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Abstract

The basic goal of threshold group testing is to identify up to d defective items among a population of n items,
where d is usually much smaller than n. The outcome of a test on a subset of items is positive if the subset has at
least u defective items, negative if it has up to ` defective items, where 0 ≤ ` < u, and arbitrary otherwise. This
is called threshold group testing. The parameter g = u − ` − 1 is called the gap. In this paper, we focus on the
case g > 0, i.e., threshold group testing with a gap. Note that the results presented here are also applicable to the
case g = 0; however, the results are not as efficient as those in related work. Currently, a few reported studies have
investigated test designs and decoding algorithms for identifying defective items. Most of the previous studies have
not been feasible because there are numerous constraints on their problem settings or the decoding complexities
of their proposed schemes are relatively large. Therefore, it is compulsory to reduce the number of tests as well
as the decoding complexity, i.e., the time for identifying the defective items, for achieving practical schemes.

The work presented here makes five contributions. The first is a more accurate theorem for a non-adaptive
algorithm for threshold group testing proposed by Chen and Fu. The second is an improvement in the construction of
disjunct matrices, which are the main tools for tackling (threshold) group testing and other tasks such as constructing
cover-free families or learning hidden graphs. Specifically, we present a better exact upper bound on the number
of tests for disjunct matrices compared with that in related work. The third and fourth contributions are a reduced
exact upper bound on the number of tests and a reduced asymptotic bound on the decoding time for identifying
defective items in a noisy setting on test outcomes. The fifth contribution is a simulation on the number of tests
of the resulting improvements for previous work and the proposed theorems.

Index Terms

Non-adaptive threshold group testing with a gap, combinatorial mathematics, algorithms, sparse recovery.

I. INTRODUCTION

Identification of up to d defective items in a large population of n items is the main objective of
group testing. Defective items satisfy a specific property while negative (non-defective) items do not.
Dorfman [1], an economist who served during World War II, initiated this research direction in an effort
to identify syphilitic draftees among a large population of draftees. Rather than testing the draftees one
by one, which would have taken much time and money, he proposed pooling the draftees into groups for
testing, which is more efficient. Ideally, if there was at least one syphilitic draftee present in the group,
the test outcome would be positive. Otherwise, it would be negative. This approach can be generalized
by replacing “draftee” with “item,” “syphilis” with “a specific property,” and “syphilitic draftee” with
“defective item.” This is classical group testing (CGT) without noise. Formally, in CGT without noise,
the outcome of a test on a subset of items is positive if the subset has at least one defective item and
negative otherwise. If noise is present, the outcome may flip from positive to negative and vice versa.

A generalization of CGT called threshold group testing (TGT) was introduced by revising the definition
of the test outcome [2]. In this model, the outcome of a test on a subset of items is positive if the subset
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Fig. 1: Illustration of threshold group testing for u = 10 and ` = 2 versus classical group testing.

has at least u defective items, negative if it has up to ` defective items, where 0 ≤ ` < u, and arbitrary
otherwise. This model is denoted as (n, d, `, u)-TGT. The parameter g = u − ` − 1 is called the gap.
When g = 0, i.e., ` = u − 1, threshold group testing has no gap. When u = 1, TGT reduces to CGT.
TGT can be considered as a special case of complex group testing [3] or generalized group testing with
inhibitors [4]. Like previous reports such as [2], [5]–[8], the focus of this paper is on threshold group
testing with a gap, i.e., g > 0. Note that the results here are also applicable to the no-gap case (g = 0).
However, this case should be treated separately to attain efficient solutions as presented in [6], [9], [10].

In general, TGT is more complicated than CGT even for trivial testing since instead of testing all
individuals as in CGT, all groups of a certain size (depending on the threshold parameters) have to be
tested. It is intuitively obvious that the outcome of a test on a certain subset of items in TGT has less
information than one in CGT. For example, if the outcome of a test on a subset of items is negative, we
can be sure that there are no defectives in the subset if the test was done under the CGT setting, whereas
the subset has up to u− 1 defectives if the test was done under the TGT setting.

We illustrate TGT for two thresholds (u = 10 and ` = 2) versus CGT in Fig. 1. The black and red
dots represent negatives and defectives, respectively. A subset containing defectives and/or negatives is
a blue circle containing black and/or red dots. The outcome of a test on a subset of items is positive
(+) or negative (−). In CGT (“Classical” in the figure), the outcome of a test on a subset of items is
positive if the subset has at least one red dot, and negative otherwise. In TGT with two thresholds u and
` (“Threshold” in the figure), the outcome of a test on a subset of items is positive if the subset has at
least u = 10 red dots, negative if the subset has up to ` = 2 red dots, and arbitrary otherwise.

There are two approaches to designing tests. The first is adaptive group testing (AGT) in which the
design of a test depends on the designs of the previous tests. This approach usually achieves optimal
bounds on the number of tests; however, it takes much time. The second is non-adaptive group testing
(NAGT) which is an alternative solution for AGT. With this approach, all tests are designed independently
and can be performed in parallel. Because of the resulting time saving, NAGT has been widely applied in
various fields such as computational and molecular biology [11], networking [12], and neuroscience [4].
Recently, group testing seems to be an efficient way to economically and quickly identify infected persons
during the coronavirus pandemic of 2020–2021 [13], [14].

NAGT can be represented by a (binary) measurement matrix in which each row and each column
represent a test and an item, respectively. An entry in the matrix at row i and column j that equals 1
naturally means that item j belongs to test i; and an entry that equals 0 means otherwise. For every group
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testing problem, we have a few possible cases:
1) The “for all” model (the worst case): we have a single measurement matrix and the same matrix

has to recover any set of up to d defectives. Note that the matrix can be randomized or explicit,
but once we have the matrix, the same matrix has to work correctly for any configuration of up to
d defectives.

2) The “for each” model: for every fixed set of defectives, when we sample a measurement matrix,
with high probability (whp) from the measurement outcomes, we can reconstruct the defectives.

3) The “average case” model: the matrix can be explicit or random, and the defectives are chosen
randomly (often uniform, or iid). Then, whp over all randomness involved, we should be able to
recover the defectives from the measurements.

NAGT generally refers to the “for all” model; otherwise, the model is specified. The focus of the work
reported here is on NATGT (Non-Adaptive Threshold Group Testing), which is TGT associated with
NAGT (with the “for all” model).

There are two main requirements for efficiently tackling group testing: minimize the number of tests
and efficiently identify the set of defective items. Lengthy and intensive study of CGT has shown that
the number of tests needed for effective use of AGT is Ω(d lnn) [11], which is theoretically optimal.
The decoding algorithm is usually included in the test design. For NAGT, Porat and Rothschild [15]
first proposed explicit non-adaptive constructions using O(d2 lnn) tests with no efficient (sublinear to n)
decoding algorithm. To have an efficient decoding algorithm, says poly(d, lnn), while keeping the number
of tests as small as possible, says O(d1+o(1) ln1+o(1) n), several schemes have been proposed [16]–[19].
Using probabilistic methods, Cai et al. [20] required only O(d ln d·lnn) tests to find defective items in time
O(d(lnn+ln2 d)). Recently, Bondorf et al. [21] presented a bit mixing coding that achieves asymptotically
vanishing error probability with O(d log n) tests to identify defective items in time O(d2 log d · log n) as
n→∞. For further reading, we recommend readers to refer to the survey in [22].

From the genesis of TGT, Damaschke [2] showed that the set of defective items can be identified with
up to g false positives (i.e., negative items are identified as defective items) and g false negatives (i.e.,
defective items are identified as negative items) by using

(
n
u

)
non-adaptive tests. Chen et al. [3] gave an

upper bound on the number of tests: t(n, d, u; z] = O
(
z
(
d+u
u

)u (d+u
d

)d
(d+ u) ln n

d+u

)
, where b(z−1)/2c

is usually referred to as the maximum number of errors in the test outcomes. Cheraghchi [5] asserted that
this bound is not optimal. Therefore, he reduced it to O(dg+2 ln(n/d) · (8u)u) = O(dg+2 ln(n/d)) tests
under the assumption that u is constant, which is asymptotically optimal. When d = ` + u, Ahlswede
et al. [23] gave an upper bound on the number of tests, which is O(u22u log n). They also considered
the case d 6= ` + u; however, the bound on the number of tests has no constructive approximations for
inference.

There have been a few studies on decoding algorithms for NATGT with a gap and with the “for all” or
“for each” model. By using models for the gap and considering the “for each” model, Chan et al. [7] set
that the number of defective items to exactly d, u = o(d), and used O

(
ln 1

ε
· d
√
u lnn

)
tests to identify

the defective items in time O(n lnn + n ln 1
ε
), which is linear to the number of items, where ε ∈ (0, 1).

Recently, by setting d = O(nβ) for β ∈ (0, 1) and u = o(d), Reisizadeh et al. [24] use Θ(
√
ud ln3 n)

tests to identify all defective items in time O(u1.5d ln4 n) whp with the aid of a O(u lnn)×
(
n
u

)
look-up

matrix, which is unfeasible when n or u is large. To the best of our knowledge, the first and only work
to tackle the “for all” model in NATGT with a decoding algorithm is that by Chen and Fu [8]. They
proposed schemes for finding the defective items using t(n, d− `, u; z] tests in time O(nu lnn). However,
the decoding time becomes impractical as n or u increases.

We consider here the potential use of threshold group testing as a tool to tackle the problems in designing
tests for detecting viral infections [1], [14], [25] and chemical screening [2]. Damaschke [2] introduced
threshold group testing with some potential applications for chemical screening, without presenting a
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concrete application. Back to the work of Dorfman [1], even for standard blood tests, the uncertainty in
deciding the outcome of a test on a pool of blood samples remains problematic in practice. As mentioned
in the first paragraph of this section, the outcome of a test on a pool of blood samples is positive if the
pool contains at least one syphilitic sample and negative otherwise. However, in practice, before deciding
the outcome of a test, we must get a reference value associated with the test. A next procedure is to set
a threshold such that the outcome of a test is positive if its reference value is larger than or equal to the
threshold and negative otherwise. Due to the presence of impurities in blood sample pools, it is difficult
to set a unique threshold. Dorfman suggested setting it to be the average of the impurities in the separate
samples. This would result in three ranges for the threshold: positive, negative, and inconclusive. If the
threshold is in the positive (negative) range, the outcome of a test is positive (negative) if its reference
value is larger (smaller) than or equal to the threshold. If the threshold is in the inconclusive range, it is
uncertain to decide whether the test outcome is positive or negative. This is exactly what TGT with a gap
tries to capture. In 2014, Emad and Milenkovic [25] introduced “semi-quantitative group testing” (SQGT)
to tackle a model for quantitative polymerase chain reaction (qPCR) tests. Since TGT is a special case
of SQGT, it can also be used in qPCR tests. The work of Gabrys et al. [14] motivated the application of
TGT to reverse transcription PCR (RT-PCR) or quantitative PCR (qPCR) tests for viral infections such as
Covid-19. The fluorescence values captured by the PCR process has different levels, and again one can
assign a positive range, a negative range, and an inconclusive range in a manner similar to the work of
Dorfman.

A. Contributions
The focus of this work is TGT with a gap; i.e., g = u− `− 1 > 0. Note that the results here are also

applicable to the no-gap case, i.e., g = 0; however, the no-gap case should be treated separately to attain
efficient solutions, as explained in [6], [9], [10].

The first contribution, which is summarized in Theorem 3, is correction of the decoding complexity
analysis by Chen and Fu [8]. Their inaccurate analysis in decoding complexity resulted in much smaller
decoding complexity than the actual one.

The second contribution is a better exact upper bound on the number of tests of (n, d, u; z]-disjunct
matrices (defined later). We significantly reduce the upper bound on the number of tests for constructing
disjunct matrices compared with the work of Chen et al. [3]. The basic idea is that instead of using a
hypergraph to generate a disjunct matrix as Chen et al. did, we directly generate a random disjunct matrix.
This improvement paves the way to improved results not only in group testing, but also in other fields
such as graph learning [26] and cover-free family construction [27].

The third and fourth contributions are a reduced exact upper bound on the number of tests and a
reduced asymptotic bound on the decoding time for identifying defective items in a noisy setting on test
outcomes compared with the state-of-the-art work of Chen and Fu [8]. The number of tests is directly
reduced by using a better upper bound on the number of tests (the second contribution). The basic idea
for reducing decoding time is to pick subsets of potential defectives such that each subset contains at
least `+ 1 defectives and then return the union of these subsets as an approximate defective set. To attain
a better approximate defective set (at the cost of a longer decoding time), the approximate defective set
derived as described above is taken as the input to the existing algorithm in [8].

Suppose there are up to b(z − 1)/2c erroneous outcomes. Let S ′ be the approximate defective set
returned by decoding procedure. Two sets S \ S ′ and S ′ \ S are referred to as the sets of false negatives
and false positives, respectively. Chen and Fu [8] use t(n, d− `, u; z] = O

(
z
(
k
u

)u ( k
d−`

)d−`
k ln n

k

)
tests

to recover a set S ′ with |S ′ \ S| ≤ g and |S \ S ′| ≤ g, where k = d− `+ u. By using h(n, d− `, u; z] =

O
((

1 + z
α

)
·
(
k
u

)u ( k
d−`

)d−`
k ln n

k

)
tests where k = d− ` + u and α = k ln en

k
+ u ln ek

u
, we can recover

a set S ′ close to the true defective set S as follows:
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run a proposed decoding algorithm

run Chen-Fu’s decoding algorithm [8]

𝑡 𝑛, 𝑑 − ℓ, 𝑢; 𝑧 tests ℎ 𝑛, 𝑑 − ℓ, 𝑢; 𝑧 tests

use hypergraph [3] randomly generate tests

improved upper bound

𝑛 items

𝑆′ with
𝑆′ ∖ 𝑆 ≤ 𝑔𝑤 and 𝑆 ∖ 𝑆′ ≤ 𝑔

𝑆′ with
𝑆′ ∖ 𝑆 ≤ 𝑔 and 𝑆 ∖ 𝑆′ ≤ 𝑔

𝑆′′ with
𝑆′′ ∖ 𝑆 ≤ 𝑔 and 𝑆 ∖ 𝑆′′ ≤ 2𝑔

ℎ 𝑛, 𝑑 − ℓ, 𝑢; 𝑧 tests

Theorem 
4

Theorem 
7

Theorem 
8

Theorem 
6

Fig. 2: Flow chart illustrating how contributions were attained in this work (excluding Theorem 3).
Flow is from top to bottom. Each output can be reached by following consistent arrow color. To avoid
misunderstanding, S ′′ is used instead of S ′ for Theorem 8. Both notations represent approximate defective
sets recovered after running decoding algorithms. Set S is the true defective set. Parameters t(n, d −
`, u; z], h(n, d− `, u; z], and w are defined in Table I.

1) |S ′ \ S| ≤ g and |S \ S ′| ≤ g.
2) |S ′ \ S| ≤ gw and |S \ S ′| ≤ g, where w =

(⌊
|S|
`+1

⌋
+ u− 1

)
g.

3) |S ′ \ S| ≤ g and |S \ S ′| ≤ 2g.
The decoding complexities of these three cases are always smaller than the one (after correction)

proposed by Chen and Fu [8].
The last contribution is a simulation for previous work and our proposed theorems. The results demon-

strate the superiority of our proposed theorems over previous ones and validate the arguments presented
here.

The contributions are summarized in Theorems 3, 4, 6, 7, and 8 and illustrated in Fig. 2 (except
Theorem 3). The ovals, lines, parallelograms, and rectangles represent start or end point, connectors
showing relationships between the representative shapes, inputs or outputs, and processes, respectively.
The dash-dot line represents a comment on the representative shapes. The blue arrows represent the
previous schemes while the other arrows represent our proposed theorems.

B. Comparison
The one proposed theorem for the number of tests and three proposed non-adaptive algorithms are

compared with previous ones in Table I. Our proposed algorithms are error-tolerant and their decoding
algorithms are deterministic. Note that Ahlswede et al. [23] also considered the case d 6= `+ u; however,
the bound on the number of tests has no constructive approximations for easy inference. Therefore, we
do not include that bound in Table I for easy comparison.
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Scheme No. of
defectives Thresholds No. of

items (n)
Model on

gap interval
Error

tolerance
Number of tests

t
Decoding time

(Decoding complexity)

Defective
set

recovered

Decoding
type

Ahlswede et al. [23] d = `+ u ` < u ≤ d ≥ d No × O(u22u logn) × × ×

Chen et al. [3] ≤ d ` < u ≤ d ≥ d No z
t(n, d− `, u; z] =

O

(
z
(
k
u

)u ( k
d−`

)d−`
k ln n

k

)
× × ×

Cheraghchi [5] ≤ d ` < u ≤ d ≥ d No O
(
pd2 log n

d
(1−p)2

)
O

(
dg+2 ln n

d
(1−p)2 · (8u)u

)
× × ×

Proposed 0
(Theorem 4) ≤ d ` < u ≤ d ≥ (d+u)2

u
No z

h(n, d− `, u; z]
= O

((
1 + z

α

)
·(

k
u

)u ( k
d−`

)d−`
k ln n

k

) × × ×

Chan et al. [7] d = o(n) ` < u = o(d) ω(d)
Bernoulli

Linear × O
(

ln 1
ε
· d
√
` lnn

)
O(g2d lnn+ d ln 1

ε
)

O(n lnn+ n ln 1
ε
)

O(g2n lnn+ n ln 1
ε
)

S′ ≡ S Rnd.

Reisizadeh et al. [24]
d = O(nβ)

for
0 < β < 1

` < u = o(d) O(d1/β) Bernoulli × Θ(
√
ud ln3 n)

O(u1.5d ln4 n)
with a O(u lnn)×

(
n
u

)
look-up matrix

S′ ≡ S Rnd.

Chen and Fu [8]
(more accurate in Theorem 3) ≤ d ` < u ≤ d ≥ (d+u)2

u
No z t(n, d− `, u; z]

O
(
t(n, d− `, u; z]× u

((
n
u

)
+(d− u)

(
n−u
g+1

)(
d−1
g

)(
d
u

))) |S′ \ S| ≤ g
|S \ S′| ≤ g Det.

Proposed 1
(Theorem 6) ≤ d ` < u ≤ d ≥ (d+u)2

u
No z h(n, d− `, u; z]

O
(
h(n, d− `, u; z]× u

((
n
u

)
+(d− u)

(
n−u
g+1

)(
d−1
g

)(
d
u

))) |S′ \ S| ≤ g
|S \ S′| ≤ g Det.

Proposed 2
(Theorem 7) ≤ d ` < u < d ≥ e2(d+u)2

u
No z h(n, d− `, u; z] O

(
h(n, d− `, u; z] · u

(
n
u

)) |S′ \ S| ≤ gw
|S \ S′| ≤ g Det.

Proposed 3
(Theorem 8) ≤ d ` < u < d ≥ e2(d+u)2

u
No z h(n, d− `, u; z]

O
(
h(n, d− `, u; z] · u ·

((
n
u

)
+(d− u)

(
w+d−u
g+1

)(
d−1
g

)(
d
u

))) |S′ \ S| ≤ g
|S \ S′| ≤ 2g

Det.

TABLE I: Comparison of proposed theorems with previous ones. A × symbol means that the criterion
does not hold for that scheme. The terms “Randomized” and “Deterministic” are abbreviated to “Rnd.”
and “Det.”. Sets S ′ and S are the recovered defective set and true defective set, respectively. We define
k = d − ` + u, α = k ln en

k
+ u ln ek

u
, w = (b|S|/(`+ 1)c+ u− 1) g, and 0 ≤ p < 1. Parameters

t(n, d− `, u; z] and h(n, d− `, u; z] are defined in rows 2 and 4 as well as in (2) and (6), respectively.

1) Number of tests: When there are no models for the gap g, the upper bound on the number of
tests with our proposed theorems is smaller than with the ones proposed by Chen and Fu [8] and Chen
et al. [3]. Note that the upper bounds on the number of tests with Chen and Fu’s scheme and Chen
et al.’s scheme are equal, and so are our proposed theorems. The number of tests O

(
dg+2 ln n

d

(1−p)2 · (8u)u
)

with the scheme proposed by Cheraghchi [5] can be reduced to O
(
dg+2 ln n

d

(1−p)2

)
as u is a constant; i.e., the

multiplicity (8u)u can be removed because it is constant. It is essentially the optimal asymptotic number
of tests. However, Cheraghchi [5] does not focus on the finite length regime and refining the bounds for
that as well as the algorithmic recovery problem. When d = ` + u, a similar number of tests, which
is O(u22u log n), is attained by Ahlswede et al. [23]. The big O notation is not useful in practice for
this case because this multiplicity is extremely large and should not be removed. For example, we have
(8u)u = 220 = 1, 048, 576 when u = 4 and (8u)u ≥ 102, 400, 000 when u ≥ 5. Therefore, in terms
of asymptotics, the number of tests with the scheme proposed by Cheraghchi is good as u is constant,
although it is extremely large in practice.

The number of tests could be significantly reduced by setting more conditions on g, u, and d, but
such conditions would likely make any proposed scheme impractical. Moreover, the previous schemes
that followed this approach do not take into account erroneous outcomes. When the Bernoulli model
is applied to the gap, i.e., the number of defectives in a test is between the thresholds, the outcome is
positive/negative with probability 0.5. Setting u = o(d) and error precision ε > 0, Chan et al. [7] achieved
a small number of tests O

(
ln(1/ε) · d

√
` lnn

)
while Reisizadeh et al. [24] attained Θ(

√
ud ln3 n) tests.

When a linear model is applied to the gap, i.e., the number of defectives in a test is between the thresholds,
the probability of a positive outcome linearly increases with the number of defectives. The number of
tests with a linear model is O(g2n lnn+ n ln(1/ε)) [7].

Once g = 0, D’yachkov et al. [9] and Cheraghchi [5] show that it is possible to obtain an optimal
bound on the number of tests, i.e., O (d2 lnn) tests, when u is a constant. Since the objective of this work
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is to consider the case g > 0, we recommend readers, who are interested in the case g = 0, to [10] for
further reading.

2) Decoding time: Let S ′ and S be the recovered defective set and the true defective set. For threshold
group testing with gap g, S ′ and S are indistinguishable if |S ′ \ S| ≤ g and |S \ S ′| ≤ g. Nevertheless,
if a model is applied to the gap, S ′ ≡ S can be attained with some probability. With this approach, the
fastest decoding was at with the scheme of Reisizadeh et al. [24]: O(u1.5d ln4 n). However, this scheme
is based on the assumption that ` < u = o(d), that the Bernoulli model is applied to the gap, and that
an auxiliary look-up matrix of size O(u lnn)×

(
n
u

)
is stored somewhere. The need for a look-up matrix

makes this scheme an impractical solution. For example, if n = 106 and u = 5, the number of columns
in the look-up matrix is more than 8.3 octillion (8.3 × 1027). Moreover, n and u are more likely larger
in practice. The scheme of Chan et al. [7] attains a near-optimal decoding time: O

(
ln 1

ε
· d
√
` lnn

)
or

O(g2d lnn+ d ln 1
ε
) for ε > 0. However, this decoding time is attained only under certain constraints: the

Bernoulli or a linear model is applied to the gap, n and d = o(n) are large enough, and ` = o(d). This
scheme is thus also likely impractical.

The conditions on the gap and on n, `, u, and d make the schemes proposed by Chan et al. [7] and
Reisizadeh et al. [24] impractical. Like Chen and Fu [8], we consider the case in which there are no
constraints on the gap and ` < u ≤ d < n. Our decoding algorithms are deterministic. With the goal of
attaining |S ′ \ S| ≤ g and |S \ S ′| ≤ g, the number of tests and the decoding time with our proposed
algorithms (summarized in Theorems 6, 7, 8) are much lower than the one proposed by Chen and Fu [8]
(summarized in Theorem 3).

There are two terms in the decoding complexity of Theorem 6 (in Proposed 1):
(
n
u

)
and (d−u)

(
n−u
g+1

)(
d−1
g

)(
d
u

)
.

To remove the second term, we relax the condition on |S ′\S| from |S ′\S| ≤ g to |S ′\S| ≤ wg, where w =(⌊
|S|
`+1

⌋
+ u− 1

)
g. This reduces the decoding complexity of Theorem 6 to O

(
h(n, d− `, u; z]× u

(
n
u

))
,

which is significantly less than the original one in Theorem 6. This result is summarized in Theorem 7
(in Proposed 2).

However, it is clear that the condition |S ′ \ S| ≤ wg in Theorem 7 is not as tight as the condition
|S ′ \ S| ≤ g in Theorem 6. To remedy this drawback, we derived Theorem 8 (in Proposed 3), which
slightly increases the decoding complexity while attaining the conditions |S ′ \ S| ≤ 2g and |S \ S ′| ≤ g.

II. PRELIMINARIES

A. Notations
For consistency, we use capital calligraphic letters for matrices, non-capital letters for scalars, bold

letters for vectors, and capital letters for sets. All matrix and vector entries are binary. The frequently
used notations are listed in Table II.

B. Problem definition
We index the population of n items from 1 to n. Let [n] = {1, 2, . . . , n} and S be the defective set,

where |S| ≤ d. A test is defined by a subset of items P ⊆ [n]. A pool with a negative (positive) outcome
is called a negative (positive) pool. The outcome of a test on a subset of items is positive if the subset
contains at least u defective items, is negative if the subset contains up to ` defective items, and arbitrary
otherwise. Formally, the test outcome is positive if |P ∩ S| ≥ u, negative if |P ∩ S| ≤ `, and arbitrary if
` < |P ∩ S| < u. This model is denoted as (n, d, `, u)-TGT. In addition, g = u− `− 1 is the gap.

We can model non-adaptive (n, d, `, u)-TGT as follows. A t×n binary matrix T = (tij) is defined as a
measurement matrix, where n is the number of items and t is the number of tests. Vector x = (x1, . . . , xn)T

is the binary representation vector of n items, where |x| =
∑n

i=1 xi ≤ d. An entry xj = 1 indicates that
item j is defective, and xj = 0 indicates otherwise. The jth item corresponds to the jth column of the
matrix. An entry tij = 1 naturally means that item j belongs to test i, and tij = 0 means otherwise. The
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Notation Description
n Number of items
d Maximum number of defective items

x = (x1, . . . , xn)T Binary representation of n items

`
Lower bound in
non-adaptive (n, d, `, u)-TGT model

u
Upper bound in
non-adaptive (n, d, `, u)-TGT model

g = u− `− 1 Gap between ` and u

S = {j1, j2, . . . , j|S|}
Set of defective items;
cardinality of S is |S| ≤ d

N = [n] = {1, . . . , n} Set of n items

⊗`,u
Operation related to non-adaptive
(n, d, `, u)-TGT (to be defined later)

Ti,∗ Row i of matrix T
T∗,j Column j of matrix T
Mi,∗ Row i of matrix M
M∗,j Column j of matrix M

TABLE II: Notations frequently used in this paper.

outcome of all tests is y = (y1, . . . , yt)
T , where yi = 1 if test i is positive and yi = 0 otherwise. The

procedure used to get outcome vector y is called encoding. The procedure used to identify defective items
from y is called decoding. Outcome vector y is given by

y = T ⊗`,u x =

T1,∗ ⊗`,u x...
Tt,∗ ⊗`,u x

 =

y1...
yt

 , (1)

where ⊗`,u is a notation for the test operation in non-adaptive (n, d, `, u)-TGT; namely, yi = Ti,∗⊗`,ux = 1
if
∑n

j=1 xjtij ≥ u, yi = Ti,∗⊗`,ux = 0 if
∑n

j=1 xjtij ≤ `, and yi = Ti,∗⊗`,ux = {0, 1} if ` <
∑n

j=1 xjtij <
u, for i = 1, . . . , t.

Our objective is to find an efficient encoding and decoding scheme with non-adaptive approach to
identify up to d defective items in non-adaptive (n, d, `, u)-TGT. Precisely, our task is to minimize the
number of rows in matrix T and the time for recovering x from y by using T .

C. Disjunct matrices
Disjunct matrices are a powerful tool to tackle the threshold group testing problem [5], [8], [10].

They were first introduced by Kautz and Singleton [28] as superimposed codes and then generalized
by Stinson and Wei [27] and D’yachkov et al. [29]. The support set for vector v = (v1, . . . , vw) is
supp(v) = {j | vj 6= 0}. The formal definition of a disjunct matrix is as follows.

Definition 1. An m× n binary matrix M is called an (n, d, r; z]-disjunct matrix if, for any two disjoint
subsets S1, S2 ⊂ [n] such that |S1| = d and |S2| = r, there exists at least z rows in which there are all 1’s
among the columns in S2 while all the columns in S1 have 0’s, i.e.,

∣∣∣⋂j∈S2
supp (M∗,j)

∖⋃
j∈S1

supp (M∗,j)
∣∣∣ ≥

z. Parameter b(z − 1)/2c is usually referred to as the error tolerance.

Matrix M can be illustrated as follows.
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M =


. . .
. . .
. . .
. . .
. . .
. . .

r︷ ︸︸ ︷
. . . . . .
1 1
. . . . . .
1 1
. . . . . .
. . . . . .

. . .

. . .

. . .

. . .

. . .

. . .

d︷ ︸︸ ︷
. . . . . .
0 0
. . . . . .
0 0
. . . . . .
. . . . . .

. . .

. . .

. . .

. . .

. . .

. . .


the 1st
specific row

the zth
specific row

Chen et al. [3] gave an upper bound on the number of rows for (n, d, u; z]-disjunct matrices as follows.

Theorem 1. [3, Theorem 3.2] For any positive integers d, u, z, and n with k = d + u ≤ n, there exists
a t× n (n, d, u; z]-disjunct matrix with

t(n, d, u; z] = z

(
k

u

)u(
k

d

)d [
1 + k

(
1 + ln

(n
k

+ 1
))]

= O

(
z

(
k

u

)u(
k

d

)d
k ln

n

k

)
= O(z · t(n, d, u; 1]). (2)

III. REVIEW AND ANALYSIS OF CHEN AND FU’S WORK

A. Preliminaries
To clarify the basis of our proposed algorithms, we review Chen and Fu’s work [8] which is the first

and only work tackling the “for all” model in NATGT with a gap and with a decoding algorithm. They
proposed schemes for finding the defective items using t(n, d− `, u; z] tests in time O(nu lnn). However,
the decoding time becomes impractical as n or u increases. The intuition of Chen and Fu algorithm is to
initialize an approximate S ′ of size u such that the outcome of the test on S ′ is positive. The algorithm
then proceeds to increase the size of S ′ such that the cardinality of S ′ is not larger than the maximum
number of defectives, i.e., d, and the outcome of a test on every subset of u items in S ′ is positive.

To facilitate the problem of identifying defectives, the graph search problem is first introduced. Given
a vertex set V = {1, . . . , n}, the goal is to reconstruct a hidden graph H defined on V by asking queries
in the following format: for U ⊆ V , the query is “Does a complete graph induced by U contain any edge
of H?” In other words, a pool containing all vertices in U is positive if at least one edge of H is also an
edge of the complete graph induced by U .

Given a finite set V , a hypergraph H = (V, F) is a family F = {E1, E2, . . . , Em} of subsets of V . The
elements of V are called vertices, and the subsets Ei’s are the edges of the hypergraph H.

A hypergraph is called a u-hypergraph if each edge consists of exactly u vertices. A subset of a set is
called a u-subset if it contains exactly u elements of the set. Let W be a subset of V . A hypergraph is
u-complete with respect to W if and only if (iff) every u-subset of W is an edge of the hypergraph.

Recall that our objective is to identify a set of defectives S from a given set of items N = [n]. Let S ′

be a set such that |S ′ \ S| ≤ g and |S \ S ′| ≤ g. Note that there is more than one set S ′ satisfying these
properties. Let [n] = {1, 2, . . . , n} be vertex set V . Suppose that a set of edges F contains all u-subsets
of S and a fraction of all or all u-subsets of every S ′. We can convert threshold group testing with a gap
into the problem of reconstructing a hidden graph H in H = (V, F) that is u-complete with respect to
some S ′.
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B. Main idea
The main idea is to construct a family F such that, for any subset X ∈ F, |X| = u, |X ∩ S| ≥ ` + 1

and every u-subset X+ ⊆ S must be in F. An approximate defective set S ′ is then recovered by using F,
where |S ′ \ S| ≤ g and |S \ S ′| ≤ g. Note that S ′ is the best defective set that can be recovered [2].

To construct F, an indicator of “false negatives” is introduced. We say that a set X of the columns
in a matrix appears in a row if every column in X has a 1 in the row. For a subset X of the columns
in matrix M, we define tM0 (X) to be the number of negative pools in which all columns in X appear.
Attaining S ′ is done by increasing the size of an approximate defective set S ′ from u until the properties
|S ′ \ S| ≤ g and |S \ S ′| ≤ g hold. In other words, the number of false positives and false negatives are
up to g.

Given measurement matrix M, Chen and Fu supposed that y is the outcome vector with up to e
erroneous outcomes in non-adaptive (n, d, `, u)-TGT. By setting M as an (n, d − `, u; 2e + 1]-disjunct
matrix, the authors obtained a decoding algorithm in which an approximate set S ′ is attained, as shown
in Algorithm 1. Step 1 is to construct a family F and a hypergraph H = (V, F). Step 2 is to attain S ′ by
using H, as illustrated in Fig. 3. More precisely, the algorithm first initializes set S1 consisting of the u
vertices belonging to an edge of the family F. A new set Si+1 is then created such that |Si+1| = |Si|+ 1.
Set Si+1 is made equal to set (Si∪Ai)\Bi by selecting set Ai of g+ 1 elements in V \Si and set Bi of g
elements in Si such that H is u-complete with respect to (Si∪Ai)\Bi. It is obvious that |Si+1| = |Si|+1.
This process stops once either Si is not extendable or |Si| ≥ d. If the process stops when i = m, S ′ is
set to Sm.

𝑆1 𝑆2 = 𝑆1 ∪ 𝐴1 ∖ 𝐵1

𝑆

…

𝐵1 𝐴1

𝑆′ = 𝑆𝑚
= 𝑆𝑚−1 ∪ 𝐴𝑚−1 ∖ 𝐵𝑚−1

𝑉

𝑆1

𝑆𝑉

𝐵𝑚−1 𝐴𝑚−1𝑆𝑚−1

𝑆𝑉 𝑆𝑉 𝑆𝑉

Initialization Find 𝐴1, 𝐵1 Create 𝑆2 Find 
𝐴𝑚−1, 𝐵𝑚−1

Create 𝑆𝑚 then 
set 𝑆′ = 𝑆𝑚

…

Fig. 3: Illustration of finding an approximate defective set S ′ of the defective set S such that |S ′ \S| ≤ g
and |S \ S ′| ≤ g for Algorithm 1. We set g = 7, u = 10, and ` = u− g − 1 = 2.

By using an (n, d − `, u; z = 2e + 1]-disjunct matrix and Algorithm 1, we can attain an approximate
defective set S ′ as follows.

Theorem 2. [8, Theorem 4.4] For an (n, d, `, u)-TGT model with at most e erroneous outcomes, there
exists a non-adaptive algorithm that successfully identifies some set S ′ with |S ′ \S| ≤ g and |S \S ′| ≤ g,
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Algorithm 1 [Algorithm 2 [8]] Decoding1(y,M): Decoding procedure for non-adaptive (n, d, `, u)-TGT
with up to e erroneous outcomes.
Input: Outcome vector y, a (n, d− `, u; z = 2e+ 1]-disjunct matrix M.
Output: Set of defective items S ′ s.t. |S ′ \ S| ≤ g and |S \ S ′| ≤ g.

1: Construct a hypergraph H = (V, F), where V = [n] is the vertex set of n items and a u-subset X ⊆ [n]
is an edge in F iff tM0 (X) ≤ e.

2: We want to establish increasing vertex-sets Si’s, |S1| < |S2| . . . < |Sm|, such that the hypergraph H
is u-complete with respect to each Si. As an initial S1, we may choose all u vertices of an arbitrary
edge. To find Si+1 for i ≥ 1, we check all possible cases to obtain some (g+1)-subset Ai in V (H)\Si
and a g-subset Bi in Si such that H is u-complete with respect to (Si∪Ai) \Bi. If such a pair Ai, Bi

exists, then set Si+1 = (Si∪Ai)\Bi. Continue this process till either Sm is not extendable or |Si| ≥ d.
Output the set S ′ = Sm.

using no more than t(n, d− `, u; z = 2e+ 1] tests. Moreover, the decoding complexity is

t(n, d− `, u; z]× u
(
n

u

)
+ (d− u)

(
n− u
g + 1

)(
d− 1

g

)(
d

u

)
(3)

= O

(
z

(
k

u

)u(
k

d− `

)d−`
k ln

n

k
· u
(
n

u

))
,

where k = d− `+ u.

The complexity of the theorem above is attained by taking the sum of the complexities of Steps 1
and 2. Step 1 is done in time t(n, d− `, u; z]× u

(
n
u

)
. Step 2 is done in time (d− u)

(
n−u
g+1

)(
d−1
g

)(
d
u

)
, which

is inaccurate in general. A detailed analysis is given in the Appendix. Here we present a more accurate
version of Theorem 2.

Theorem 3 (A more accurate version of Theorem 4.4 in [8]). For an (n, d, `, u)-TGT model with at most
e erroneous outcomes, there exists a non-adaptive algorithm that successfully identifies some set S ′ with
|S ′ \ S| ≤ g and |S \ S ′| ≤ g using no more than t(n, d− `, u; z = 2e+ 1] tests. Moreover, the decoding
complexity is

O

(
t(n, d− `, u; z]× u

((
n

u

)
+(d− u)

(
n− u
g + 1

)(
d− 1

g

)(
d

u

)))
(4)

=O

(
z

(
k

u

)u(
k

d− `

)d−`
k ln

n

k

×u
((

n

u

)
+ (d− u)

(
n− u
g + 1

)(
d− 1

g

)(
d

u

)))
,

where k = d− `+ u.

C. Example for Algorithm 1
In this section, we demonstrate Algorithm 1 by setting n = 6, d = 4, ` = 0, u = 2, and z = 1. This

means that g = u− `− 1 = 1 and e = 0. We assume that the defective items are 1, 2, 4, and 5; i.e., the
input vector is x = (1, 1, 0, 1, 1, 0)T . The true defective set is therefore S = {1, 2, 4, 5} = supp(x). The
(n = 6, d− ` = 4, u = 2; z = 1]-disjunct matrix M is as follows:
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M =



1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1
0 1 1 0 0 0
0 1 0 1 0 0
0 1 0 0 1 0
0 1 0 0 0 1
0 0 1 1 0 0
0 0 1 0 1 0
0 0 1 0 0 1
0 0 0 1 1 0
0 0 0 1 0 1
0 0 0 0 1 1
1 0 1 0 1 0
0 1 1 0 1 1
0 0 1 1 0 1
1 0 1 1 0 1
1 0 1 0 0 1



,y =M⊗0,2 x =



1
1
1
1
0
1
1
1
0
1
1
0
1
0
1
1
1
0
1
0



. (5)

We assume that the observed vector is y, as in (5). Algorithm 1 proceeds as follows. In Step 1,
hypergraph H = (V, F) is constructed with the set of vertexes V = [6] = {1, 2, 3, 4, 5, 6}. A search is
made for all 2-subsets X ∈ V in order to form the set of edges F such that tM0 (X) ≤ e = 0. From (5),
we get F = {{1, 2}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 5}, {4, 5}, {5, 6}}1.

Step 2 starts with an initial 2-subset S1 = {1, 2}. All possible cases are checked to obtain some 2-subset
A1 (g+1 = 2) in V \S1 = {3, 4, 5, 6}, which is some element of {{3, 4}, {3, 5}, {3, 6}, {4, 5}, {4, 6}, {5, 6}},
and a 1-subset B1 (g = 1) in S1, which is some element of {{1}, {2}}, such that H is 2-complete
with respect to (S1 ∪ A1) \ B1. Since A1 = {3, 5} and B1 = {1} ensure that the condition holds, set
S2 = (S1 ∪ A1) \B1 = {2, 3, 5}.

Since |S2| = 3 < 4 = d, we continue Step 2 by choosing a 2-subset A2 ⊆ V \ S2 = {1, 4, 6}
and a 1-subset B2 ⊆ S2. The lists of potential subsets for A2 and B2 are {{1, 4}, {1, 6}, {4, 6}} and
{{2}, {3}, {5}}, respectively. We choose A2 = {1, 4} and B2 = {3} because H is 2-complete with
respect to (S2 ∪ A2) \ B2. Set S3 = (S2 ∪ A2) \ B2 = {1, 2, 4, 5}. Since |S3| = 4 ≥ 4 = d, the algorithm
stops and output S ′ = S3 = {1, 2, 4, 5}. In this case, the approximate defective set S ′ is identical to the
true defective set S.

IV. IMPROVED UPPER BOUNDS ON THE NUMBER OF TESTS FOR DISJUNCT MATRIX

In this section, we present better exact upper bounds on the number of tests compared to the one in
Theorem 1.

A. First result
The upper bound on the number of tests with Theorem 1 is large because of the multiplicity z. We

present a better upper bound on the number of tests as follows.

1We delineate this example to ensure understanding. Since we use u = 2, hypergraph H becomes a normal graph in which an edge
consists of two vertices. However, once u ≥ 3, an edge in H consists of at least three vertices. Graph H is thus no longer a normal graph.
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Theorem 4. Let 2 ≤ u ≤ d < k = d+ u ≤ n be integers with (d+ u)2/u ≤ n. Set α = k ln en
k

+ u ln ek
u

.
For any positive integer z, there exists an h× n (n, d, u; z]-disjunct matrix with

h(n, d, u; z] = O

((
1 +

z

α

)
·
(
k

u

)u(
k

d

)d
k ln

n

k

)
. (6)

Proof. Consider a randomly generated h×n matrix G = (gij)1≤i≤h,1≤j≤n in which each entry gij is assigned
to 1 with probability p and to 0 with probability 1− p. For any pair of disjoint subsets S1, S2 ⊂ [n] such
that |S1| = u and |S2| = d, we denote the event that for a row, there are 1’s among the columns in S1

and all 0’s among the columns in S2 on the same row by a good event. The probability that the good
event happens is:

q = pu(1− p)d. (7)

Set α = k ln en
k

+ u ln ek
u

and β = 1 − 2/α. It is obvious that 0 < α, β. We then set z = (1 − δ)qh,
where 0 < δ < 1. We will later prove that there always exists δ which depends on n, u, d, and z such
that z = (1− δ)qh. For a pair of disjoint subsets S1, S2 ⊂ [n] such that |S1| = u and |S2| = d, let Xi = 1
be an event that a good event occurs at row i and Xi = 0 be an event that a good event does not occur
at row i. It is obvious that Pr[Xi = 1] = q, Pr[Xi = 0] = 1− q, and E[Xi] = q. Let X =

∑h
i=1 Xi denote

the number of the good events happen for h rows. We get µ = E[X] =
∑h

i=1E[Xi] = qh.
By using Chernoff’s bound, for fixed S1 and S2, the probability that a good event occurs for up to z

rows among h rows is

Pr[X ≤ z] = Pr[X ≤ (1− δ)µ]

≤ exp

(
−δ

2µ

2

)
= exp

(
−δ

2qh

2

)
.

Using a union bound, the expected value of the number of good events in which each good event occurs
for no more than z rows among h rows for all disjoint subsets S1, S2 ⊂ [n] with |S1| = u and |S2| = d,
i.e., the probability that G is not an (n, d, u; z]-disjunct matrix, is at most

g(p, h, u, d, n) =

(
n

d+ u

)(
d+ u

u

)
Pr[X ≤ z]

≤
(
n

k

)(
k

u

)
exp

(
−δ

2qh

2

)
. (8)

To ensure the existence of an (n, d, u, g; z]-disjunct matrix G, one needs to find p and h such that
g(p, h, u, d, n) < 1. Set p = u

d+u
= u

k
and q = pu(1− p)d =

(
u
k

)u ( d
k

)d. We then have

g(p, h, u, d, n) ≤
(
n

k

)(
k

u

)
exp

(
−δ

2qh

2

)
< 1.

For this to hold, it suffices that(
n

k

)(
k

u

)
≤
(en

k

)k (ek

u

)u
< exp

(
δ2qh

2

)
(9)

⇐⇒ h >
2

δ2
· 1

q
·
(
k ln

en

k
+ u ln

ek

u

)
⇐⇒ >

2

δ2
·
(
k

u

)u(
k

d

)d(
k ln

en

k
+ u ln

ek

u

)
. (10)
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In the above, we have (9) because
(
a
b

)
≤
(
ea
b

)b. Since p = u
k
, from (10), if we set

h = h(n, d, u; z]

=
3

δ2
· 1

q
·
(
k ln

en

k
+ u ln

ek

u

)
=

3

δ2
· 1

q
· α, where α = k ln

en

k
+ u ln

ek

u
, (11)

=
3

δ2
·
(
k

u

)u(
k

d

)d
·
(
k ln

en

k
+ u ln

ek

u

)
,

then g(p, h, u, w, n) < 1; i.e., there exists an (n, d, u; z]-disjunct matrix of size h× n.
We now calculate δ versus n, d, u, and z. Since z = (1− δ)qh and h = 3

δ2
· 1
q
· α in (11), we have:

z = (1− δ)qh = (1− δ) · 3α

δ2
(12)

⇐⇒ zδ2 + 3αδ − 3α = 0 (13)

Since the left side is a quadratic equation of δ and δ > 0, we can derive

δ =
−3α +

√
9α2 + 12αz

2z
=

√
3α
(√

3α + 4z −
√

3α
)

2z
. (14)

Let f(x) =
√
x. We have f(x) is continuous on a closed interval [3α, 3α + 4z] and differentiable on

the open interval (3α, 3α + 4z). By using the Lagrange’s mean value theorem, then there is at least one
point b ∈ (3α, 3α + 4z) such that

f(3α + 4z)− f(3α) =
√

3α + 4z −
√

3α

= 4z · f ′(b) = 4z · 1

2
√
b

=
2z√
b
. (15)

Combine with (14), we get

δ =

√
3α
(√

3α + 4z −
√

3α
)

2z
=

√
3α

2z
· 2z√

b
=

√
3α

b
. (16)

Because b ∈ (3α, 3α + 4z), the following condition is straightforwardly attained

1

δ2
=

b

3α
∈
(

1, 1 +
4z

3α

)
. (17)

Therefore, the number of tests required is

h = h(n, d, u; z]

=
3

δ2
·
(
k

u

)u(
k

d

)d
·
(
k ln

en

k
+ u ln

ek

u

)
< 3

(
1 +

4z

3α

)
·
(
k

u

)u(
k

d

)d
·
(
k ln

en

k
+ u ln

ek

u

)
.

Since α is always larger than 4/3, 4z/(3α) is always smaller than z. It implies that the upper bound
on the number of tests in Theorem 4 is always tighter than the one in Theorem 1.
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Discussion of number of tests for TGT and CGT: With the same settings for n, d, and the maximum
number of erroneous outcomes b(z − 1)/2c, what are the similarities and differences for the number of
tests between TGT and CGT? We first transform (6):

h(n, d, u; z] = t(n, d, u; 1] +O
( z
α

)
· t(n, d, u; 1].

In Corollary 19 [17], Ngo, Porat, and Rudra show that the number of tests needed to handle b(z−1)/2c
erroneous outcomes is O(d2 log n) + O(zd) = t(n, d, 1; 1] + O

(
z

d logn

)
· t(n, d, 1; 1]. It is well known

that t(n, d, 1; 1] = O(d2 log n) is the achievable bound on the number of tests for the noiseless setting
(z = 1). The authors prove that we only need O

(
z

d logn

)
· t(n, d, 1; 1] additional tests to handle up to

b(z − 1)/2c erroneous outcomes instead of using z × t(n, d, 1; 1]. The result for Theorem 4 shares this
property. Since t(n, d, u; 1] is the achievable number of tests for the noiseless setting in TGT, we need only
O
(
z
α

)
·t(n, d, u; 1] additional tests to handle up to b(z−1)/2c erroneous outcomes instead of z×t(n, d, u; 1]

as in Theorem 1.

B. Second result
With an addition constraint on z, an alternative version of Theorem 4 can be derived to directly attain

a better upper bound on the number of tests compared with the upper bound in Theorem 1.

Theorem 5. Let 2 ≤ u ≤ d < k = d+ u ≤ n be integers with (d+ u)2/u ≤ n. Set α = k ln en
k

+ u ln ek
u

and β = 1− 2/α. For any integer z ≥ 4/β2 + 1, there exists an h× n (n, d, u; z]-disjunct matrix with

h(n, d, u; z]

=

⌊
2

δ2
·
(
k

u

)u(
k

d

)d
·
(
k ln

en

k
+ u ln

ek

u

)⌋
+ 1

=O

(
1

δ2
·
(
k

u

)u(
k

d

)d
· k ln

n

k

)

<t(n, d, u; z] = z

(
k

u

)u(
k

d

)d [
1 + k

(
1 + ln

(n
k

+ 1
))]

,

where 0 < δ ≤ β.

Proof. By using the same construction and arguments in the proof in Theorem 4 until (10), if we set

h = h(n, d, u; z]

=

⌊
2

δ2
· 1

q
·
(
k ln

en

k
+ u ln

ek

u

)⌋
+ 1

=

⌊
2

δ2
·
(
k

u

)u(
k

d

)d
·
(
k ln

en

k
+ u ln

ek

u

)⌋
+ 1

= O

(
1

δ2
·
(
k

u

)u(
k

d

)d
· k ln

n

k

)

= O

(
1

(1− δ)k ln n
k

· z
(
k

u

)u(
k

d

)d
· k ln

n

k

)
(18)

= O

(
1

(1− δ)k ln n
k

)
· t(n, d, u; z],

15



then g(p, h, u, d, n) < 1, where t(n, d, u; z] is defined in (2); i.e., there exists an (n, d, u; z]-disjunct matrix
of size h× n. Equation (18) is obtained because

2(1− δ)
δ2

·
(
k ln

en

k
+ u ln

ek

u

)
≤ z = (1− δ)qh (19)

= (1− δ)q
(⌊

2

δ2
· 1

q
·
(
k ln

en

k
+ u ln

ek

u

)⌋
+ 1

)
= Θ

(
1− δ
δ2
· k ln

n

k

)
≤ 2(1− δ)

δ2
·
(
k ln

en

k
+ u ln

ek

u

)
+ 1. (20)

We next prove that h(n, d, u; z] < t(n, d, u; z] once 0 < δ ≤ 1− 2
k ln en

k
+u ln ek

u

. Indeed, we have

h(n, d, u; z]

=

⌊
2

δ2
· 1

q
·
(
k ln

en

k
+ u ln

ek

u

)⌋
+ 1, where

1

q
=

(
k

u

)u(
k

d

)d
≤ 2

δ2
· 1

q
·
(
k ln

en

k
+ u ln

ek

u

)
+ 1

<
2

δ2
· 1

q
· 2k ln

n

k
. (21)

This equation is attained because k ln en
k

+u ln ek
u
< 2k ln en

k
as (d+u)2/u ≤ n. On the other hand, we

have

t(n, d, u; z]

=z · 1

q
·
[
1 + k

(
1 + ln

(n
k

+ 1
))]

>z · 1

q
· k ln

n

k

≥2(1− δ)
δ2

·
(
k ln

en

k
+ u ln

ek

u

)
· 1

q
· k ln

n

k
, (22)

which is derived from the condition in (19). Combining (22) and (21), we always get h(n, d, u; z] <
t(n, d, u; z] if

2

δ2
· 1

q
· 2k ln

n

k
≤2(1− δ)

δ2
·
(
k ln

en

k
+ u ln

ek

u

)
· 1

q
· k ln

n

k

⇐⇒ δ ≤1− 2

k ln en
k

+ u ln ek
u

= β.

Since 0 < δ ≤ β = 1−2/α, the quantity 2(1−δ)/δ2 ·α goes from 4/β2 to infinity. Moreover, from (19)
and (20), we have z ∈

[
2(1−δ)
δ2
· α, 2(1−δ)

δ2
· α + 1

]
, where α = k ln en

k
+ u ln ek

u
. Therefore, z can range

from d4/β2e to +∞. In other words, for any integer z ≥ 4/β2 + 1, we can find a corresponding δ in the
interval (0, β] such that z = (1− δ)qh.
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V. IMPROVED NON-ADAPTIVE ALGORITHMS FOR THRESHOLD GROUP TESTING WITH A GAP

Here we present a reduced exact upper bound on the number of tests and a reduced asymptotic bound
on the decoding time for identifying defective items in a noisy setting on test outcomes compared with
the state-of-the-art work of Chen and Fu [8].

A. First proposed algorithm
By using the construction of an (n, d− `, u; z]-disjunct matrix described in Section IV, we can reduce

the number of tests for encoding and the decoding time for decoding in TGT with a gap. From Chen
and Fu’s work [8], if we use the (n, d − `, u; z]-disjunct matrix described in Theorem 4 as the input to
Algorithm 1, the following theorem is derived:

Theorem 6. Let `, 0 < g, 2 ≤ u = `+ g + 1 ≤ d < k = d− `+ u ≤ n be integers with (d+ u)2/u ≤ n.
Set α = k ln en

k
+ u ln ek

u
. Let z be a positive integer and S be the defective set with |S| ≤ d. For an

(n, d, `, u)-TGT model with at most e = b(z − 1)/2c erroneous outcomes, there exists a non-adaptive
algorithm that successfully identifies some set S ′ with |S ′ \ S| ≤ g and |S \ S ′| ≤ g using no more than
h(n, d− `, u; z] tests, where h(n, d− `, u; z] is defined in (6). Moreover, the decoding complexity is

O

(
h(n, d− `, u; z]× u

((
n

u

)
+ (d− u)

(
n− u
g + 1

)(
d− 1

g

)(
d

u

)))
. (23)

B. Second proposed algorithm
We can see that the complexity of the decoding algorithm in the theorem above remains relatively high

due to the second operator in (23). To reduce the decoding complexity, one can relax the conditions on
|S ′ \ S| but keep the same condition on |S \ S ′|. In other words, we accept more false positives while
keeping the same condition on the maximum number of false negatives.

The main idea is to reduce the redundancy of u-subsets created by the (n, d− `, u; z]-disjunct matrix in
Algorithm 1. Since every u-subset X+ ⊆ S must be in F, the total number of such X+ is

(|S|
u

)
. In fact,

we need only up to ζ =
⌊
|S|
u

⌋
disjoint u-subsets X+s in F to form S if |S| is divisible by u. Therefore,

we can use a simple procedure, i.e., collect ζ disjoint u-subsets in F, to form S. However, it is uncertain
whether each u-subset we collected is truly a u-subset of S because it may contain only `+ 1 defective
items. Moreover, |S| may not be divisible by u. As a result, the set formed, says S ′, may not be identical
to S. To remedy this drawback, we propose adding one more step: add the remaining defective items in
S \ S ′ into S ′ until S ′ is not extendible.

The above strategy is formalized in the following theorem which is associated with Algorithm 2.

Theorem 7. Let `, 0 < g, 2 ≤ u = `+ g+ 1 < d < k = d− `+ u ≤ n be integers with e2(d+ u)2/u ≤ n.
Set α = k ln en

k
+ u ln ek

u
. Let z be a positive integer and S be the defective set with |S| ≤ d. For an

(n, d, `, u)-TGT model with at most e = b(z − 1)/2c erroneous outcomes, there exists a non-adaptive
algorithm that successfully identifies some set S ′ with |S ′ \ S| ≤

(⌊
|S|
`+1

⌋
+ u− 1

)
g ≤

(
d
`+1

+ u− 1
)
g

and |S\S ′| ≤ g using no more than h(n, d−`, u; z] tests, where h(n, d−`, u; z] is defined in (6). Moreover,
the decoding complexity is

O

(
h(n, d− `, u; z] · u

(
n

u

))
.

The proof of this theorem is divided into two parts: correctness and decoding complexity. However, we
first present visualizations that convey the essence of Algorithm 2.
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Algorithm 2 Decoding2(y,M): Decoding procedure for non-adaptive (n, d, `, u)-TGT with up to e
erroneous outcomes.
Input: Outcome vector y, an (n, d− `, u; z = 2e+ 1]-disjunct matrix M.
Output: Set of defective items S ′ s.t. |S ′ \ S| ≤

(⌊
|S|
`+1

⌋
+ u− 1

)
g and |S \ S ′| ≤ g.

1: Construct a family F such that a u-subset X ⊆ [n] is an edge in F iff tM0 (X) ≤ e, where tM0 (X) is
the number of negative pools in which all columns in X appear when using M as a measurement
matrix.

2: We first want to establish increasing vertex-sets Si’s, |S1| < |S2| . . . < |Sr|, such that Si+1 contains
exactly u items more than Si. As an initial S1, we select all u vertices of an arbitrary edge. To find
Si+1 for i ≥ 1, we check all possible cases to attain some u-subset Ai ∈ F \ {A1, . . . , Ai−1} such that
|Si ∪ Ai| = |Si| + u. If Ai exists, then set Si+1 = Si ∪ Ai. This process is continued until Sr is not
extendible.

3: We then want to establish increasing vertex-sets Si’s, |Sr+1| < |Sr+2| . . . < |Sm|, such that Si+1

contains at least one defective item more than Si. To find Si+1 for i ≥ r, we check all possible cases
to attain some u-subset Ai ∈ F \ {A1, . . . , Ai−1} such that |Si ∪Ai| ≥ |Si|+ g + 1. If Ai exists, then
set Si+1 = Si ∪ Ai. This process is continued until Sm is not extendible. Output set S ′ = Sm.

1) Visualization: Steps 2 and 3 of Algorithm 2 are depicted in Fig. 4 for n = 49, g = 7, u = 10, l =
u− g − 1 = 2, d = 17, and |S| = 17. There are many u-subsets belonging to F, but we depict only five
of them here. Step 2 proceeds as shown in the upper five images as follows. Subset S1, containing 10
defectives, selected as the initial subset. Scanning every subset of F reveals that A1 is a subset such that
|S1 ∪A1| = |S1|+ |A1| = 20. Set S2 = S1 ∪A1. The process continues until Sr consists of 13 defectives
and 7 negatives. Since there are no u-subsets Ar’s in F\{A1, . . . , Ar−1} such that |Sr∪Ar| = |Sr|+ |Ar|,
Sr is not extendible.

Step 3 proceeds as shown in the lower four images. Starting with subset Sr, we try to find a u-subset
Ar’s in F \ {A1, . . . , Ar−1} such that |Sr ∪Ar| = |Sr|+ g + 1. If Ar exists, a new subset Sr+1 = Sr ∪Ar
is attained. This process is repeated until there are no u-subsets Am’s in F \ {A1, . . . , Am−1} such that
|Sm ∪Am| ≥ |Sm|+ g + 1. In other words, Sm is not extendible. The algorithm terminates and S ′ = Sm
is attained.

2) Correctness: To prove the correctness of Algorithm 2, we first prove that after Step 1, for every
u-subset X ∈ F, X contains no more than g items not in S, i.e., |X ∩ S| ≥ ` + 1. Moreover, every
u-subset X+ ⊆ S is in F. Since the proof is identical to the proof of Lemma 4.1 in [8], we omit it here.

Since every u-subset X+ ⊆ S must be in F, there exists
⌊
|S|
u

⌋
≤ ζ ≤

⌈
|S|
u

⌉
disjoint u-subsets

X+
1 , . . . , X

+
ζ in F such that |S \ ∪ζj=1X

+
j | ≤ u− 1.

In Step 2, if another disjoint u-subset A1 ∈ F (|S1 ∩ A1| = 0) is found, set S2 = S1 ∪ A1. In general,
to find Si+1 for i ≥ 1, all possible cases are checked to attain some u-subset Ai ∈ F \ {A1, . . . , Ai−1}
such that |Si ∪Ai| = |Si|+ |Ai| = |Si|+ u. If Ai exists, i.e., Si is extendible, set Si+1 = Si ∪Ai. On the
other hand, if Sr is not extendible (Ai does not exist), we can infer that |S \ Sr| ≤ u − 1. We assume
that |S \ Sr| ≥ u. Select Ar ⊆ S \ Sr with |Ar| = u. Since Ar ⊆ S \ Sr ∈ F and |Ar ∩ Sr| = 0, we get
|Sr ∪ Ar| = |Sr|+ |Ar| = |Sr|+ u; i.e., Sr is extendible. This contradicts the assumption.

There is a special case that if |S \ Sr| ≤ `, this process stops. If |S \ Sr| ≤ `, for any Ar ∈ F \
{A1, . . . , Ar−1}, we have |Ar ∩ Sr| ≥ 1 because |Ar ∩ S| ≥ `+ 1. Therefore, there does not exist Ar ∈ F
such that |Sr ∪ Ar| = |Sr|+ u because |Sr ∪ Ar| = |Sr|+ |Ar| − |Sr ∩ Ar| ≤ |Sr|+ u− 1 < |Sr|+ u.

Because each Ai can contain exactly ` + 1 defectives in the worst case, Step 2 can run up to
⌊
|S|
`+1

⌋
times.
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𝑆1

𝑆𝑁

Initialize 𝑆1 Find 𝐴1 Create 𝑆2 Find 𝐴𝑟 Get 𝑆𝑟…
𝑆𝑁

𝑆1𝐴1 𝑆2 = 𝑆1 ∪ 𝐴1 𝑆𝑟∄𝐴𝑟 𝑆𝑟

…

𝑆𝑁 𝑆𝑁 𝑆𝑁

(a) Step 2

Find 𝐴𝑟 Create 𝑆𝑟+1 Find 𝐴𝑚 Set 𝑆′ = 𝑆𝑚…

𝑆𝑚∄𝐴𝑚 𝑆′ = 𝑆𝑚

…

𝐴𝑟𝑆𝑟

𝑆𝑁

𝑆𝑟+1 = 𝑆𝑟 ∪ 𝐴𝑟

𝑆𝑁 𝑆𝑁 𝑆𝑁

(b) Step 3

Fig. 4: Illustration of finding an approximate defective set S ′ of defective set S such that |S ′ \ S| ≤(⌊
|S|
`+1

⌋
+ u− 1

)
g and |S \ S ′| ≤ g with g = 7, u = 10, and ` = u− g − 1 = 2 for Algorithm 2.

We now consider Step 3. Subset Sm is not extendible iff there does not exist a u-subset Am ∈ F \
{A1, . . . , Am−1} such that |Sm ∪ Am| ≥ |Sm| + g + 1. We then must have |S \ Sm| ≤ g. Indeed, let us
assume that |S\Sm| ≥ g+1. Select C ⊆ S\Sm with |S| = g+1 and D ⊆ S\C with |D| = `. Such a pair
C,D always exists because |S| ≥ u = g+ 1 + `. Set Am = C ∪D. Therefore, |Sm ∪Am| ≥ |Sm|+ g+ 1
and Am ∈ F. Hence, Sm is extendible, which contradicts the assumption that Sm is not extendible.

We have |S \ Sr| ≤ u− 1 after running Step 2. It follows that Step 3 runs at most (u− 1) times, i.e.,
m− r ≤ u− 1, because Si adds at least one defective for each iteration of Step 3.

In summary, Steps 2 and 3 run up to
⌊
|S|
`+1

⌋
and (u − 1) times, respectively. Because the subset

considered at each iteration adds a u-subset having at least ` + 1 defectives and up to g negatives, we
have |S ′ \ S| ≤

(⌊
|S|
`+1

⌋
+ u− 1

)
g and |S \ S ′| ≤ g when the algorithm terminates.

3) Decoding complexity: Step 1 takes h(n, d − `, u; z] · u
(
n
u

)
time. Since every u-subset in F has at

least `+ 1 defectives and up to g = u− `+ 1 negatives, the maximum cardinality of F is:

f =
u∑

i=`+1

(
|S|
i

)(
n− |S|
u− i

)
<

u∑
i=0

(
|S|
i

)(
n− |S|
u− i

)
=

(
n

u

)
.
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Because |S ′ \ S| ≤
(⌊
|S|
`+1

⌋
+ u− 1

)
g and |S \ S ′| ≤ g, we have |S ′| ≤

(⌊
|S|
`+1

⌋
+ u− 1

)
g+ d. Since

we scan the family F up to
⌊
|S|
`+1

⌋
+ (u − 1) times in both Steps 2 and 3, |F| ≤ f , and |Si| ≤ |S ′| ≤(⌊

|S|
`+1

⌋
+ u− 1

)
g + d, the complexity of Algorithm 2 is:

h(n, d− `, u; z] · u
(
n

u

)
+

(⌊
|S|
`+ 1

⌋
+ u− 1

)((⌊
|S|
`+ 1

⌋
+ u− 1

)
g + d

)
× uf

=h(n, d− `, u; z] · u
(
n

u

)
+ us(gs+ d)f, (24)

where s =
⌊
|S|
`+1

⌋
+ (u− 1) ≤ d+ u and k = d− `+ u = d+ g + 1.

We have

us(gs+ d)f ≤ u(d+ u)(g(d+ u) + d)

(
n

u

)
< (d+ u)2(g + 1) · u

(
n

u

)
, (25)

and

h(n, d− `, u; z] · u
(
n

u

)
≥
(

1 +
d− `
u

)u(
1 +

u

d− `

)d−`
(d+ g + 1) ln

n

k
· u
(
n

u

)
≥4(g + 1)

(
1 +

d− `
u

)u(
1 +

u

d− `

)d−`
· u
(
n

u

)
, (26)

because h(n, d− `, u; z] ≥
(
1 + d−`

u

)u (
1 + u

d−`

)d−`
(d+ g + 1) ln n

k
as in Theorem 4, d ≥ u ≥ g + 1 and

ln n
k
≥ 2 (n ≥ e2(d+ u)2/u > e2(d− `+ u)). We next consider the following inequality:

(d+ u)2(g + 1) · u
(
n

u

)
≤ 4(g + 1)

(
1 +

d− `
u

)u
×
(

1 +
u

d− `

)d−`
· u
(
n

u

)
⇐⇒ d+ u ≤ 2

(
1 +

d− `
u

)u/2(
1 +

u

d− `

)(d−`)/2

For this inequality to hold, by using Bernoulli’s inequality, it suffices that

d+ u ≤ 2

(
1 +

d− `
u
× u

2

)(
1 +

u

d− `
× d− `

2

)
≤ 2

(
1 +

d− `
u

)u/2(
1 +

u

d− `

)(d−`)/2

⇐⇒ d+ u ≤ (d− `+ 2)(u+ 2)

2

≤ du

2
+ (d+ u) + 2− `(u+ 2)

2
⇐⇒ `(u+ 2) ≤ du+ 4.
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The last inequality always holds because `(u + 2) ≤ (u − 1)(u + 2) < u(u + 1) + 4 ≤ du + 4 for
d ≥ u+ 1. Combining (25), (26), and (??), we get

us(gs+ d)f ≤ h(n, d− `, u; z] · u
(
n

u

)
,

for any d ≥ u+1 and n ≥ e2(d+u)2/u > e2(d−`+u). Therefore, the decoding complexity of Algorithm 2
is up to

h(n, d− `, u; z] · 2u
(
n

u

)
.

4) Example for Algorithm 2: We demonstrate Algorithm 2 by the same settings used to demonstrate
Algorithm 1 (Section III-C): n = 6, d = 4, ` = 0, u = 2, g = u − ` − 1 = 1, z = 1, e = 0, and
S = {1, 2, 4, 5}. Input vector x, (n = 6, d− ` = 4, u = 2; z = 1]-disjunct matrix M, and outcome vector
y are as in (5). Note that the condition e2(d + u)2/u ≤ n does not hold though Algorithm 2 still works
well for this example.

Algorithm 2 proceeds as follows. In Step 1, a family F of 2-subsets X ⊆ [n] is constructed such that
tM0 (X) ≤ e = 0. From (5), we get F = {{1, 2}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 5}, {4, 5}, {5, 6}}.

In Step 2, an initial 2-subset S1 belonging to F is arbitrarily chosen. Without loss of generality, set
S1 = {1, 2}. The next phase is to find a 2-subset A1 ∈ F such that |S1 ∪A1| = |S1|+ u = 2 + 2 = 4. By
exhausted searching in F, one of candidates is {3, 5}. Set A1 = {3, 5} and S2 = S1 ∪ A1 = {1, 2, 3, 5}.
Because there does not exist any A2 ∈ F \ {A1} such that |S2 ∪A2| = |S2|+ 2, Step 2 stops here because
S2 is not extendible.

Since set S2 returned by Step 2 may not contain some of the defective items when |S \S2| > g, Step 3
exhaustively searches for them in order to produce the final approximate set S ′, where |S \ S ′| ≤ g. It
searches for a 2-subset A2 in F \ {A1} such that |S2 ∪A2| = |S2|+ g + 1 = 3 + 1 + 1 = 5. Luckily, such
an A2 does not exist, S ′ = S2 = {1, 2, 3, 5} is output.

Note that the approximate defective set S ′ is not identical to S as it is in Section III-C. However, set
S ′ is indistinguishable from S because |S \ S ′| = 1 = g ≤ g and |S ′ \ S| = 1 = g ≤ g [2].

C. Third proposed algorithm

Our main idea here is to combine Algorithms 1 and 2. It is obvious that |S ′ \S| ≤
(⌊
|S|
`+1

⌋
+ u− 1

)
g

in Theorem 7, which is worse than the condition |S ′ \S| ≤ g in Theorem 6. Theorem 7 can be improved
to achieve the conditions |S ′ \S| ≤ g and |S \S ′| ≤ 2g by using the outcome of Algorithm 2 as the input
of Algorithm 1. An extension of Algorithm 2 is described in Algorithm 3. The decoding complexity of the
improved algorithm is higher than that in Theorem 7 but lower than that in Theorem 6. The conditions on
|S ′ \S| and |S \S ′|, i.e., the number of false positives and the number of false negatives, are respectively
looser than and equal to the corresponding ones in Theorem 7. On the other hand, the conditions on |S ′\S|
and |S \ S ′| are equal to and tighter than the corresponding ones in Theorem 6. These comparisons are
summarized in Table I.

The set S ′ attained from Algorithm 3 satisfies two properties: |S \ S ′| ≤ 2g and |S ′ \ S| ≤ g. This
can be interpreted to mean that the number of defective items in S ′, i.e., |S ′ ∩ S| ≥ |S| − 2g, is at least
|S| − 2g . We summarize this result as follows.

Theorem 8. Let `, 0 < g, 2 ≤ u = `+ g+ 1 < d < k = d− `+ u ≤ n be integers with e2(d+ u)2/u ≤ n.
Let z be a positive integer and S be the defective set with |S| ≤ d. Set w =

(⌊
|S|
`+1

⌋
+ u− 1

)
g and

w + d ≤ n. For an (n, d, `, u)-TGT model with at most e = b(z − 1)/2c erroneous outcomes, there exists
a non-adaptive algorithm that successfully identifies some set S ′ with |S ′ \ S| ≤ g and |S \ S ′| ≤ 2g
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Algorithm 3 Decoding3(y,M): Decoding procedure for non-adaptive (n, d, `, u)-TGT with up to e
erroneous outcomes.
Input: Outcome vector y, a (d− `, u; z = 2e+ 1]-disjunct matrix M.
Output: Set of defective items S ′ s.t. |S ′ \ S| ≤ g and |S \ S ′| ≤ 2g.

1: Set V = Decoding2(y,M).
2: Construct hypergraph H = (V, F) where a u-subset X ⊆ V is an edge in F iff tM0 (X) ≤ e, where
tM0 (X) is the number of negative pools in which all columns in X appear when using M as a
measurement matrix.

3: We want to establish increasing vertex-sets Si’s, |S1| < |S2| . . . < |Sm| such that hypergraph H is
u-complete with respect to each Si. As an initial S1, we can select all u vertices of an arbitrary edge.
To find Si+1 for i ≥ 1, we check all possible cases to attain some (g+ 1)-subset Ai in V (H) \Si and
a g-subset Bi in Si such that H is u-complete with respect to (Si∪A)\B. If such a pair Ai, Bi exists,
set Si+1 = (Si ∪ Ai) \ Bi. This process is continued until either Sm is not extendable or |Si| ≥ d.
Output the set S ′ = Sm.

using no more than h(n, d− `, u; z] tests, where h(n, d− `, u; z] is defined in (6). Moreover, the decoding
complexity is

O

(
h(n, d− `, u; z] · u ·

((
n

u

)
+ (d− u)

(
w + d− u
g + 1

)(
d− 1

g

)(
d

u

)))
. (27)

As with the previous one, the proof is divided into two parts: correctness and decoding complexity.
1) Correctness: From Theorem 7, we get |V \S| ≤

(⌊
|S|
`+1

⌋
+ u− 1

)
g and |S\V | ≤ g. Set P = V ∩S.

We always have |P | ≥ |S| − g because |S \ V | ≤ g.
Using the same argument as in the first paragraph of Section V-B2, for any u-subset X ∈ F, we get
|X ∩ S| ≥ `+ 1 and every u-subset X+ ⊆ P must be in F. Because V (H) is u-complete with respect to
S ′ = Sm, we attain |S ′ \ S| ≤ g.

We now show that |S \ S ′| ≤ 2g once S ′ = Sm is not extendable or |Sm| ≥ d. Consider the case
|S ′| ≥ d. Since |S \ S ′| ≤ g, we get |S ′ ∩ S| ≥ d − g. This indicates that |S \ S ′| ≤ g ≤ 2g because
|S| ≤ d.

It is now adequate to show that if S ′ is not extendable, then |S \ S ′| ≤ 2g. To prove this property,
it suffices to prove |P \ S ′| ≤ g. The property is then straightforwardly attained because P ⊆ S and
|P | ≥ |S|− g. Assume for the sake of contradiction that |P \S ′| > g. Set Am ⊆ P \S ′ and |Am| = g+ 1,
and let Bm be any subset with S ′ \ P ⊆ Bm ⊂ S ′ and |Bm| = g. Subset Bm always exists because
|S ′ \ S| ≤ g and the initial S ′ has u > g elements. Therefore, (S ′ ∪ Am) \ Bm is contained in P . It
follows that H is u-complete with respect to (S ′ ∪ Am) \ Bm. This contradicts the assumption that S ′ is
not extendable.

In summary, |S \ S ′| ≤ 2g and |S ′ \ S| ≤ g are always attained after running Algorithm 3.
2) Complexity: From Theorem 7, the complexity of Step 1 is h(n, d− `, u; z] · u

(
n
u

)
.

Because |V | ≤
(⌊
|S|
`+1

⌋
+ u− 1

)
g+ d = w+ d, the complexity of Step 2 is uh(n, d− `, u; z]×

(|V |
u

)
≤

uh(n, d− `, u; z]×
(
w+d
u

)
.

We can verify whether “H is u-complete with respect to (Si∪Ai)\Bi” if tM0 (Z) ≤ e for every u-subset
Z ⊆ V . Using an argument similar to the one described in the second paragraph of Appendix, we get
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that the complexity of Step 3 is (d − u)
(
w+d−u
g+1

)(
d−1
g

)(
d
u

)
× uh(n, d − `, u; z]. The total complexity of

Algorithm 3 is then at most

h(n, d− `, u; z] · u
(
n

u

)
+ uh(n, d− `, u; z]×

(
w + d

u

)
+ (d− u)

(
w + d− u
g + 1

)(
d− 1

g

)(
d

u

)
× uh(n, d− `, u; z]

= h(n, d− `, u; z]× u
((

n

u

)
+ (d− u)

(
w + d− u
g + 1

)(
d− 1

g

)(
d

u

))
(28)

= h(n, d− `, u; z]× u

(n
u

)
+ (d− u)

((⌊ |S|
`+1

⌋
+ u− 1

)
g + d− u

g + 1

)(
d− 1

g

)(
d

u

) .

Equation (28) is attained if we suppose that w+d =
(⌊
|S|
`+1

⌋
+ u− 1

)
g+d ≤ u

(
d
`+1

+ u− 1
)

+d ≤ n.
This condition is practical because n is much larger than d.

3) Example for Algorithm 3: We demonstrate Algorithm 3 using the same settings as before: n =
6, d = 4, ` = 0, u = 2, g = u − ` − 1 = 1, z = 1, e = 0 and S = {1, 2, 4, 5}. Input vector x, (n =
6, d − ` = 4, u = 2; z = 1]-disjunct matrix M, and outcome vector y are as in (5). Note that the
conditions e2(d + u)2/u ≤ n and w + d =

(⌊
|S|
`+1

⌋
+ u− 1

)
g + d ≤ n do not hold though Algorithm 3

still works well for this example.
Algorithm 3 proceeds as follows. In Step 1, the set of vertices V = {1, 2, 3, 5} is first obtained as

described in Section V-B4. Our task now is to construct a hypergraph H = (V, F) using that set. Note that
the original set of vertices, [n] = [6] = {1, 2, 3, 4, 5, 6}, is here reduced to V . Using the same procedure
described in Section III-C, Step 2 searches for all 2-subsets X ⊆ V in order to form a set of edges F
such that tM0 (X) ≤ e = 0. From (5), we get F = {{1, 2}, {1, 5}, {2, 3}, {2, 5}, {3, 5}}.

Step 3 starts with an initial 2-subset S1 = {1, 2} and checks all possible cases to obtain some 2-subset
A1 in V \ S1 = {3, 5}, which is {3, 5}, and a 1-subset B1 in S1, which is some element of {{1}, {2}},
such that H is 2-complete with respect to (S1 ∪ A1) \ B1. Since A1 = {3, 5} and B1 = {1} ensure that
the condition holds, set S2 = (S1 ∪ A1) \ B1 = {2, 3, 5}. Next, a 2-subset A2 ⊆ V \ S2 = {1} and a
1-subset B2 ⊆ S2 are chosen. Since |V \S2| = 1 < 2 = u, there does not exist such an A2; i.e., S2 is not
extendible. Step 3 thus stops and outputs S ′ = S2 = {2, 3, 5}.

In this example, approximate defective set S ′ satisfies the two conditions |S ′ \S| ≤ g and |S \S ′| ≤ 2g
in Theorem 8 because |S ′ \ S| = |{3}| = 1 = g ≤ g and |S \ S ′| = |{1, 4}| = 2 = 2g ≤ 2g.

VI. SIMULATION

We visualized (upper bounds on) the number of tests for threshold group testing with a gap using five
parameters n, d, u, `, and z using simulation. For each fixed z, we derived δ in Theorem 4 accordingly.
Since the number of tests with Cheraghchi’s scheme and Ahlswede et al.’s scheme is asymptotic while
the number of tests with other works is exact, we consider only the other works, which are our proposed
theorems, Chen et al.’s scheme, and Chen and Fu’s scheme.

Since the number of test with Chen and Fu’s scheme is equal to the one with Chen et al.’s scheme,
we only consider Chen et al.’s scheme here. Similarly, since the numbers of tests with the four proposed
theorems (Theorems 4, 6, 7, 8) are identical, we only consider the number of tests in Theorem 4. The
two schemes are visualized in Figures 5–6. The red and green lines represent for Theorem 4 and Chen
et al.’s scheme, respectively.

Since Chan et al. [7] and Reisizadeh et al. [24] used a model for the test outcome when the number
of defectives in a test fell between ` and u, we do not show the number of tests for their work here.
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Fig. 5: Upper bounds on the number of tests versus number of items in logarithm in base 10 for d = 20,
z = {3, 11, 101}, and n = {106 = 1M, 108 = 10M, 109 = 1B, 1010 = 10B, 1011 = 100B} for Chen et al.’s
scheme and Theorem 4.

The numbers of tests for Theorem 4 and Chen et al.’s scheme are plotted in the figures as log10 t versus
log10 n for various settings of n, d, u, `, and z, where t is the number of tests.

Parameter z was set to {3, 11, 101} corresponding to error tolerance e = {1, 5, 50}. The number of
items n and the maximum number of defectives d were respectively set to {106 = 1M, 108 = 10M, 109 =
1B, 1010 = 10B, 1011 = 100B} and {20, 100, 1000}. Finally, upper threshold u and lower threshold ` were
respectively set to 0.2d and 0.5u = 0.1d.

As shown in Fig. 5 for d = 20 and Fig. 6 for d = 100 and d = 1000, the number of tests with
Theorem 4 was the smallest for all settings compared to Chen et al.’s scheme. More importantly, the
number was smaller than the number of items (except for n = 106) while those with the other schemes
were mostly larger than the number of items.

When d = 20 (Fig. 5), for a small z, the number of tests with Chen et al.’s scheme was relatively close
to ours. However, as z increased, the number of tests with Chen et al.’s scheme quickly diverged from
that with Theorem 4.

In summary, the results of simulation match those of our analysis in Section IV-A: the upper bound on
the number of tests in Theorem 4 is always smaller than the one in Theorem 1 for any positive z.

VII. CONCLUSION

In this paper, we have presented a novel construction scheme for disjunct matrices that is better than
the construction proposed by Chen et al. [3]. For threshold group testing, Cheraghchi gave a hint that
the number of tests can be asymptotically to O(d2+g log(n/d) · cu), which is essentially optimal, where
cu = (8u)u. Therefore, it is an interesting question that whether we can reduce the magnitude of the
constant cu and have a decoding algorithm associated with that number of tests.
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(a) d = 100.
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(b) d = 1000.

Fig. 6: Upper bounds on the number of tests versus number of items in logarithm in base 10 for d =
{100, 1000}, z = {3, 11, 101}, and n = {106 = 1M, 108 = 10M, 109 = 1B, 1010 = 10B, 1011 = 100B} for
Chen et al.’s scheme and Theorem 4.

We next presented a more accurate theorem for Chen and Fu’s scheme [8], three proposed algorithms
on improving non-adaptive encoding and decoding algorithms for threshold group testing as well as
simulation for verifying our arguments throughout this work.

APPENDIX

We use the full expression for (3) instead of removing (d − u)
(
n−u
g+1

)(
d
g

)(
d
u

)
as done by Chen and

Fu [8]. Their inaccurate analysis in the complexity of Step 2 led to inaccurate decoding complexity in
Algorithm 1. They presumed that (d−u)

(
n−u
g+1

)(
d
g

)(
d
u

)
can be reduced to O(ng+1), and therefore is smaller

than
(
n
u

)
= O(nu).

We first analyze the complexity of Step 2. Let α be the cardinality of Si. We always have u ≤ |Si| ≤ d−1
for i < m. The time costs of finding all possible subsets Ai and Bi are

(
n−α
g+1

)
and

(
α
g

)
, respectively. One

can verify whether “H is u-complete with respect to (Si ∪ Ai) \ Bi” if tM0 (Z) ≤ e for every u-subset
Z ⊆ V . The complexity of the verification is

(
α+1
u

)
× u× t(n, d− `, u; z]. Chen and Fu claimed that this

cost is
(
α+1
u

)
≤
(
d
u

)
, which is simply equivalent to the complexity of counting all possibilities of u-subsets

in (Si ∪Ai) \Bi. This claim is inaccurate. Since Step 2 is repeated up to d− u times, the complexity of
executing this step is

(d− u)

(
n− α
g + 1

)(
α

g

)(
α + 1

u

)
u× t(n, d− `, u; z]

= O

(
u(d− u)

(
n− u
g + 1

)(
d− 1

g

)(
d

u

)
t(n, d− `, u; z]

)
.

We next prove that the quantity (d − u)
(
n−u
g+1

)(
d−1
g

)(
d
u

)
in (3) should not be removed because it is not

always smaller than
(
n
u

)
. Let us consider the case in which u ≥ 2, d = 2u, and u = g+ 1, i.e., ` = 0. We

have:

(d− u)

(
n− u
g + 1

)(
d− 1

g

)(
d

u

)
= u

(
n− u
u

)(
2u− 1

u− 1

)(
2u

u

)
= u · (n− u)(n− u− 1) . . . (n− u− (u− 1))

u!
· u

2u(2u− u+ 2)

(
2u

u

)
·
(

2u

u

)
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>
(n− 2u+ 1)u

u!
· u

2(u+ 2)

(
2u

u

)2

>
(n− 2u+ 1)u

u!
· u

2(u+ 2)

(
1.08444

2e1/(8u)
√
u
· 22u

)2

, (29)

>
(n− 2u+ 1)u

u!
· 1

2(u+ 2)
·
(

1.08444

2e1/(8×2)

)2

· 16u

>
(n− 2u+ 1)u

u!
· 1

7(u+ 2)
· 16u,

and (
n

u

)
=
n(n− 1) . . . (n− (u− 1))

u!
<
nu

u!
,

where (29) is attained by using the inequality
(
mu
u

)
> 1.08444e−1/(8u)u−1/2 mm(u−1)+1

(m−1)(m−1)(u−1) for integers
m > 1 and u ≥ 2 (Corollary 2.9 in [30]). Consider the following inequality:

(n− 2u+ 1)u

u!
· 1

7(u+ 2)
· 16u ≥ nu

u!

⇐⇒ 1− 1

16
· (7(u+ 2))1/u ≥ 2u− 1

n
. (30)

Since (7(u+ 2))1/u is a decreasing function of u and u ≥ 2, for (30) to hold, it suffices that

1− 1

16
· (7(u+ 2))1/u ≥ 1−

√
28

16
≥ 2u− 1

n

⇐⇒ n ≥ 8(2u− 1)

8−
√

7
.

Therefore, when d = 2u, u = g + 1 ≥ 2, and n ≥ 8(2u−1)
8−
√
7

, we always have the following inequality

(d− u)

(
n− u
g + 1

)(
d− 1

g

)(
d

u

)
>

(n− 2u+ 1)u

u!
· 1

7(u+ 2)
· 16u

≥ nu

u!
>

(
n

u

)
.

In summary, the complexity in (3) is inaccurate.
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