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Abstract—We study the information-energy capacity region
(IE-CR) of an additive white Gaussian noise (AWGN) channel
in the presence of high-power amplifier (HPA) nonlinearity.
Specifically, we consider a three-node network consisting of one
transmitter, one information receiver and one energy receiver
and we study the capacity-achieving input distribution under
i) average-power, peak-power constraints at the transmitter, b)
HPA nonlinearity at the transmitter, and c) nonlinearity of the
energy harvesting circuit at the energy receiver. We prove that
the input distribution is discrete and finite and we derive closed
form expressions for the special cases of maximizing the harvested
energy and maximizing the information capacity. We show that
HPA significantly reduces the achievable IE-CR; to compensate
HPA nonlinearity, a predistortion technique is also discussed and
evaluated in terms of IE-CR performance.

Index Terms—SWIPT, wireless power transfer, high-power
amplifier, input distribution, information-energy capacity region.

I. INTRODUCTION

Simultaneous wireless information and power transfer

(SWIPT) is a new technology, where a dedicated radio-

frequency (RF) transmitter conveys information and energy to

wireless devices by using the same radio waveform [1]. It is

a promising technology for future communication networks,

which are characterized by a massive number of low-power

devices (e.g., Internet of Things). The key idea of SWIPT

has been proposed by Varshney in [2], where the fundamental

trade-off between information and energy transfer has been

introduced for a simple point-to-point channel; this work

has been extended in [3] for a parallel-links point-to-point

channel. More recent works study the integration of SWIPT

in more complex network configurations e.g., multiple-antenna

systems [4], multiple-access networks [5], multiple-antenna

cellular networks [6], etc.

One of the main particularities of a SWIPT network is that

the wireless power transfer channel is highly nonlinear (in

contract to the linear information transfer channel). Recent

studies take into account the nonlinearity of the rectification

circuit, and study the impact of waveform design and/or

input distribution on the achieved information-energy capacity

region (IE-CR). For instance, the work in [7] models the

rectifier’s behaviour and introduces a mathematical frame-

work to design waveforms that exploit nonlinearity. On the

other hand, the authors in [8] study the input distribution

that maximizes IE-CR for an additive white Gaussian noise

(AWGN) channel under statistical constraints (first/second

moment statistics) on the input distribution. By relaxing these

constraints, the authors in [9] study the input distribution under

general average-power (AP) and a peak-power (PP) constraints

at the transmitter. By using the mathematical framework in

[10], they prove that the input distribution is unique, discrete

with a finite number of mass points.

According to experimental studies, signals with high peak-

to-average-power-ratio (PAPR) e.g., multi-sine signals, in-

crease the direct-current (DC) output power of the rectifier

and enhance the IE-CR performance [1], [7], [11], in com-

parison to constant-envelope signals. However, signals with

high PAPR are more sensitive to high-power amplifier (HPA)

nonlinearities that can significantly degrade the quality of the

communication [12]. Despite this fundamental experimentally-

validated observation, previous works do not take into account

the effects of HPA on the achieved IE-CR and assume that the

RF power amplifier operates always in the linear regime.

In this paper, we study the fundamental limits of a SWIPT

system which is characterized by HPA nonlinearities at the

transmitter. By taking into account a memoryless HPA model

i.e., solid state power amplifier (SSPA) model [12], we

characterize the IE-CR for a three-node real-valued AWGN

channel, under both AP and PP constraints at the transmitter

as well as rectification nonlinearities at the energy receiver.

We study the input distribution that maximizes IE-CR by

formulating appropriate convex optimization problems over

the input distribution and we provide simplified closed-form

expressions, when the design maximizes information/energy

transfer. We show that HPA significantly reduces the IE-

CR, while a non-tradeoff between information and energy

is observed for low PP constraints. Finally, a deterministic

digital predistortion (PD) that inverses the HPA nonlinearities

and linearizes the below-saturation regime is discussed; we

show that PD enhances the IE-CR performance when HPA

nonlinearity is more severe.

Notation: Lower case bold symbols denote vectors, E[·] rep-

resents the expectation operator, � denotes componentwise

inequality, the superscript (·)⊤ denotes transpose, and P(X) is

the probability of the event X ; f(x) ր (x1, x2) and f(x) ց
(x1, x2) denote that the function f(x) is monotonically in-

creasing/decreasing in the interval (x1, x2), respectively.
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Fig. 1. System model consisting of one transmitter, an information receiver
and an energy receiver.

II. SYSTEM MODEL

We assume a simple SWIPT topology consisting on one

transmitter, one information receiver (IR), and one energy

receiver (ER) [9]. All the terminals are equipped with a single

antenna; the IR converts the received signal to the baseband to

decode the transmit information, while the ER harvests energy

from the received RF signal. The transmitter transmits a pulse-

amplitude modulated signal x(t) =
∑∞

k=−∞ x[k]p(t − kT )
with an average power σ2

x, where p(t) is the rectangular pulse

shaping filter (i.e., p(t) = 1 for 0 < t ≤ T ), T is the symbol

interval, and x[k] is the information symbol at time index k,

modeled as the realization of an independent and identically

distributed (i.i.d) real random variable X with cumulative

distribution function FX(x). We assume a normalized symbol

interval T = 1 and thus the measures of energy and power

become identical and therefore are used equivalently. Fig. 1

schematically presents the system model.

The modulated signal is amplified by the HPA at the RF

chain, which causes amplitude distortion and nonlinearity on

the transmitted amplitude-modulated signal x(t). Specifically,

the output of the nonlinear HPA can be written as x̂[k] =
d(x[k]) (i.e., random variable X̂ = d(X)), where d(·) denote

the AM-to-AM conversion which is given by the considered

SSPA HPA model [12] i.e.,

d(r) =
r

[

1 +
(

r
As

)2β
]

1

2β

, (1)

where As is the output saturation voltage, and β represents the

smoothness of the transition from the linear regime to the sat-

uration. Let A0 denote the minimum input voltage that drives

the HPA output to the saturation i.e., A0 = mind(r)=As
r with

A0 = As for β ≫ 1. Fig. 2 presents the input-output voltage

characteristics for the considered HPA model; as β increases,

the nonlinear transition regime (below saturation) of the HPA

is linearized.

We consider transmission over an AWGN channel with fixed

and known channel fading [8], [9]. The equivalent baseband

received signal at the IR is given by

y(t) = hI x̂(t) + n(t), (2)

where hI ∈ ℜ is the channel fading gain (constant) and n(t) is

the real-valued Gaussian noise with unit variance. We define
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Fig. 2. Input-output voltage characteristics for the SSPA power amplifier
model; As = 1, β = {1, 2, 5, 80}.

the conditional probability

p(y|x) = 1√
2π

exp

[

− (y − hId(x))
2

2

]

. (3)

The ER converts the received RF signal to DC power

through a nonlinear rectification circuit1. If hE ∈ ℜ is the

fading channel gain (constant) for the link transmitter-ER, the

average harvested energy is captured by the following quantity

(monotonically increasing with the average harvested energy)

[9], [13]

E =E
[

I0(BhE |X̂|)
]

, (4)

where I0(·) denote the modified Bessel function of the first

kind and order zero, and B is a constant that depends on the

characteristics of the rectification circuit2.

In addition to the transmit AP constraint σ2
x, the transmitter

has a PP constraint to control the negative effects of saturation

which characterizes both the transmitter and the ER due

to HPA and the diode breakdown, respectively [9]; the PP

constraint can be expressed as |X | ≤ A, where A is the peak

amplitude.

III. INFORMATION-ENERGY CAPACITY REGION

We consider firstly the case where the IR is not

present/active. In this case, we design the input distribution

FX under both AP and PP constraints to maximize the

power delivered at ER. The considered design problem can

be formulated as

(P1) max
FX

E
[

I0(BhE |X̂ |)
]

s.t. E[X2] ≤ σ2
x

|X | ≤ A.

(5)

Although the problem (P1) is a linear optimization problem

and can be solved with standard convex optimization tools

(e.g., CVX), we can provide a closed form solution. The

following proposition gives the solution to (P1) and the

associated input distribution for the different cases.

1We assume that energy harvesting from background Gaussian noise is
negligible and is ignored [4].

2The considered energy harvested-based quantity results in E ≥ 1; E = 1
corresponds to a zero DC power delivered to the load [9, Eq. (4)].



Proposition 1. The maximum average harvested energy and

the associated mass point distribution are given by

Emax = pI0
(

BhEd(λ)
)

+ (1 − p), where (6)

• If A2 ≤ σ2
x, we have p = 1, λ = A, and mass point

distribution ΠA = 1
2 (δ−A + δA).

• If σ2
x ≤ A2 and g(x) ց (σx, A), we have p = 1, λ = σx,

and mass point distribution ΠA = 1
2 (δ−σx

+ δσx
).

• If σ2
x ≤ A2 and g(x) ր (σx, A), we have p =

σ2

x

A2 ,

λ = A, and mass point distribution ΠA =
σ2

x

2A2 (δ−A +

δA) +
(

1− σ2

x

A2

)

δ0.

• If σ2
x ≤ A2 and the function g(x) ր (σx, A

′) and

g(x) ց (A′, A), we have p =
σ2

x

A′2 , λ = A′, and mass

point distribution ΠA =
σ2

x

2A′2 (δ−A′+δA′)+
(

1− σ2

x

A′2

)

δ0,

with A′ ≈ As for β ≫ 1,

where δx is the Dirac measure (point mass) concentrated at

x, and g(x) = 1
x2 [I0(BhEd(x)) − 1].

Proof: The proof is given in the Appendix.

In case that the IR is active, the achieved

information capacity with ΠA is equal to

Imin =
∫∞

−∞

∑

j p(y|xj)pj log2
p(y|xj)

∑

j p(y|xj)pj
dy where

pj = P[X = xj ]; since ΠA =
∑

j pjδxj
is a binary/ternary

distribution, the complexity of the numerical computation is

low.

Then, we consider the case where the target of the system is

to maximize the Shannon information capacity under both AP

and PP constraints. The problem can be formulated as follows

(P2) max
FX

I(X ;Y )

s.t. E[X2] ≤ σ2
x

|X | ≤ A,

(7)

where I(X ;Y ) is the average mutual information between the

channel input X and the channel output Y = hIX̂ +N with

X̂ = d(X). Given that the input probability distribution is

constrained to (−A,A), the mutual information is given by

I(X ;Y ) =

∫ A

−A

∫ ∞

−∞

p(y|x) log2
(

p(y|x)
p(y;FX)

)

dydFX , (8)

where p(y;FX) is the marginal output probability density

function given an input distribution FX . Due to the considered

PP constraint and the nonlinearity of the HPA model, we can

show that the optimal input probability function FX is unique,

finite and discrete. The proof requires the application of a

systematic methodology and is similar to the analysis in [9],

[10]. Given the finiteness/discretness of the input distribution,

(P2) can be discretized and reformulated by the following

convex optimization problem (corresponding to the capacity of

a discrete memoryless channel (DMC) with AP/PP constraints)

i.e.,

(P3) max
ppp

I ,
∑m

i=1

∑n
j=1 pijpj log2

pij
∑

n
k=1

pikpk

s.t. E[X2] ≤ σ2
x

|X | ≤ A
ppp � 0, 111⊤ppp = 1,

(9)

where 111 denotes a vector with ones, pij = P(Y = yi|X = xj),
and ppp = [p1, p2, . . . , pn]

⊤. The above formulation discretizes

the intervals x ∈ (−A,A) and y ∈ (−Γ,Γ) (where Γ ≫ A)

with sufficiently small step size ∆x → 0,∆y → 0 to form the

input (n = 2A/∆x mass points) and the output (m = 2Γ/∆y
mass points) symbol set, respectively. Formulation (P3) is a

convex optimization problem where the objective function is

concave in ppp; therefore can be solved by using standard convex

optimization tools (e.g., CVX). It is worth noting that (P3)

can be also solved by using the Blahut-Arimoto algorithm for

constrained discrete channels, which numerically computes the

capacity of DMC with constraints in the input distribution [14].

If ppp∗ is the solution to (P3), the maximum mutual information

becomes equal to Imax =
∑m

i=1

∑n

j=1 pijp
∗
j log2

pij
∑

n
k=1

pikp
∗

k

.

In case that ER is active, the average energy harvested is

written as Emin =
∑n

j=1 p
∗
jI0(BhEd(xj)).

Remark 1. For the case where d(A) ≤ A ≈ 1.665 (peak

output amplitude [15]) and A2 ≤ σ2
x, the input distribution is

equiprobable binary i.e., ΠA = 1
2 (δ−A + δ+A); in this case,

we have Imax = 1 − H2(Pe) and Emin = I0(BhEd(A)),
where H2(x) is the binary entropy with probability x, and

Pe =
∫∞

0
p(y|−A)dy. In this case and according to Proposi-

tion 1, we can see that there is not a trade-off between informa-

tion/energy and the same input distribution (i.e., equiprobable

binary with mass points at ±A) maximizes both information

and energy transfer simultaneously.

Then, we consider the case where both ER and IR are

active/present. The IE-CR is defined as

C(σ2
x, A) =

{

(I, E) : I ≤ Imax, E ≤ Emax,

E[x2] ≤ σ2
x, |X | ≤ A

}

. (10)

To characterize the boundary of the IE-CR, we observe that

when I ≤ Imin, the maximum average harvested energy is

given by the input distribution that achieves the rate tuple

(Imin, Emax), given by the solution to (P1). On the other hand,

when E ≤ Emin, the maximum information rate is given by

the input distribution that achieves the rate tuple (Imax, Emin),
given by the solution to (P3). The other points of the boundary

Imin ≤ I ≤ Imax and Emin ≤ E ≤ Emax can be found by

solving a new optimization problem, which is similar to (P3)

with the extra constraint Emin ≤ E[I0(BhE |X̂ |)] ≤ Emax.

Since the extra constraint is linear over the input distribution

FX , the optimization problem is still convex and can solved

by using standard convex optimization tools e.g. CVX.

A. Digital predistortion

In this section, we study the IE-CR for the case where a

PD is applied to the input signal before HPA. The purpose of

PD is to compansate the non-linear HPA effects and linearize

the non-saturation regime of HPA. In case that HPA function

d(r) is deterministic and known at the transmitter, an ideal PD
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Fig. 3. (a) The function g(x) for different parameters of the SSPA model;
we also assume A = 16, B = 0.1, and σ2

x
= 49, (b) Input distribution for

g(x) ց (σx, A) , (c) Input distribution for g(x) ր (σx, As) and g(x) ց
(As, A), and (d) Input distribution for g(x) ր (σx, A).

corresponds to the function q(r) i.e.,

q(r) =











As, If r ≥ As,
d−1(r) = r

[

1−( r
As

)2β
] 1

2β

, If −As < r < As,

−As, If r ≤ −As.
(11)

By using similar analytical steps with the HPA case (i.e.,

solving optimization problems (P1), (P2) and (P3)), the in-

formation energy capacity region is expressed by (10) with

two basic modifications i.e., i) the AP constraint is replaced

by E[q(x)2] ≤ σ2
x, and ii) HPA’s output is equal to X̂ =

d(q(X)). These two modifications do not affect the nature

and the characteristics of the problem (discreteness of the

input distribution, convexity over ppp etc.) and therefore the

proposed mathematical framework can be applied accordingly.

It is worth noting that r ≥ d(r) and therefore PD penalizes the

AP constraint (increases transmit power), while it facilitates

the objective functions in (P1)-(P3).

IV. NUMERICAL RESULTS

Computer simulations have been carried out to evaluate the

impact of HPA in terms of IE-CR; for the sake of simplicity,

we assume hI = hE = 1 without loss of generality.

Fig. 3 deals with the input mass distribution for different

system configurations when IR is not active and the target is

to maximize the average harvested energy. We assume A = 16,

σ2
x = 49 and thus σ2

x ≤ A2; Fig. 3(a) plots the function g(x)
for the configurations considered. For the case where As = 10,

β = 1 (see 3(b)), we have g(x) ց (σx, A) and the optimal

input mass distribution consists of two mass points at ±σx.

On the other hand, for the scenario where As = 10 < A and

β = 80 (see 3(c)), the nonlinearity in the HPA transition region

disappears and thus g(x) ր (σx, As), g(x) ց (As, A); in

this case the input distribution consists of three mass points
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Fig. 4. Input mass probability distribution for maximum information transfer;
β = 1, B = 0.5, σ2

x
= 30 dB, and (a) A = 18, and (b) A = 1.75.

at {±As, 0}. Finally, for the scenario where A < As = 100
and β = 10, we have g(x) ր (σx, A) and the optimal input

distribution is {±A, 0}. The main observations of Fig. 3 are

inline with Proposition 1.

In Fig. 4, we show the input distribution for the case where

ER is not present and the goal of the system is to maximize

information Shannon capacity; the setting is As = 5, β = 1,

σ2
x = 30 dB, and B = 0.5. For the case where A = 18 (Fig.

4.(a)), we can see that the optimal input distribution is discrete

with a finite number of mass probability points. In Fig. 4.(b),

we examine the special case of small A i.e., A = 1.75 (with

d(1.75) = 1.6518 < A ≈ 1.665 [15]) and as it can be seen

the optimal input distribution is binary with two mass points

at ±A; this observation is inline with Remark 1.

Fig. 5 shows the fundamental information-energy capacity

region for the considered SWIPT system with HPA nonlinear-

ities at the transmitter. The simulation setup assumes As = 5,

β = 1, σ2
x = 30 dB and B = 0.5; the case without HPA

degradation is used as a benchmark (no-HPA). The first remark

is that HPA nonlinearities significantly reduce the achieved IE-

CR in comparison to the no-HPA case; the negative effects of

HPA are more critical as the PP constraint increases. Another

important observation is that for low A (i.e., A = 1.75 with

d(A) < A), there is not a tradeoff between information and

energy and thus the same input distribution maximizes both

information and energy transfer (Remark 1). Finally, in the

curve corresponding to A = 10, we can see the key points of

the boundary of the information-energy capacity region, which

are defined in (10).

Finally, Fig. 6 deals with the impact of PD on the IE-CR;

we study configurations with a different parameter β. As we

can see, the application of a PD on the input signal, limits the

negative effects of HPA and enlarges the IE-CR. However,

the observed gain decreases as the smoothness parameter

β increases, since the associated power for the inversion

d−1(r) increases; for β = 10, the transition region is almost

linear and the application of PD slighly decreases the IE-CR

performance.



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Information Rate [bits/ch. use]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
E

ne
rg

y 
R

at
e 

[e
ne

rg
y 

un
its

/c
h.

 u
se

]

A=1,75 V (HPA)
A=1,75 V (no- HPA)
A=6 V (HPA)
A=6 V (no- HPA)
A=10 V (HPA)

Fig. 5. Information-energy capacity region; As = 5, β = 1, B = 0.5,
σ2
x
= 30 dB.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Information Rate [bits/ch. use]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

E
ne

rg
y 

R
at

e 
[e

ne
rg

y 
un

its
/c

h.
 u

se
]

=1, HPA
=1, PD
=3, HPA
=3, PD
=10, HPA
=10, PD

no-HPA

Fig. 6. Information-energy capacity region for the predistortion scheme;
A = 6, As = 5, B = 0.5, σ2

x
= 30 dB.

APPENDIX

We consider the functions g1(x) = I0(θx) and g2(x) =
g1(d(x)) where θ is a constant. The function d(x) is mono-

tonically increasing function i.e., the first derivative equals

to d′(x) = 1/[1 + (x/As)
2β ]

1

2β
+1 > 0, ∀ x. Given that

g1(x) is monotonically increasing function for x > 0, the

composite function g2(x) is an increasing function for x > 0
(composition of two increasing functions).

For the case where A2 ≤ σ2
x, the PP constraint dominates

and due to the monotonicity and even symmetry of g2(x), the

optimal distribution consists of two mass points at −A and A
with probabilities p1 and p2 = 1−p1, respectively. Therefore,

the average harvested energy becomes equal to Emax = g2(A).

Although p1 can take any value in (0, 1) without affecting the

maximum average harvested energy, we assume p1 = 1/2 to

maximize the information transfer (in case that IR is active).

When σ2
x < A2, we examine also the case where the

mass points are located at the region (σx, A). Similarly to the

previous case (i.e., A2 ≤ σ2
x), let x0 = σx the point of increase

of a distribution FX with probability 1; we construct a new

distribution F ′
X by removing x0 and adding two mass points

at the locations 0 and y ∈ (σx, A) with probabilities 1−σ2
x/y

2

and σ2
x/y

2, respectively. We can show that this transformation

decreases/increases the harvested energy depending on the

monotonicity of the function g(x) = (g2(x) − 1)/x2. More

specifically, if g(x) is a decreasing function in (σx, A) i.e.,

g2(σx)− 1

σ2
x

>
g2(y)− 1

y2

⇒ g2(σx) >

(

1− σ2
x

y2

)

g2(0) +
σ2
x

y2
g2(y), (12)

with g2(0) = 1, F ′
X decreases the average harvested energy

and thus FX is the optimal input distribution; by following

similar arguments as before, the optimal distribution consists

of two points at −σx and σx with probabilities 1/2, and the

maximum harvested energy becomes equal to Emax = g2(σx).
On the other hand, if g(x) is an increasing function in (σx, A),
the inequality in (12) holds with the reverse direction and

y = A maximizes the average harvested energy. In this case,

the optimal mass function consists of three points at the

locations −A, A and 0 with probabilities p1 = p2 =
σ2

x

2A2 and

p0 = 1− σ2

x

A2 , respectively. Finally, in case that A0 ∈ (σx, A),
the function g(x) is increasing in the interval (σx, A

′) and

decreasing in the interval (A′, A) and therefore we have

y = A′; we note A′ ≈ As for β >> 1. Equivalently, the

optimal input distribution consists of three mass points at the

locations −A′, A′ and 0 with probabilities p1 = p2 =
σ2

x

2A′2 and

p0 = 1− σ2

x

A′2 . For these two subcases (with three mass points),

the maximum average energy is equal to Emax ≈ 2p1g2(µ)+p0
with µ = A and µ = A′, respectively.
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