)

C. Density Evolution for Coupling Memory m ≥ 1

Here, we generalize the DE analysis to coupling memory
m ≥ 1. As shown in Fig. 3c, the erasure probability of ut
depends on the erasure probability of uncoupled information
ut,t as well as the coupled information ut,t+1, . . . ,ut,t+m.
The average extrinsic erasure probability from ut to the fU

is computed as

p̄
(i)
1,L,t = ε·p(i)1,L,t ·

(
1− λ+

λ

m

m∑
j=1

p
(i−1)
2,U,t+j ·p

(i)
2,L,t+j

)
. (14)

The erasure probability of u′t only depends on the erasure
probability of the coupled information ut−m,t, . . . ,ut−1,t. The
average extrinsic erasure probability from u′t to the fU is
computed as

p̄
(i)
2,L,t = ε · p(i)2,L,t ·

λ

m

m∑
j=1

p
(i−1)
1,U,t−j · p

(i)
1,L,t−j . (15)

The average erasure probability from ut and u′t to fL, i.e.,
p̄
(i)
1,U,t and p̄

(i)
2,U,t, can be computed in similar manner, so we

omit the details here. The a-posteriori erasure probability of
ut after i iterations is

p(i)ut
= ε·p(i)1,U,t ·p

(i)
1,L,t ·

(
1−λ+

λ

m

m∑
j=1

p
(i)
2,U,t+j ·p

(i)
2,L,t+j

)
. (16)

IV. NUMERICAL RESULTS

In this section, we first present the BP decoding threshold
εBP for some PIC-dTC ensembles by using the DE analysis
derived in Section III-B. After that, we show the simulation
results on the error performance of our PIC-dTCs. We consider
TC1 with GRSC1 =

[
1 5

7

]
as the benchmark, and we use TC2

with GRSC2 =
[
1 0 5

7

0 1 3
7

]
as component code to construct the

PIC-dTCs ensembles.
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Fig. 4: BP Decoding thresholds of rate- 13 PIC-dTCs with
m = 1 over coupling ratio λ.
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Fig. 5: BP decoding thresholds of rate- 13 PIC-dTCs over
coupling memory m.

A. Density Evolution Results

We plot the BP decoding thresholds of the PIC-dTCs versus
the coupling ratio λ for coupling memory m = 1 in Fig. 4.
It can be seen that the decoding threshold improves with
λ increasing. When λ = 1

2 , the gap between the decoding
threshold and the BEC capacity is around 0.009. When λ
approaches 1, the gap is only 0.0073. However, it can also
be observed that the increment of decoding threshold slows
down when λ keeps increasing. When λ is increased from 3

4
to 1, the decoding threshold has minor improvement.

To see how the decoding threshold improves with the
coupling memory m, we plot the decoding thresholds of the
PIC-dTCs as functions of m in Fig. 5. For all considered
coupling ratio λ shown in the legend, the decoding threshold
significantly improves when we increase m from from 1 to
50. It is observed that the PIC-dTC can approach the BEC
capacity with a gap around 0.0011 with λ = 1 and m = 50.
Although it is unclear how the decoding performance would be
when m approach infinite, the threshold still keeps improving
even when m > 50. For example, with λ = 1, the decoding
threshold of PIC-dTC ensemble is 0.6657 when m = 200,
which is better than that for m = 50. The investigation for



Ensemble εBP ,m = 1 εBP ,m = 5 εBP ,m = 50

PIC-TC, λ = 1
2

0.6566 0.6625 0.6639
PIC-dTC, λ = 1 0.6594 0.6644 0.6656
SC-PCC 0.6553 0.6553 0.6553
SC-SCC 0.6437 0.6654 0.6654
BCC Type-I 0.6609 0.6650 0.6653
BCC Type-II 0.6651 0.6653 0.6653

TABLE I: BP Decoding thresholds of rate-13 spatially coupled
codes.

threshold saturation is left for our future work.
We also compare our PIC-dTCs to other benchmark

coding schemes. Specifically, in Table I, we show the
decoding thresholds of the PIC-TCs with λ = 1

2 , PIC-dTCs
with λ = 1, and state-4 SC-TCs in [5], including spatially
coupled parallel concatenated convolutional codes (SC-PCCs),
spatially coupled serial concatenated convolutional codes (SC-
SCCs), and braided convolutional codes (BCCs). Code rate
R = 1

3 and coupling memory m = 1, 5, 50 are considered.
Note that for m = 50, we list the MAP decoding thresholds of
the SC-TCs due to threshold saturation. It can be seen that the
decoding thresholds of the PIC-dTCs is better than that of the
PIC-TCs. When m = 1, the PIC-dTCs outperform SC-PCCs
and SC-SCCs, but is slightly worse than the BCCs. When m
is large, the PIC-dTC with λ = 1 has the largest decoding
threshold among all the benchmark codes.

B. Error Performance Simulation Results

We now present simulation results for the PIC-dTCs with
m = 1 and code rate 1

3 . We set L = 100 to minimize the
rate loss due to coupling termination. The error performance
of PIC-dTCs is measured in terms of bit erasure rate (BER)
versus the erasure probability of the BEC.

In order to verify the correctness of the DE analysis, we
compare the decoding threshold with the simulated BER
(denoted as sim in the legend) of PIC-dTCs with K = 105

and λ = 1
8 ,

1
4 ,

1
2 ,

3
4 . The results are shown in Fig. 6. It can

be observed that all the PIC-dTCs are within 0.002 to the
decoding threshold at a BER of 10−5.

In Fig. 7, to evaluate the performance of the PIC-dTCs with
moderate information length, we plot the BER of PIC-dTCs
with K = 104, the PIC-TCs [9], [13] with K = 104 (whose
parity sequences are random punctured to increase the code
rate to 1

3 ), and TC1 with K = 106. It can be seen that all the
PIC-dTCs outperform the uncoupled TC1 even though they
have almost the same information length. It is also observed
that the PIC-dTCs can achieve better error performance by
simply increasing λ, while the PIC-TCs need to optimize λ
in order to obtain a good error performance. Nevertheless, we
observe that the PIC-dTCs have better error performance than
the PIC-TCs when λ is greater than 1

4 .

V. CONCLUSION

In this paper, we proposed the partially information coupled
duo-binary turbo codes (PIC-dTCs), which do not have the
rate loss as appeared in the PIC-TCs, and investigated their
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Fig. 6: Error performance of rate- 13 PIC-dTCs with m = 1,
K = 105, L = 100.
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Fig. 7: Error performance of rate- 13 PIC-dTCs and PIC-TCs
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performance. We considered the PIC-dTCs with coupling
ratio λ ∈ [0, 1] and coupling memory m ≥ 1. The encoding
and decoding procedures for such codes are presented. We
then introduced the graph model representations of the PIC-
dTCs ensembles, and derived the exact DE equations for any
given coupling memory m and coupling ratio λ. We showed
that the decoding thresholds of PIC-dTCs can approach the
BEC capacity with a gap within 0.001 for a large coupling
memory. The simulation results confirmed the correctness of
the analysis. Both theoretical analysis and simulation results
demonstrated the superior error performance of our PIC-dTCs
over the uncoupled turbo codes and existing spatially coupled
turbo codes at the same rate.
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