
1

Entangled Polynomial Codes for Secure, Private,
and Batch Distributed Matrix Multiplication:

Breaking the “Cubic” Barrier
Qian Yu, and A. Salman Avestimehr

Department of Electrical and Computer Engineering
University of Southern California, Los Angeles, CA, USA

Abstract

In distributed matrix multiplication, a common scenario is to assign each worker a fraction of the multiplication task, by
partitioning the input matrices into smaller submatrices. In particular, by dividing two input matrices into m-by-p and p-by-n
subblocks, a single multiplication task can be viewed as computing linear combinations of pmn submatrix products, which can be
assigned to pmn workers. Such block-partitioning based designs have been widely studied under the topics of secure, private, and
batch computation, where the state of the arts all require computing at least “cubic” (pmn) number of submatrix multiplications.
Entangled polynomial codes, first presented for straggler mitigation, provides a powerful method for breaking the cubic barrier. It
achieves a subcubic recovery threshold, meaning that the final product can be recovered from any subset of multiplication results
with a size order-wise smaller than pmn. In this work, we show that entangled polynomial codes can be further extended to also
include these three important settings, and provide a unified framework that order-wise reduces the total computational costs upon
the state of the arts by achieving subcubic recovery thresholds.

I. INTRODUCTION

Large scale distributed computing faces several modern challenges, in particular, to provide resiliency against stragglers,
robustness against computing errors, security against Byzantine and eavesdropping adversaries, privacy of sensitive information,
and to efficiently handle repetitive computation [1]–[7]. Coded computing is an emerging field that resolves these issues by
introducing and developing new coding theoretic concepts, started focusing on straggler mitigation [8]–[10], then later extended
to secure and private computation [6], [7], [11]–[14].

Coding for straggler mitigation is first studied in [8] for linear computation, where classical linear codes can be directly
applied to achieve same performances. For computation beyond linear functions, new classes of coding designs are needed to
achieve optimality. In [10], we studied matrix-by-matrix multiplication and introduced the polynomial coded computing (PCC)
framework. The main idea is to jointly encode the input variables into single variate polynomials where the coefficients are
functions of the inputs. By assigning each worker evaluations of these polynomials as coded variables, they essentially evaluate
a new polynomial composed by each worker’s computation and the encoding functions at the same point. As long as the needed
final results can be recovered from the coefficients of the composed polynomial, the master can decode the final output when
sufficiently many workers complete their computation. PCC significantly reduces the design problem of coded computation to
finding polynomials satisfying the above decodability constraint while minimizing the degree of the decomposed polynomial.
It has been shown that PCC achieves a great success in providing exact optimal coding constructions for large classes of
computation tasks including: pair-wise product [10], convolution [10], [15], inner product [15], [16], element-wise product
[15], and general batch multivariate-polynomial evaluation [6].

An important problem in distributed matrix multiplication is to consider the case where the inputs are encoded and multiplied
in a block-wise manner. This setup generalizes the problem formulated in [10] to enable a more flexible tradeoff between
resources such as storage, computation and communication, and has been studied in [15]–[21]. For straggler mitigation, the
state of the art is achieved by two versions of the entangled polynomial code, both first presented in [15], which characterizes
the optimum recovery threshold within a factor of 2. For brevity, we refer the collection of them as entangled polynomial
codes. One significance of entangled polynomial codes is that it maps non-straggler-mitigating linear coded computing schemes
to bilinear-complexity decompositions, which bridges the areas of fast matrix multiplication and coded computation, enables
utilizing techniques developed in the rich literature (e.g., [22]–[41]). Moreover, this connection reduces block-wise matrix
multiplication to computing element-wise products, for which we developed the optimal strategy for straggler mitigation. The
coding gain achieve by entangled polynomial codes extended to fault-tolerant computing [42] and it is shown in [6] that security
against Byzantine adversaries can also be provided the same way.

The goal of this paper is to extend entangled polynomial codes to three main problems: secure, private, and batch distributed
matrix multiplication. In secure distributed matrix multiplication [11]–[14], [17]–[19], [43]–[50], the goal is to compute a

This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer
be accessible.

ar
X

iv
:2

00
1.

05
10

1v
2

 [
cs

.I
T

]
 1

3
A

pr
 2

02
0

2

single matrix product while preserving the privacy of input matrices against eavesdropping adversaries; in private distributed
matrix multiplication [13], [14], [18], [51], the goal is to multiply a single pair from two lists of matrices while keeping the
request (indices) private; batch distributed matrix multiplication [20], [21], [48] considers a scenario where more than one pair
of matrices are to be multiplied.

There are recent works on each of these problems that considered general block-wise partitioning of input matrices [17]–
[21]. However, all results presented in prior works are limited by a “cubic” barrier. Explicitly, when the input matrices to be
multiplied are partitioned into m-by-p and p-by-n subblocks, all state of the arts require the workers computing at least pmn
products of coded submatrices per each multiplication task.

We demonstrate how entangled polynomial codes can be extended to break the cubic barrier in all three problems. We
show that the coding ideas of entangled polynomial codes and PCC can be applied to provide unified solutions with needed
security and privacy, as well as efficiently handling batch evaluation. Moreover, we achieve order-wise improvements upon
state-of-the-art designs with explicit coding constructions.

II. OVERVIEW OF CODED COMPUTATION AND ENTANGLED POLYNOMIAL CODES

A main challenge in distributed computing is to design schemes to operate in the presence of stragglers, which are workers
that are slow or fail to return their computing results. Commonly, stragglers are handled using “uncoded repetition”, where
the same computation tasks are duplicated and assigned onto multiple worker machines. Coded computation has recently been
proposed as an effective approach to mitigate the straggler effect, and computing strategies has been proposed for a variety
of computation tasks, including matrix multiplication [8]–[10], [15], [16], convolution [10], [52], Fourier transformation [53],
[54], element-wise multiplication [15], and multivariate-polynomial evaluation [6]. The main idea of coded computing is to
assign each worker data or tasks in carefully designed coded forms, such that the final result can still be recovered after
possibly non-linear computation is applied on coded data.

In a standard framework of coded computation (illustrated in Figure 1), we aim to design a computing scheme to compute a
function g over an input dataset X using N distributed workers. Each worker computes a single evaluation of some function f ,
which can be viewed as building blocks of computing g. A conventional approach in distributed computation is to assign each
worker an uncoded fraction of the input dataset, and to recover the final results from evaluations of these uncoded assignments.
We present two examples as follows:

Matrix multiplication (column-wise partition) [10]. Consider a scenario where the goal is to compute the product AᵀB
given two large matrices A ∈ Fs×t and B ∈ Fs×r. Here the input dataset is X = (A,B), and the computation task
is g(A,B) = AᵀB. After partitioning the input matrices column-wise into m and n submatrices of equal sizes, denoted
A0, ..., Am−1 and B0, ..., Bn−1, the final results are essentially the collection of all mn pair-wise submatrix-products Aᵀ

i Bj’s.
If each worker can compute a single submatrix product of same sizes, i.e., f is the multiplication of two matrices of sizes
F t

m×s and Fs× r
n , an uncoded design using K = mn workers can be constructed by assigning the workers distinct (Ai, Bj)’s

as inputs.
Polynomial evaluation [6]. Another example is to evaluate multivariate polynomials on a dataset X = (X1, ..., XK).

Explicitly, given a general polynomial f , the goal is to compute g(X) = (f(X1), ..., f(XK)). If each worker can compute a
single evaluation, then an uncoded design using K workers can be obtained by assigning each worker i input Xi.

A coded computing design that uses N workers first encodes the dataset X using N encoding functions c1, ..., cN , then
assign ci(X) to each worker i as the coded input. In the presence of stragglers, the decoder waits for a subset of fastest
worker until g(X) can be recovered given the returned results from the workers. We say a coded computing scheme achieves
a recovery threshold of R, if the master can correctly decode the final output given the computing results from any subset of
R workers. This is an equivalent measure of number of stragglers that can be tolerated. The goal is to design the encoding
functions1 to achieve the minimum possible recovery threshold given f , g, and N .

A. Polynomial Coded Computing (PCC)

A key challenge in coded computing is to design coding functions when f and g are nonlinear, to still ensure efficient
recovery of final results after nonlinear computation is applied on coded variables. The PCC framework was introduced in
[10], which achieves optimal recovery thresholds for large classes of functions including matrix multiplication, convolution, and
polynomial evaluation [6], [10], [15]. A general PCC design encodes the input dataset by assigning the workers evaluations of a
carefully designed single variate polynomial. More specifically, the coding design is based on the following design parameters:
• A single variate polynomial c(·), where the coefficients are possibly random functions of the input variables.
• N evaluation points denoted y1, ..., yN from the base field.

Then each worker i obtains ci(X) = c(yi) as the encoded variable.
After the workers apply f on their assignments, they essentially evaluates the composed polynomial f(c) at the same point.

Hence, if the evaluation points y1, ..., yN are distinct, and the decoder receives results from sufficiently many (at least the

1To ensure the complexities of the encoding and decoding functions are reasonably low, most related works focuses on linear coding designs.

3

…

…

Fig. 1: An illustration of coded computation. A collection of workers aim to compute a function g given an input dataset,
where each worker can return an evaluation of a function f with possibly coded data assignments. By carefully designing the
coding functions (ci’s), the final results can be efficiently recovered after computation is applies on coded data, in the presence
of stragglers, while providing security and privacy against malicious and colluding workers.

degree of f(c) plus one) workers, they can recover all information about polynomial f(c). Based on this observation, the
design problem in PCC framework is to construct a polynomial c, satisfying2

• Decodability: the final result can be computed using coefficients of f(c),
while minimizing the degree of f(c) to achieve minimum recovery thresholds. We present the following illustrative examples
to demonstrate how PCC is applied to construct optimal codes for two example scenarios described earlier in this section.

1) Polynomial codes [10] for matrix multiplication: In the first example, the goal is to multiply two column-wise par-
titioned matrices A = [A0, ..., Am−1] and B = [B0, ..., Bn−1]. To compute AᵀB, we essentially need to collect all mn
pair-wise submatrix-products Aᵀ

i Bj’s. Polynomial codes encodes the input dataset using the following polynomial: c(x) =
(
∑m−1

j=0 Ajx
j ,
∑n−1

j′=0 Bj′x
j′m). More explicitly, given any distinct evaluation points y1, ..., yN , each worker i obtains (Ãi, B̃i)

where

Ãi =

m−1∑
j=0

Ajy
j
i , B̃i =

n−1∑
j′=0

Bj′y
j′m
i . (1)

After the workers multiplies the assigned coded matrices, they essentially evaluates the composed polynomial f(c(x)) =∑m−1
j=0

∑n−1
j′=0 A

ᵀ
jBj′x

j+j′m, which has degree of mn − 1 and the mn coefficients are exactly the mn needed submatrix-
products. After computation results are received from any subset of mn workers, the final results can be recovered from
polynomial interpolation. I.e., achieving a recovery threshold of mn. It is proved in [10] that polynomial codes achieves the
optimal recovery threshold for this scenario. Polynomial codes was later extended to allow for general block-wise partitioning
of the input matrices, as discussed in Section II-B.

2) Lagrange Coded Computing (LCC) [10] for polynomial evaluation: In the second example, the goal is to evaluate
a polynomial f , of which the total degree is denoted degf . In particular, given an input dataset X = (X1, ..., XK), we
aim to compute f(X1), ..., f(XK). For straggler mitigation, LCC encodes the input variables using the Lagrange polynomial
c(x) ,

∑
j∈[K] Xj ·

∏
k∈[K]\{j}

x−xk

xj−xk
where x1, ..., xK are some arbitrary distinct elements from the base field F. In other

words, each worker i obtains the following X̃i as the coded variable.

X̃i ,
∑
j∈[K]

Xj ·
∏

k∈[K]\{j}

yi − xk

xj − xk
. (2)

After each worker applies function f over the coded inputs, they essentially evaluates the composed polynomial f(c), of
which the evaluations at x1,...,xK are exactly the K needed final results. Let degf denotes the total degree of polynomial f ,
the degree of the composed polynomial equals (K − 1)degf . By assigning each worker distinct evaluation points, the decoder

2 As well as other possible requirements such as complexity constraints on encoding and decoding functions (e.g., linear codes) [10], [15], and data-privacy
[6].

4

Fig. 2: An illustration of polynomial code for matrix multiplication using 5 workers that can each store half of each input
matrix. The final result can be decoded from any 4 workers.

Fig. 3: An illustration of LCC for evaluating a general degree-2 multivariate polynomial f(X) = AXᵀX +BX +C using 5
workers with an input dataset X = (X1, X2) that consists of two square matrices. The final result can be decoded from any
3 workers.

can recover all final results by receiving results from any subset of (K − 1)degf + 1. This exactly achieves the optimum
recovery thresholds among all linear codes when the number of workers N is sufficiently large, while in other cases the
optimum recovery thresholds are achieved by an uncoded version of LCC, where the evaluation points y1, ..., yN are selected
from x1, ..., xK [6]. It was shown in [6] that by padding the input dataset with random keys, LCC simultaneously provides
security against malicious workers and privacy of data against colluding workers, and achieves the optimal tradeoff between
straggler resiliency, security, and privacy.

PCC provides several other properties of interests: linearly-coded constructions of polynomial c leads to linear codes; the
encoding/decoding costs due to polynomial evaluation and interpolation can be handled using efficient algorithms with almost
linear complexities [55].

B. Entangled Polynomial Codes

An important application of PCC is to consider a more generalized matrix multiplication setting where the inputs are block-
wise partitioned. In a basic setup, given a pair of input matrices A ∈ Fs×t, B ∈ Fs×r for a sufficiently large field F, each worker
i is assigned a pair of possibly coded matrices Ãi ∈ F

s
p×

t
m and B̃i ∈ F

s
p×

r
n , which are encoded based on some (possibly

random) functions of the input matrices respectively (see Fig. 4). The workers can each compute C̃i , Ãᵀ
i B̃i and return them

to the master. The master tries to recover the final product C , AᵀB based on results from a subset of fastest workers using

5

some decoding functions. By partitioning the input matrices into p-by-m and p-by-n subblocks, the product of two input
matrices can thus be viewed as linear combinations of pmn submatrix products according to block-matrix-multiplication rules,
which can be computed using pmn workers with uncoded inputs. We aim to achieve the minimum possible recovery threshold
given parameters p,m, n, and N .

. . .
Fig. 4: Overview of the distributed matrix multiplication problem with general block-partitioning of the inputs. Each worker
is assigned two possibly coded submatrices and computes their product. The master aims to decode the product of the input
matrices based from results from non-straggling workers.

The best known recovery threshold for computing block-partitioned matrix multiplication is achieved by a class of PCC
designs referred to as entangled polynomial codes. In particular, entangled polynomial codes achieves a recovery threshold
of min{pmn + p − 1, 2R(p,m, n) − 1} for any p,m, and n [15]. Here R(p,m, n) denotes the bilinear complexity [56] for
multiplying two matrices of sizes m-by-p and p-by-n. It is well know that R(p,m, n) is subcubic, i.e, R(p,m, n) = o(pmn)
when p, m, and n are large. Hence, it order-wise outperforms other block-partitioning based schemes in related works for
straggler mitigation (e.g., [16]).

We present entangled polynomial codes as follows. The input matrices are partitioned into p-by-m and p-by-n submatrices
of equal sizes, denoted Aj,k and Bj,k′ for j ∈ {0, ..., p − 1}, k ∈ {0, ...,m − 1}, and k′ ∈ {0, ..., n − 1}, and we aim to
recover Ck,k′ ,

∑
i A

ᵀ
j,kBj,k′ for any k and k′. A basic version of entangled polynomial codes is designed to achieve a

recovery threshold of pmn + p − 1, which generalizes the Polynomial codes, and encodes the input variables using c(x) =
(
∑p−1

j=0

∑m−1
k=0 Aj,kx

j+kp,
∑p−1

j=0

∑n−1
k′=0 Bj,k′xp−1−j+k′pm). Explicitly, given any distinct evaluation points y1, ..., yN , each

worker i obtains (Ãi, B̃i) where

Ãi =

p−1∑
j=0

m−1∑
k=0

Aj,ky
j+kp
i ,

B̃i =

p−1∑
j=0

n−1∑
k′=0

Bj,k′yp−1−j+k′pm
i . (3)

This coding construction results in the following composed polynomial

f(c(x)) =

p−1∑
j=0

m−1∑
k=0

p−1∑
j′=0

n−1∑
k′=0

Aᵀ
j,kBj′,k′x(p−1+j−j′)+kp+k′pm, (4)

which has a degree of pmn+ p− 2, and the mn needed linear combinations are exactly provided by mn of its coefficients.
Importantly, in the same paper, an improved version of the entangled polynomial code is presented to approach the optimal

recovery threshold for general p,m, and n, which achieves a recovery threshold of 2R(p,m, n)− 1 (Theorem 3, [15]). Given
any upper bound construction of R(p,m, n) (e.g., Strassen’s construction) with rank R and tensor tuples a ∈ FR×p×m,
b ∈ FR×p×n, and c ∈ FR×m×n, the inputs are each pre-encoded into a list of R coded submatrices.3

Ãi,vec ,
∑
j,k

Aj,kaijk, B̃i,vec ,
∑
j,k

Bj,kbijk. (5)

3For detailed definitions, see [42].

6

Then the variables are encoded using c(x) =
∑

j(Ãj,vec, B̃j,vec) ·
∏

k 6=j
(x−xk)
(xj−xk)

. I.e., each worker obtains

Ãi =
∑
j

Ãj,vec ·
∏
k 6=j

(yi − xk)

(xj − xk)
, (6)

B̃i =
∑
j

B̃j,vec ·
∏
k 6=j

(yi − xk)

(xj − xk)
, (7)

where x1,...,xR are arbitrary distinct elements of F. The coding construction provides a composed polynomial f(c) with degree
2R− 2, which could achieve 2R(p,m, n)− 2 by using upper bound constructions with a rank of R(p,m, n). The final results
can be decoded by re-evaluating the composed polynomial at points x1, ..., xR, then combining them based on tensor c.

Note that even for cases where R(p,m, n) is not yet known, one can still obtain explicit coding constructions by swapping
in any upper bound constructions (e.g, [23]–[25], [27]–[32], [34]–[36], [38]–[40]). Subcubic recovery thresholds can still be
achieved for any sufficiently large p, m, and n even one only applies the well known Strassen’s construction [23]. Hence, for
simplicity, in this work we present all results in terms of R(p,m, n), and explicit subcubic constructions can be obtained in
the same way.

We focus on linear codes, defined similarly as in [6], [42], which guarantees linear coding complexities w.r.t. the sizes of
input matrices, and are dimension independent. Precisely, in a linear coding design, the input matrix A (or each input A for
more general settings) is partitioned into p-by-m subblocks of equals sizes (and possibly padded with a list of i.i.d. uniformly
random matrices of same sizes, referred to as random keys).4 Matrix (or matrices) B are partitioned similarly. Each worker
is then assigned a pair of linear combinations of these two lists of submatrices as coded inputs. Moreover, the master uses
decoding functions that computes linear combinations of received computing results.5

All results presented in this paper for distributed matrix multiplication directly extends to general codes with possibly non-
linear constructions, by swapping any upper bound of R(p,m, n) into the number workers required by any computing scheme,
as we illustrated in [42].

III. SECURE, PRIVATE, BATCH DISTRIBUTED MATRIX MULTIPLICATION AND MAIN RESULTS

Distributed matrix multiplication is well studied in the context of straggler mitigation. Our goal in this work is to leverage
entangled polynomial codes to the settings of secure, private and batch distributed matrix multiplication, achieving order-wise
improvement with subcubic recovery thresholds while meeting the systems’ requirements.

A. Secure Distributed Matrix Multiplication

Secure distributed matrix multiplication follows a similar setup discussed in Section II, where the goal is to multiply a single
pair of matrices, with additional constraints that either one or both of the input matrices are information-theoretic private to the
workers, even if up to a certain number of them can collude. In particular, we say an encoding scheme is one-sided T -secure,
if

I({Ãi}i∈T ;A) = 0 (8)

for any subset T with size of at most T , where A is generated uniformly at random. Similarly, we say an encoding scheme
is fully T -secure, if instead

I({Ãi, B̃i}i∈T ;A,B) = 0 (9)

is satisfied for any |T | ≤ T , for uniformly randomly generated A and B.
Secure distributed matrix multiplication has been studied in [11]–[14], [17]–[19], [43]–[50]. In particular, [17]–[19] presented

coded computing designs for general block-wise partitioning of the input matrices, all requiring at least pmn workers’
computation.6 Entangled polynomial codes achieves subcubic recovery thresholds for both one-sided and fully secure settings,
formally stated in the following theorem.

Theorem 1. For secure distributed matrix multiplication, there are one-sided T -secure linear coding schemes that achieves a
recovery threshold of 2R(p,m, n) + T − 1, and fully T -secure linear coding schemes that achieves a recovery threshold of
2R(p,m, n) + 2T − 1.

Remark 1. Entangled polynomial codes order-wise improves the state of the arts for general block-wise partitioning [17]–[19],
by providing explicit constructions that require subcubic number of workers. In particular, the fully T -secure codes presented

4To make sure the setting is well defined, we assume F is finite whenever data-security or privacy is taken into account.
5Note that by relaxing certain assumptions made in the paper, such as allowing the decoder to access inputs and random keys and allowing extra computational

cost at workers or master, one can further reduce the recovery threshold (e.g., see discussions in [48], [57]).
6In addition, at least T extra workers are needed per each input matrix required to be stored securely.

7

in [17]–[19] all require using at least pmn+2T workers, while the fully T -secure entangled polynomial codes only requires at
most O(pmn

min{p,m,n}0.19)+2T workers according to Strassen’s upper bound, which is order-wise smaller for any large p,m, and
n. Similarly, entangled polynomial codes requires order-wise smaller number of workers compared to the one-sided 1-secure
coding scheme proposed in [18] (which also satisfies a privacy requirement, to be discussed in the next subsection). Moreover,
entangled polynomial codes simultaneously handles data security and straggler issues by tolerating arbitrarily many stragglers
while maintaining the same recovery threshold and privacy level.

Remark 2. Entangled polynomial codes enables breaking the “cubic” barrier when resiliency, security, or privacy is required,
by providing a class of codes that operates upon any general coding structures. It supports codes developed based on ideas
from matrix multiplication algorithms (which does not naturally provide resiliency or security7), and injects tailored coding
designs to allow achieving similar sub-cubic recovery properties.

Remark 3. Following similar converse proof steps we developed in [6], [42], one can show that any linear code that is either
one-sided T -secure or fully T -secure requires using at least R(p,m, n) + T workers. Hence, entangled polynomial codes
enables achieving optimal recovery thresholds within a factor of 2 for both settings.

B. Private Distributed Matrix Multiplication

Private distributed matrix multiplication has been studied in [13], [14], [18], [51], where the goal is to instead multiply a
matrix A by one of the matrices B(D) from B = (B(1), ..., B(M)) while keeping the request D private to the workers. In
particular, the master sends a (possibly random) query Qi to each worker i based the request D. Then the matrices B are
encoded by each worker i into a coded submatrix B̃i ∈ F

s
p×

r
n based on Qi. The matrix A is encoded the same as the basic

setting, and each worker computes the product of their coded matrices.
The index D should be kept private to any single worker in the sense that8

I(D;Qi, Ãi,B) = 0 (10)

for any i ∈ [N], where A,B, D are sampled uniformly at random. The master can decode the final output based on the
returned results, the request D and query Qi’s.

Moreover, in some related works [13], [14], [18], the encoding of A is also required to be secure against any single curious
worker. I.e.,

I(Ãi;A) = 0 (11)

for any i ∈ [N] if A is sampled uniformly random. This setting is referred to as private and secure distributed matrix
multiplication.

The state of the art for private and secure distributed matrix multiplication with general block-partitioning based designs was
proposed in [18], which requires at least pmn number of workers. Entangled polynomial codes achieves subcubic recovery
thresholds, formally stated in the following theorem.

Theorem 2. For private coded matrix multiplication, there are linear coding schemes that achieve a recovery threshold of
2R(p,m, n). For private and secure distributed matrix multiplication, linear coding schemes can achieve a recovery threshold
of 2R(p,m, n) + 1.

Remark 4. Entangled polynomial codes order-wise improves the state of the arts for general block-wise partitioning [18], by
providing explicit constructions that achieves subcubic recovery thresholds, while simultaneously provides straggler-resiliency,
data-security and privacy. As mentioned in Remark 1, [18] presents a private and secure matrix multiplication design that
requires at least pmn+1 workers, while entangled polynomial codes provides a private and secure design that requires at most
O(pmn

min{p,m,n}0.19) + 1 workers according to Strassen’s upper bound, which is order-wise smaller for any large p,m, and n.

Remark 5. Similar to the discussion in Remark 3, one can show that any linear code requires at least R(p,m, n) workers for
private coded matrix multiplication and R(p,m, n) + 1 workers for private and secure distributed matrix multiplication, even
if one ignore the privacy requirement. This indicates a factor-of-2 optimality of entangled polynomial codes for both settings.

Entangled polynomial codes also applies to a more general scenario where the encoding functions for both input matrices
are assigned to the workers, which we refer to as fully private coded matrix multiplication and formulate as follows. In fully
private coded matrix multiplication, we have two lists of input matrices A = (A(1), ..., A(M)) and B = (B(1), ..., B(M)), and
the master aims to compute A(D)ᵀB(D) given an index D. We assume M > 1, because otherwise the privacy requirement is
trivial.

7For example, Strassen’s construction [22] leads to a computing design with 7 workers for the most basic setting [15], however, one can not always achieve
the same recovery threshold for the same matrix partitioning even for tolerating 1 straggler.

8Note that a stronger privacy condition I(D;Qi, Ãi, A,B) = 0 can still be achieved, if one use the scheme for private and secure distributed matrix
multiplication presented later in this paper.

8

We aim to find computation designs such that D is private against any single workers. Explicitly, the master sends a (possibly
random) query Qi to each worker i based on the demand D. Then worker i encodes both A and B based on Qi. We require
the requests to be private in the sense that

I(D;Qi,A,B) = 0 (12)

for any i ∈ [N], where A,B, D are sampled uniformly at random. We summarize the performance of entangled polynomial
codes for fully private coded matrix multiplication as follows.

Theorem 3. For fully private coded matrix multiplication, there are linear coding schemes that achieve a recovery threshold
of 2R(p,m, n) + 1.

Remark 6. Similar to earlier discussions, entangled polynomial codes provides coding constructions for fully private coded
matrix multiplication with subcubic recovery thresholds. One can prove that any fully private linear code requires at least
R(p,m, n)+1 workers. Hence, the factor-of-2 optimality of entangled polynomial codes also holds true for fully private coded
matrix multiplication.

C. Batch Distributed Matrix Multiplication

The authors of [20], [21], [48] considered a scenario where the goal is to compute L copies of the matrix multiplication task
in one round of communication. Formally, a basic setting for batch distributed matrix multiplication is that we have two lists
of input matrices A = (A(1), ..., A(L)) and B = (B(1), ..., B(L)), and the master aims to compute their element-wise product
C = (A(1)ᵀB(1), ..., A(L)ᵀB(L)). Given partitioning parameters p,m, and n, each worker still computes a single multiplication
of coded submatrices with sizes F

t
m×

s
p and F

s
p×

r
n .

For general block-partitioning based schemes, the state of the art design is provided in [20], [21], where the focus is to reduce
the recovery threshold and no security or privacy is required. All known coding constructions presented for batch distributed
matrix multiplication requires cubic number of workers per each multiplication task even no straggler presents (i.e., requiring
at least Lpmn workers in total).

We show that entangled polynomial codes offer a unified coding framework for batch matrix multiplication, achieving
subcubic recovery thresholds while simultaneously handling all security and privacy requirements that are discussed earlier in
this section. We present this result in the following theorem.9 The proofs and detailed formulations can be found in Section
VI.

Theorem 4. For coded distributed batch matrix multiplication with parameters p,m, n, and L, there are linear coding schemes
that achieve a recovery threshold of 2LR(p,m, n)− 1. Moreover, for extended settings in batch matrix multiplication, linear
coding schemes achieve the following recovery thresholds:
• One sided T -security: 2LR(p,m, n) + T − 1,
• Fully T -security: 2LR(p,m, n) + 2T − 1,
• Privacy of request: 2LR(p,m, n),
• Security and Privacy: 2LR(p,m, n) + 1,
• Full Privacy: 2LR(p,m, n) + 1.

Remark 7. Entangled polynomial codes provide coding schemes that order-wise improves the state-of-the-art schemes in [20],
[21] for batch matrix multiplication when the matrices are block-wise partitioned. The coding designs proposed in [20], [21]
focused on straggler mitigation and requires a recovery threshold of at least Lpmn, with computation and storage costs equal
or greater than the framework considered in this paper; while entangled polynomial codes achieves order-wise smaller recovery
thresholds for any large p, m and n.
Remark 8. Note that batch-multiplying L pairs of matrices is still computing a bilinear function, one can simply use similar
bilinear decomposition bounds for this operation as in [42], and all earlier achievability and converse results extended to batch
computation. However, to better demonstrate the achievability of subcubic recovery thresolds, we present our results based on
a subadditivity upper bound.10 One can similarly prove the factor-of-2 optimalities for the general entangled polynomial codes
framework for all settings we presented for batch matrix multiplication.

IV. ACHIEVABILITY SCHEMES FOR SECURE DISTRIBUTED MATRIX MULTIPLICATION

In this section, we present coding schemes for the simple scenario where the only additional requirement for distributed
matrix multiplication is to maintain the security of input matrices. This provides a proof for Theorem 1.

9Similar to [42], in the most basic scenario with no requirements on resiliency, security, and privacy (i.e., requiring a recovery threshold of N , with T = 0
and M = 1), one can directly apply any upper bound construction of bilinear complexity for batch matrix multiplication to further reduce the number of
workers by a factor of 2. However, here we focus on demonstrating the coding gain and present the results for general scenarios.

10Specifically, let R(L, p,m, n) denote the bilinear complexity of batch multiplying L pairs of m-by-p and p-by-n matrices. We have R(L, p,m, n) ≤
LR(p,m, n).

9

Given parameters p, m, and n, we denote the partitioned uncoded input matrices by {Ai,j}i∈[p],j∈[m] and {Bi,j}i∈[p],j∈[n].
The encoding consists of two steps.

In Step 1, given any upper bound construction of R(p,m, n) (e.g., Strassen’s construction) with rank R and tensor tuples
a ∈ FR×p×m, b ∈ FR×p×n, and c ∈ FR×m×n, we pre-encode the inputs each into a list of R coded submatrices.11

Ãi,vec ,
∑
j,k

Aj,kaijk, B̃i,vec ,
∑
j,k

Bj,kbijk. (13)

As we have explained in [42], this pre-encoding essentially provides a linear coding scheme with R workers that does not
provide straggler-resiliency and data-security, of which we need to take into account in the second part of the encoding.

In Step 2, note that it suffice to recover the element-wise products Ãᵀ
1,vecB̃1,vec, ..., Ã

ᵀ
R,vecB̃R,vec. We can build upon optimal

coding constructions for element-wise multiplication, first presented in [15] for straggler mitigation and then extended in [6]
to also provide data-privacy.

We first pad the two vectors {Ãi,vec}i∈[R] and {B̃i,vec}i∈[R] with uniformly random keys. If matrix A needs to be stored
securely against up to T colluding workers, we pad the pre-coded matrices of A with T uniformly random matrices Z1, ..., ZT ∈
F

s
p×

t
m . Explicitly, we define

Ã
′
vec , (Ã1,vec, ..., ÃR,vec, Z1, ..., ZT) (14)

if A needs to be stored securely; otherwise, we define

Ã
′
vec , (Ã1,vec, ..., ÃR,vec). (15)

Similarly, we define vector B̃
′
vec for matrix B in the same way. For brevity, we denote the lengths of Ã

′
vec and B̃

′
vec by LA

and LB .
Then we arbitrarily select R+T distinct elements from F, denoted x1, ..., xR+T , and N distinct elements from F\{x1, ..., xR},

denoted y1, ..., yN . We encode the inputs for each worker i as follows.

Ãi =
∑

j∈[LA]

Ã′j,vec ·
∏

k∈[LA]\j

(yi − xk)

(xj − xk)
, (16)

B̃i =
∑

j∈[LB]

B̃′j,vec ·
∏

k∈[LB]\j

(yi − xk)

(xj − xk)
. (17)

As proved in [6], the above encoding scheme satisfies the requirements for both one-sided and fully T -secure settings.12

According to the PCC framework, we have encoded the input matrices using polynomials with degrees of LA − 1 and
LB − 1, where each worker i is assigned their evaluations at yi. Hence, after the workers multiply their coded matrices, they
obtain evaluations of the multiplicative product of these polynomials, which has degree LA + LB − 2. Note that evaluations
of this composed polynomial at x1, ..., xR recovers the needed element-wise products. The decodability requirement of PCC
is satisfied. Consequently, the master can recover the final output by interpolating the composed polynomial after sufficiently
many results from the workers are received, achieving a recovery threshold of LA + LB − 1.

Recall that for one-sided T -secure setting, we have LA = R + T and LB = R; then for fully T -secure setting, we have
LA = LB = R+T . Hence, we have obtained linear coding schemes with recovery thresholds of 2R+T −1 and 2R+2T −1
for both settings respectively given any upper bound constructions of R(p,m, n) with rank R. Fundamentally, there exists
constructions that exactly achieves the rank R(p,m, n), which proves the existance of coding schemes stated in Theorem 1.
Remark 9. The coding scheme we presented for computing element-wise product with one-sided privacy naturally extends to
provide optimal codes for the scenario of batch computation of multilinear functions where each of the input entries are coded
to satisfy possibly different security requirements.

V. ACHIEVABILITY SCHEMES FOR PRIVATE DISTRIBUTED MATRIX MULTIPLICATION

In this section, we present the coding scheme for proving Theorem 2 and 3. We start with the setting for Theorem 2, where
the goal is to multiply matrix A by one of the matrices from B(1), ..., B(M).

Similar to Section IV, we first pre-encode the input matrices into lists of vectors of length R, given any upper bound
construction of R(p,m, n) with rank R and tensor tuples a ∈ FR×p×m, b ∈ FR×p×n, and c ∈ FR×m×n. In particular, given
parameters p, m, and n, we denote the partitioned uncoded input matrices by {Ai,j}i∈[p],j∈[m] and {B(`)

i,j }i∈[p],j∈[n],`∈[M]. We
define

Ãi,vec ,
∑
j,k

Aj,kaijk, B̃
(`)
i,vec ,

∑
j,k

B
(`)
j,kbijk, (18)

11For detailed definitions of bilinear complexity and upper bound constructions, see [42].
12Such property is referred to as T -private in [6], [58]

10

for each i ∈ [R] and ` ∈ [M]. Then given any request D ∈ [M], it suffices to compute the element-wise product {Ãᵀ
i,vecB̃

(D)
i,vec}i∈[R]

while keeping D private.
The second part of the encoding scheme is motivated by coding ideas developed in [13], [15] and earlier sections. In

particular, we first pad the pre-encoded vector of A with random keys for security. We define

Ã
′
vec , (Ã1,vec, ..., ÃR,vec, Z), (19)

if A needs to be stored securely, where Z is a random key sampled from F
s
p×

t
m with a uniform distribution; otherwise,

Ã
′
vec , (Ã1,vec, ..., ÃR,vec). (20)

For brevity, we denote the length of Ã
′
vec by LA.

We arbitrarily select R+ 1 distinct elements from F, denoted x1, ..., xR+1, and encode matrix A by defining the following
Lagrange polynomial,

Ã(x) ,
∑

i∈[LA]

Ã′i,vec ·
∏

j∈[LA]\i

(x− xj)

(xi − xj)
, (21)

We then arbitrarily select a finite subset Y of F\{x1, ..., xR} with at least N elements, and let the master uniformly randomly
generate N distinct elements from Y , denoted y1, ..., yN . The master sends Ãi = Ã(yi) to each worker i, which satisfied the
security of A when required.

Given a request D, we similarly define

B̃(x) ,
∑

i∈[R+1]

B̃′i,vec ·
∏

j∈[R+1]\i

(x− xj)

(xi − xj)
, (22)

where

B̃
′
vec , (B̃

(D)
1,vec, ..., B̃

(D)
R,vec, Y), (23)

and Y ∈ F
s
p×

r
n is a quantity to be specified later. If the encoding can be designed such that each worker essentially computes

Ãᵀ(yi)B̃(yi), then we can achieve the recovery thresholds stated in Theorem 2.
To construct a private computing scheme where B̃i is equivalent to B̃(yi), we divide B̃(x) by a scalar13

c(x) ,
∏
j∈[R]

(x− xj)

(xR+1 − xj)
, (24)

so that the result can be expressed as the unweighted sum of Y and B̃
(D)
Norm(x) with function B̃

(·)
Norm(x) defined as follows

B̃
(k)
Norm(x) , −

∑
i∈[R]

B̃
(k)
i,vec

 ∏
j∈[R]\i

(xR+1 − xj)

(xi − xj)

 (x− xR+1)

(x− xi)
.

We let the master generate i.i.d. uniformly random variables {zi}i∈[M]\D from Y independent of yi’s. The master sends a
query Qi = (qi1, ..., qiM) to each worker i with qij = yi for j = D and qij = zj for j 6= D. Because each Qi appears
uniformly random to worker i, the presented coding scheme satisfies the privacy requirement.

We let each worker i encode B by computing
∑

j B̃
(j)
Norm(qij). Consequently, each encoded variable can be re-expressed as

B̃i =
B̃(yi)

c(yi)
(25)

with Y =
∑

j 6=D B̃
(j)
Norm(qij) independent of yi.

After the workers multiply the coded matrices, each worker i essentially returns Ãᵀ(yi)B̃(yi)/c(yi). Because yi is available
at the decoder, the master can decode Ãᵀ(yi)B̃(yi) given each worker i’s returned result by computing c(yi). Hence, by
receiving results from sufficiently workers, the master can recover the needed element-wise product by Lagrange interpolating
the polynomial Ãᵀ(x)B̃(x), and proceed to compute the final output.

Because the degree of Ãᵀ(x)B̃(x) equals LA−1+R, the presented coding scheme achieves a recovery threshold of LA+R.
Note that LA = R when no security is required and LA = R+ 1 when A is stored securely. We have obtained linear coding
schemes with recovery thresholds of 2R− 1 for private coded matrix multiplication, and 2R for private and secure distributed
matrix multiplication for any upperbound construction of R(p,m, n), which completes the proof for Theorem 2.

13Note that here we are exploiting the fact that each worker computes a function that is multilinear. For more general scenarios (e.g., general polynomial
evaluations we considered in [6]), scaling the coded variables could affect decodability.

11

Remark 10. This coding scheme naturally extends to the scenario where the encoding of A is required to be T -secure. A
recovery threshold of 2R(p,m, n) + T can be achieved, which is optimal within a factor of 2.

We now present the coding scheme for the fully private setting. The matrices are pre-encoded the same way and we denote
the corresponding matrices by {Ã(`)

i,vec, B̃
(`)
i,vec}i∈[R],`∈[M]. To recover the final output, it suffices to compute {Ã(D)ᵀ

i,vec B̃
(D)
i,vec}i∈[R].

We arbitrarily select R+ 1 distinct elements from F, denoted x1, ..., xR+1, and define the following functions

Ã
(k)
Norm(x) , −

∑
i∈[R]

Ã
(k)
i,vec

 ∏
j∈[R]\i

(xR+1 − xj)

(xi − xj)

 (x− xR+1)

(x− xi)
.

B̃
(k)
Norm(x) , −

∑
i∈[R]

B̃
(k)
i,vec

 ∏
j∈[R]\i

(xR+1 − xj)

(xi − xj)

 (x− xR+1)

(x− xi)
.

We then arbitrarily select a finite subset Y of F\{x1, ..., xR} with at least N elements. Let the master uniformly randomly
generate N distinct elements from Y , denoted y1, ..., yN , and i.i.d. uniformly random variables {zi}i∈[M]\D from Y independent
of yi’s. The master sends a query Qi = (qi1, ..., qiM) to each worker i with qij = yi for j = D, and qij = zj for j 6= D. This
query is fully private, because for each worker i, qi1, ..., qiM appears i.i.d. uniformly random in Y .

Each worker i encodes the input matrices as follows

Ãi =
∑
j

Ã
(j)
Norm(qij), (26)

B̃i =
∑
j

B̃
(j)
Norm(qij). (27)

After the computation result is received from any worker i, by multiplying a scalar factor c2(yi) with function c defined
in equation (24), the master recovers the evaluation of the product of two Lagrange polynomials of degree R at point yi.
By interpolating this polynomial and re-evaluating it at xi’s, the master can recover all needed element-wise products. This
provides a coding scheme that proves Theorem 3.

VI. ACHIEVABILITY SCHEMES FOR BATCH DISTRIBUTED MATRIX MULTIPLICATION

In this section, we present the coding scheme for proving Theorem 4. We start with the basic setting where no security or
privacy is required. As mentioned in Section III-C, one can directly decompose the tensor characterizing the L-batch matrix
multiplication, and all earlier results as well as Theorem 3 in [15] extends to batch distributed matrix multiplication. However,
we instead present one certain class of upper bounds based on subadditivity of tensor rank.

Explicitly, we denote the partitioned uncoded input matrices by {A(k)
i,j }i∈[p],j∈[m],k∈[L] and {B(k)

i,j }i∈[p],j∈[n],k∈[L]. Given
any upper bound construction of R(p,m, n) with rank R and tensor tuples a ∈ FR×p×m, b ∈ FR×p×n, and c ∈ FR×m×n, we
define

Ãi,`,vec ,
∑
j,k

A
(`)
j,kaijk, B̃i,`,vec ,

∑
j,k

B
(`)
j,kbijk. (28)

for each i ∈ [R] and ` ∈ [L]. Note that the batch product can be recovered from the element-wise product {Ãᵀ
i,`,vecB̃i,`,vec}i∈[R],`∈[L].

One can directly apply the optimal coding scheme presented in [15], which encodes the pre-encoded vectors using Lagrange
polynomials. According to Corollary 1 in [15], the resulting scheme achieves a recovery threshold of 2LR− 1, which proves
the based scenario for Theorem 4.

Remark 11. In [59], Lagrange encoding is also applied to compute inner product (sum of element-wise products) to achieve
the same recovery threshold. Remarkably, [59] pointed out that the encoding can be made systematic as Lagrange polynomials
passes through all uncoded inputs, as stated in [60]. It is mentioned in [59] that the main benefits of using systematic encoding
designs is to enable recovery from results of a certain smaller subset of “systematic” workers, which provides backward-
compatibility and potentially reduces computation and decoding latency. Based on this observation, the entangled polynomial
codes can be adapted to a “systematic” version that goes beyond inner product and handles generalized block-wise partitioned
matrices by choosing the same evaluation points as in [60], so that a subset of R(p,m, n) workers computes all needed
“uncoded” products of the pre-encoded matrices, and all major benefits of systematic encoding are provided. This construction
gives a practical solution to an open problem stated in [61], in the sense of achieving all major benefits of systematic encoding,
and improving recovery thresholds for any sufficiently large values of p, m, and n.

Now we formally state the settings with security and privacy requirements. Similar to Section III, for batch matrix multi-
plication with security requirement, the formulation is the same as the basic setup for batch distributed matrix multiplication,

12

except that the inputs needs to be stored information-theoretic privately even if up to T workers collude. We say a coding
scheme is one-sided T -secure, if

I({Ãi}i∈T ;A) = 0 (29)

for any subset T with size of at most T , where A is generated uniformly at random. We say an encoding scheme is fully
T -secure, if instead

I({Ãi, B̃i}i∈T ;A,B) = 0 (30)

is satisfied for any |T | ≤ T , for uniformly randomly generated A and B.
When privacy is taken into account, the goal is to instead batch multiply a list of L matrices by one unknown subset of

L matrices B = {B(i,D)}i∈[L] from a set B = {B(i,j)}i∈[L],j∈[M] while keeping the request D private to the workers. The
master sends a query and a coded version of A with size F

s
p×

t
m to each worker, then each worker encodes matrices B into a

coded submatrix of size F
s
p×

r
n based on the query, the same as in private distributed matrix multiplication. We say a computing

scheme for batch matrix multiplication is private, if

I(D;Qi, Ãi,B) = 0 (31)

for any i ∈ [N], where A,B, D are sampled uniformly at random. Furthermore, we say the computing scheme is private and
secure, if we also have

I(Ãi;A) = 0 (32)

for any i ∈ [N] when A is sampled uniformly random.
Finally, for fully private batch matrix multiplication, the goal is to batch multiply L pairs of matrices given two lists of

inputs A = {A(i,j)}i∈[L],j∈[M] and B = {B(i,j)}i∈[L],j∈[M]. The master aims to compute {A(i,D)ᵀB(i,D)}i∈[L] given an index
D, while keeping D private. The rest of the computation follows similarly to the fully private and the batch distributed matrix
multiplication frameworks. Explicitly, we require that

I(D;Qi,A,B) = 0 (33)

for any i ∈ [N], where A,B, D are sampled uniformly at random and Qi denotes the query the master send to worker i.
The achievability schemes for all these settings can be built based on coding ideas we presented earlier in this paper. In

particular, by first pre-encoding each of the input matrices using any upper bound construction of R(p,m, n), the task of
batch-multiplying L matrices is reduced to computing element-wise product of two vectors of lengths at most LR(p,m, n).
Then observe that in the second parts of all coding schemes we presented in earlier sections for non-batch matrix multiplication,
we essentially provided linear codes that compute element-wise products of vectors of any sizes. By directly applying those
proposed designs to the extended pre-coded vectors for batch multiplication, we obtain the needed computing schemes for
proving Theorem 4 where the achieved recovery threshold upper bounds are stated by swapping R(p,m, n) into LR(p,m,m).

VII. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we showed that entangled polynomial codes, as an effective approach for computing block matrix multiplication,
can be applied beyond straggler mitigation. We investigated three important settings: secure, private, and batch distributed matrix
multiplication, and demonstrated the effectiveness of entangled polynomial codes in providing unified solutions with orderwise
improvements upon the state of the arts. To demonstrate the coding gain, we focus on generalizing the second version of
the entangled polynomial code, the one that achieves a recovery threshold of 2R(p,m, n) − 1. Note that similar to straggler
mitigation, where a “cubic" recovery thresholds pmn+p−1 can be achieved when any of p, m, n is small, one should expect
that similar optimal coding designs can also be developed for the settings we studied in this work, and it is an interesting
follow-up direction to establish those constructions.

Another interesting direction is to consider general computation tasks beyond matrix multiplication. Entangled polynomial
codes enables exploiting the idea that any bilinear function can be characterized by a rank-3 tensor, and any decomposition of
the tensor reduces the bilinear function into batch evaluations of simpler computation tasks that can be assigned to distributed
worker and effectively computed using Lagrange encoding. This approach directly generalizes to any multilinear functions.
However, it remains open to design optimal codes for general computation with encoding and decoding functions satisfying
complexity constraints.

ACKNOWLEDGEMENTS

This material is based upon work supported by Defense Advanced Research Projects Agency (DARPA) under Contract
No. HR001117C0053, ARO award W911NF1810400, NSF grants CCF-1703575, ONR Award No. N00014-16-1-2189, and
CCF-1763673. The views, opinions, and/or findings expressed are those of the author(s) and should not be interpreted as
representing the official views or policies of the Department of Defense or the U.S. Government. Qian Yu is supported by the
Google PhD Fellowship.

13

REFERENCES

[1] J. Dean and L. A. Barroso, “The tail at scale,” Communications of the ACM, vol. 56, no. 2, pp. 74–80, 2013.
[2] R. D. Schlichting and F. B. Schneider, “Fail-stop processors: An approach to designing fault-tolerant computing systems,” ACM Trans. Comput. Syst.,

vol. 1, p. 222–238, Aug. 1983.
[3] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals problem,” ACM Trans. Program. Lang. Syst., vol. 4, p. 382–401, July 1982.
[4] M. Zhou, R. Zhang, W. Xie, W. Qian, and A. Zhou, “Security and privacy in cloud computing: A survey,” in 2010 Sixth International Conference on

Semantics, Knowledge and Grids, pp. 105–112, Nov 2010.
[5] P. Mohassel and Y. Zhang, “Secureml: A system for scalable privacy-preserving machine learning,” in 2017 IEEE Symposium on Security and Privacy

(SP), vol. 00, pp. 19–38, May 2017.
[6] Q. Yu, S. Li, N. Raviv, S. M. M. Kalan, M. Soltanolkotabi, and S. A. Avestimehr, “Lagrange coded computing: Optimal design for resiliency, security, and

privacy,” in Proceedings of Machine Learning Research (K. Chaudhuri and M. Sugiyama, eds.), vol. 89 of Proceedings of Machine Learning Research,
pp. 1215–1225, PMLR, 16–18 Apr 2019, arXiv:1806.00939, 2018.

[7] J. So, B. Guler, A. S. Avestimehr, and P. Mohassel, “Codedprivateml: A fast and privacy-preserving framework for distributed machine learning,” arXiv
preprint arXiv:1902.00641, 2019.

[8] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran, “Speeding up distributed machine learning using codes,” e-print arXiv:1512.02673,
2015.

[9] S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing large linear transforms distributedly using coded short dot products,” in Advances In Neural
Information Processing Systems, pp. 2092–2100, 2016.

[10] Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial codes: an optimal design for high-dimensional coded matrix multiplication,” in Advances in
Neural Information Processing Systems 30, pp. 4406–4416, Curran Associates, Inc., 2017, arXiv:1705.10464, 2017.

[11] W.-T. Chang and R. Tandon, “On the capacity of secure distributed matrix multiplication,” arXiv preprint arXiv:1806.00469, 2018.
[12] H. Yang and J. Lee, “Secure distributed computing with straggling servers using polynomial codes,” IEEE Transactions on Information Forensics and

Security, vol. 14, pp. 141–150, Jan 2019.
[13] M. Kim and J. Lee, “Private secure coded computation,” arXiv preprint arXiv:1902.00167, 2019.
[14] W.-T. Chang and R. Tandon, “On the upload versus download cost for secure and private matrix multiplication,” arXiv preprint arXiv:1906.10684, 2019.
[15] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation in distributed matrxix multiplication: Fundamental limits and optimal coding,”

in 2018 IEEE International Symposium on Information Theory (ISIT), pp. 2022–2026, June 2018, arXiv:1801.07487v1, 2018.
[16] M. Fahim, H. Jeong, F. Haddadpour, S. Dutta, V. Cadambe, and P. Grover, “On the optimal recovery threshold of coded matrix multiplication,” in 2017

55th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 1264–1270, Oct 2017.
[17] M. Aliasgari, O. Simeone, and J. Kliewer, “Distributed and private coded matrix computation with flexible communication load,” arXiv preprint

arXiv:1901.07705, 2019.
[18] M. Aliasgari, O. Simeone, and J. Kliewer, “Private and secure distributed matrix multiplication with flexible communication load,” arXiv preprint

arXiv:1909.00407, 2019.
[19] H. A. Nodehi, S. R. H. Najarkolaei, and M. A. Maddah-Ali, “Entangled polynomial coding in limited-sharing multi-party computation,” in 2018 IEEE

Information Theory Workshop (ITW), pp. 1–5, Nov 2018.
[20] Z. Jia and S. A. Jafar, “Cross subspace alignment codes for coded distributed batch matrix multiplication,” arXiv preprint arXiv:1909.13873, 2019.
[21] Z. Jia and S. A. Jafar, “Generalized cross subspace alignment codes for coded distributed batch matrix multiplication,” 2019.
[22] V. Strassen, “Gaussian elimination is not optimal,” Numerische Mathematik, vol. 13, pp. 354–356, Aug 1969.
[23] V. Y. Pan, “Strassen’s algorithm is not optimal trilinear technique of aggregating, uniting and canceling for constructing fast algorithms for matrix

operations,” in 19th Annual Symposium on Foundations of Computer Science (sfcs 1978), pp. 166–176, Oct 1978.
[24] J. Hopcroft and L. Kerr, “On minimizing the number of multiplications necessary for matrix multiplication,” SIAM Journal on Applied Mathematics,

vol. 20, no. 1, pp. 30–36, 1971.
[25] J. D. Laderman, “A noncommutative algorithm for multiplying 3× 3 matrices using 23 multiplications,” Bulletin of the American Mathematical Society,

vol. 82, no. 1, pp. 126–128, 1976.
[26] S. Winograd, “On multiplication of 2 × 2 matrices,” Linear Algebra and its Applications, vol. 4, no. 4, pp. 381 – 388, 1971.
[27] D. Bini, “Relations between exact and approximate bilinear algorithms. applications,” CALCOLO, vol. 17, pp. 87–97, Jan 1980.
[28] A. Schönhage, “Partial and total matrix multiplication,” SIAM Journal on Computing, vol. 10, pp. 434–455, aug 1981.
[29] F. Romani, “Some properties of disjoint sums of tensors related to matrix multiplication,” SIAM Journal on Computing, vol. 11, no. 2, pp. 263–267,

1982.
[30] D. Coppersmith and S. Winograd, “On the asymptotic complexity of matrix multiplication,” in Proceedings of the 22Nd Annual Symposium on Foundations

of Computer Science, SFCS ’81, (Washington, DC, USA), pp. 82–90, IEEE Computer Society, 1981.
[31] V. Strassen, “The asymptotic spectrum of tensors and the exponent of matrix multiplication,” in Proceedings of the 27th Annual Symposium on Foundations

of Computer Science, SFCS ’86, (Washington, DC, USA), pp. 49–54, IEEE Computer Society, 1986.
[32] D. Coppersmith and S. Winograd, “Matrix multiplication via arithmetic progressions,” Journal of Symbolic Computation, vol. 9, no. 3, pp. 251 – 280,

1990. Computational algebraic complexity editorial.
[33] J. Landsberg, “The border rank of the multiplication of 2× 2 matrices is seven,” Journal of the American Mathematical Society, vol. 19, no. 2,

pp. 447–459, 2006.
[34] A. J. Stothers, On the complexity of matrix multiplication. PhD thesis, University of Edinburgh, 2010.
[35] C.-E. Drevet, M. Nazrul Islam, and E. Schost, “Optimization techniques for small matrix multiplication,” Theoretical Computer Science, vol. 412, no. 22,

pp. 2219–2236, 2011.
[36] V. V. Williams, “Multiplying matrices faster than coppersmith-winograd,” in In Proc. 44th ACM Symposium on Theory of Computation, pp. 887–898,

2012.
[37] P. Bürgisser, M. Clausen, and M. A. Shokrollahi, Algebraic complexity theory, vol. 315. Springer Science & Business Media, 2013.
[38] A. V. Smirnov, “The bilinear complexity and practical algorithms for matrix multiplication,” Computational Mathematics and Mathematical Physics,

vol. 53, pp. 1781–1795, Dec 2013.
[39] A. Sedoglavic, “A non-commutative algorithm for multiplying 5×5 matrices using 99 multiplications,” arXiv preprint arXiv:1707.06860, 2017.
[40] A. Sedoglavic, “A non-commutative algorithm for multiplying (7 × 7) matrices using 250 multiplications,” arXiv preprint arXiv:1712.07935, 2017.
[41] F. Le Gall, “Complexity of matrix multiplication and bilinear problems,”
[42] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation in distributed matrix multiplication: Fundamental limits and optimal coding,”

IEEE Transactions on Information Theory, vol. 66, pp. 1920–1933, March 2020.
[43] J. Kakar, S. Ebadifar, and A. Sezgin, “Rate-efficiency and straggler-robustness through partition in distributed two-sided secure matrix computation,”

arXiv preprint arXiv:1810.13006, 2018.
[44] R. G. L. D’Oliveira, S. El Rouayheb, and D. Karpuk, “Gasp codes for secure distributed matrix multiplication,” in 2019 IEEE International Symposium

on Information Theory (ISIT), pp. 1107–1111, July 2019.
[45] J. Kakar, S. Ebadifar, and A. Sezgin, “On the capacity and straggler-robustness of distributed secure matrix multiplication,” IEEE Access, vol. 7,

pp. 45783–45799, 2019.

14

[46] S. Ebadifar, J. Kakar, and A. Sezgin, “The need for alignment in rate-efficient distributed two-sided secure matrix computation,” in ICC 2019 - 2019
IEEE International Conference on Communications (ICC), pp. 1–6, May 2019.

[47] H. A. Nodehi and M. A. Maddah-Ali, “Secure coded multi-party computation for massive matrix operations,” arXiv preprint arXiv:1908.04255, 2019.
[48] Z. Jia and S. A. Jafar, “On the capacity of secure distributed matrix multiplication,” arXiv preprint arXiv:1908.06957, 2019.
[49] J. Kakar, A. Khristoforov, S. Ebadifar, and A. Sezgin, “Uplink-downlink tradeoff in secure distributed matrix multiplication,” arXiv preprint

arXiv:1910.13849, 2019.
[50] R. G. D’Oliveira, S. El Rouayheb, D. Heinlein, and D. Karpuk, “Degree tables for secure distributed matrix multiplication,” 2019.
[51] M. Kim, H. Yang, and J. Lee, “Private coded matrix multiplication,” IEEE Transactions on Information Forensics and Security, pp. 1–1, 2019.
[52] S. Dutta, V. Cadambe, and P. Grover, “Coded convolution for parallel and distributed computing within a deadline,” in 2017 IEEE International Symposium

on Information Theory (ISIT), pp. 2403–2407, June 2017.
[53] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Coded fourier transform,” in 2017 55th Annual Allerton Conference on Communication, Control, and

Computing (Allerton), pp. 494–501, Oct 2017.
[54] H. Jeong, T. M. Low, and P. Grover, “Coded fft and its communication overhead,” arXiv preprint arXiv:1805.09891, 2018.
[55] J. Von Zur Gathen and J. Gerhard, Modern computer algebra. Cambridge university press, 2013.
[56] M. Bläser, Fast Matrix Multiplication. No. 5 in Graduate Surveys, Theory of Computing Library, 2013.
[57] Q. Yu and A. S. Avestimehr, “Harmonic coding: An optimal linear code for privacy-preserving gradient-type computation,” in 2019 IEEE International

Symposium on Information Theory (ISIT), pp. 1102–1106, July 2019.
[58] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness theorems for non-cryptographic fault-tolerant distributed computation,” in Proceedings of

the Twentieth Annual ACM Symposium on Theory of Computing, STOC ’88, (New York, NY, USA), p. 1–10, Association for Computing Machinery,
1988.

[59] S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe, and P. Grover, “On the optimal recovery threshold of coded matrix multiplication,” IEEE
Transactions on Information Theory, vol. 66, pp. 278–301, Jan 2020, arXiv:1801.10292, 2018.

[60] I. Tamo and A. Barg, “A family of optimal locally recoverable codes,” IEEE Transactions on Information Theory, vol. 60, pp. 4661–4676, Aug 2014.
[61] H. Jeong, Y. Yang, and P. Grover, “Systematic matrix multiplication codes,” in 2019 IEEE International Symposium on Information Theory (ISIT),

pp. 1–5, July 2019.

	I Introduction
	II Overview of Coded Computation and Entangled Polynomial Codes
	II-A Polynomial Coded Computing (PCC)
	II-A1 Polynomial codes NIPS20177027 for matrix multiplication
	II-A2 Lagrange Coded Computing (LCC) NIPS20177027 for polynomial evaluation

	II-B Entangled Polynomial Codes

	III Secure, Private, Batch Distributed Matrix Multiplication and Main Results
	III-A Secure Distributed Matrix Multiplication
	III-B Private Distributed Matrix Multiplication
	III-C Batch Distributed Matrix Multiplication

	IV Achievability Schemes for Secure Distributed Matrix Multiplication
	V Achievability Schemes for Private Distributed Matrix Multiplication
	VI Achievability Schemes for Batch Distributed Matrix Multiplication
	VII Conclusion and Future Directions
	References

