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Abstract

A multi-resolution quantizer is a sequence of quantizers where the output of a coarser quantizer can be deduced from the
output of a finer quantizer. In this paper, we propose an asymptotically scale-invariant multi-resolution quantizer, which performs
uniformly across any choice of average quantization step, when the length of the range of input numbers is large. Scale invariance
is especially useful in worst case or adversarial settings, ensuring that the performance of the quantizer would not be affected
greatly by small changes of storage or error requirements. We also show that the proposed quantizer achieves a tradeoff between
rate and error that is arbitrarily close to the optimum.

I. INTRODUCTION

A multi-resolution quantizer is a sequence of quantizers, where the output of a coarser quantizer can be deduced from the
output of a finer quantizer (without knowledge of the original data). It has been studied, for example, by Koshelev [1], Equitz
and Cover [2], Rimoldi [3], Brunk and Farvardin [4], Jafarkhani, Brunk, and Farvardin [5], Effros [6], Wu and Dumitrescu
[7], [8] and Effros and Dugatkin [9]. There are two main uses of multi-resolution quantizers: to allow a coarser quantization
to be obtained from a finer quantization by discarding some information, and to allow a finer quantization to be obtained from
a coarser quantization by adding some additional information from the encoder (i.e., successive refinement). We first focus on
the first usage.

Consider the setting where a piece of data is relayed across a sequence of nodes, where each communication link has a
different capacity. Each node only has information about the capacity of its incoming and outgoing link, and therefore can only
compress the incoming data according to the capacity of the outgoing link and send it to the next node, if the outgoing link
has smaller capacity than the incoming link (otherwise the node can relay the incoming data exactly). If the data is a number
x ∈ [0, 1), a simple scheme, which we call the simple uniform quantizer, is that node i would apply the uniform quantization
yi+1 := (bkiyic + 1/2)/ki to its incoming data yi and send it to the node i + 1, where ki is the number of values that can
be sent through the link between node i and i + 1. This scheme is undesirable since if k1 = 4, k2 = 3, and x = y1 = 2/7,
then y2 = 3/8, y3 = 1/2, giving an absolute error |y3 − x| = 3/14 that is larger than as if k1 = k2 = 3 (i.e., the data is only
compressed once according to the worse link), giving an absolute error 5/42.

To mitigate this problem, we can use a multi-resolution quantizer, where the output of a coarser quantizer can be obtained
from the output of a finer quantizer, and thus the final output of the relay would convey the same information as if the input
is only compressed once according to the link with the lowest capacity (by simply quantizing the final output again according
to the link with the lowest capacity). One simple scheme, which we call the binary multi-resolution quantizer (BMRQ), would
be to quantize only using step sizes that are powers of 2, i.e., yi+1 := 2−blog2 kic(b2blog2 kicyic+ 1/2). For the aforementioned
example k1 = 4, k2 = 3, x = 2/7, we have y2 = 3/8, y3 = 1/4, giving an absolute error |y3 − x| = 1/28.

Nevertheless, the BMRQ does not perform well in worst case or adversarial settings. Consider the setting where an adversary
can modify ki to increase the quantization error. If k1 = 32 (the quantization step is 1/32), then the adversary can reduce k1

by 1 to 31, increasing the quantization step two-fold to 1/16 (and hence the average absolute error is also increased two-fold).
The BMRQ performs well only when the ki’s are powers of 2. The adversary can modify ki slightly off powers of 2 to
cause a significant degradation of the quantized data. We call this problem scale dependence, meaning that the multi-resolution
quantizer does not perform uniformly well for all choices of quantization step.

In this paper, we introduce an asymptotically scale-invariant multi-resolution quantizer, called the biased binary multi-
resolution quantizer (BBMRQ), that performs uniformly across any choice of average quantization step (BBMRQ is a non-
uniform quantizer), when the length of the range of input numbers tends to infinity. Therefore its performance degrades
gracefully when the adversary modifies the communication constraints. We show that the BBMRQ outperforms the BMRQ
except when the average quantization step is close to a power of 2 (see Figure 1).

Asymptotically scale-invariant multi-resolution quantizers are also useful in successive refinement settings. Consider the
scenario where an encoder observes a number x and produces a sequence of bits. Due to storage or communication constraint,
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we only keep the first n bits and discard the rest, where n is chosen according to the storage constraint and the bit sequence.
The BMRQ corresponds to the scheme where the bit sequence is the binary representation of x, and n is chosen only according
to the storage constraint. For the BBMRQ, n also depends on the bit sequence (i.e., it is a variable length code), which allows
the performance of the quantizer to vary smoothly when the storage constraint changes. The bit sequence can be produced
according to the quantization tree (see Figure 2).

This paper is organized as follows. In Section II, we give the criteria of multi-resolution quantizers and define the cell size
cdf for measuring the performance of a quantizer. In Section IV, we define the BBMRQ and present the main result regarding
the performance of BBMRQ. In Section V, we show that the BBMRQ achieves a tradeoff between rate and error that is
arbitrarily close to the optimum.

A. Previous Work

The seminal work by Equitz and Cover [2] concerns the problem of successive refinement of information, where the lossy
reconstruction is iteratively refined by supplying more information. It is also studied by Rimoldi [3]. Also see [1] for a related
setting. Another line of research is multiple description coding [10], [11], [12], where several descriptions are produced from
the same source, and the distortion of the reconstruction depends on which subset of descriptions is available to the decoder.
Also see [13] for a related setting. Note that the aforementioned papers concern the asymptotic rate-distortion problem, whereas
this paper focuses on the one-shot scalar quantization setting.

Vaishampayan [14] studied multiple description scalar quantizers. Brunk and Farvardin [4] and Jafarkhani, Brunk, and
Farvardin [5] studied multi-resolution scalar quantizers (or successively refinable quantizers), and provide algorithms for
designing quantizers with small error given the distribution of the input. Effros [6] and Effros and Dugatkin [9] studied
multi-resolution vector quantizers. Algorithms for multi-resolution quantization were studied by Wu and Dumitrescu [7], [8].
Note that the aforementioned papers concern the setting where the distribution of the input is known, and the quantizers
are designed accordingly (as in the classical Lloyd-Max algorithm [15], [16]). In this paper, we do not design the quantizer
according to the input distribution, but rather assume the input is (loosely speaking) uniform over a long interval.

II. MULTI-RESOLUTION QUANTIZER

In this paper, quantizer can refer to any measurable function Q : R → R, where the range Q(R) is a finite or countable
set. We call Q a centered quantizer if each reconstruction level is the center of its corresponding quantization cell, which is
formally defined below.

Definition 1. We call a function Q : R → R a centered quantizer if it is non-decreasing, the range Q(R) is a finite or
countable, and

Q(x) =
1

2

(
inf{y : Q(y)=Q(x)}+ sup{y : Q(y)=Q(x)}

)
for all x ∈ R.

We give the criteria of multi-resolution quantizers below.

Definition 2. We call {Qs}s>0 a multi-resolution quantizer (MRQ) if the functions Qs : R→ R are measurable and satisfy

Qs2(Qs1(x)) = Qs2(x)

for any s2 ≥ s1 > 0 and x ∈ R. The parameter s (that can be any positive real number) usually corresponds to the (maximum or
average) quantization step. We call {Qs}s>0 a centered multi-resolution quantizer if the functions Qs are centered quantizers.

This definition ensures that Qs2(x) can be computed using Qs1(x) for s2 ≥ s1 > 0, simply by quantizing Qs1(x) using
Qs2 . As a result, if sn ≥ si for all i = 1, . . . , n, then Qsn(Qsn−1(· · ·Qs1(x) · · · )) = Qsn(x), i.e., we can quantize the final
output of the relay again by the coarsest quantizer to obtain a result the same as if the input is only compressed once by the
coarsest quantizer.

We remark that this definition is different from the previous definitions (e.g. [4], [5], [7]), which also concern how the
quantized number is represented (e.g. by a bit sequence). Here we only concern the mapping from the input number to its
reconstruction level, and assume that a suitable compression algorithm is applied to the reconstruction levels if the multi-
resolution quantizer is to be used in practice.

Note that the simple uniform quantizer Qs(x) := s(bx/sc+ 1/2) is not a multi-resolution quantizer, since Q3(x) cannot be
deduced from Q2(x). Nevertheless, if we restrict the step size to powers of 2, i.e., Qbin

s (x) := 2blog2 sc(b2−blog2 scxc+ 1/2),
then this is a MRQ, which we call the binary multi-resolution quantizer (BMRQ).

A downside of the BMRQ is that it is scale-dependent. The average absolute error of the binary multi-resolution quantizer is
2blog2 sc−2 (when the input is uniformly distributed over a long interval), which must be a power of 2. Therefore, the quantizer
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is suitable if the maximum allowed average absolute error is a power of 2, but not suitable if the maximum allowed average
absolute error is slightly smaller than a power of 2. Scale-dependence is particularly undesirable in worst case or adversarial
settings, where the quantizer must work well for any maximum allowed average absolute error (or other error metrics).

Loosely speaking, the BMRQ is the optimal uniform multi-resolution quantizer (where for each s, Qs divides the real line
into intervals of the same length) 1. Nevertheless, scale-dependence is an inherent disadvantage of uniform multi-resolution
quantizers. In order to overcome this disadvantage, we consider non-uniform quantizers, where each quantization cell can have
different size. The distribution of cell sizes is captured by the following definition.

Definition 3. For a (not necessarily centered) quantizer Q : R→ R, define its cell size cumulative distribution function (cell
size cdf) on the measurable set S ⊆ R with positive measure as

FQ,S(z) :=
λ ({x ∈ S : λ ({y ∈ S : Q(y) = Q(x)}) ≤ z})

λ(S)
,

where λ denotes the Lebesgue measure. Define its asymptotic cell size cdf FQ to be the cdf that is the limit (with respect to
the Lévy metric) of FQ,[x0,x1] as x1 − x0 →∞, i.e., FQ is a cdf and

lim
l→∞

sup
(x0,x1):x1−x0≥l

dL(FQ,[x0,x1], FQ) = 0, (1)

where dL(F,G) := inf{ε > 0 : F (x− ε)− ε ≤ G(x) ≤ F (x+ ε) + ε ∀x ∈ R} is the Lévy metric. Note that FQ may not exist
for some Q.

We then give the criteria for asymptotic scale invariance.

Definition 4. For a multi-resolution quantizer {Qs}s>0, if FQs exists for any s > 0, define

F {Qs}s(x) := sup
s>0
{FQs(xs)},

F {Qs}s(x) := inf
s>0
{FQs(xs)}.

We call {Qs}s>0 asymptotically scale-invariant if F {Qs}s = F {Qs}s , i.e., the functions x 7→ FQs(xs) are the same for all
s > 0.

One way to improve the BMRQ is to add more intermediate steps between Qbin
2n and Qbin

2n+1 , where only some of the adjacent
pairs of quantization cells of Qbin

2n are merged.

Definition 5. Define the dithered binary multi-resolution quantizer (DBMRQ) as

Qdi
s (x) :=


2blog2 sc+1(b2−blog2 sc−1xc+1/2)

if frac(φb2−blog2 sc−1xc) < 2−2blog2 sc+1/s

2blog2 sc(b2−blog2 scxc+ 1/2) otherwise,

where frac(γ) := γ − bγc, and φ := (1 +
√

5)/2 is the golden ratio (or any irrational number works).

See Figure 2 for an illustration of DBMRQ. The quantizer Qdi
s has two cell sizes: 2blog2 sc and 2blog2 sc+1. The choice of

which cell size to use is determined by the frac function in the definition. It can be checked that the cell size cdf of Qdi
s is

FQdi
s

(x) = (2− 2blog2 sc+1/s)1{2(blog2 sc+1) ≤ x}
+ (2blog2 sc+1/s− 1)1{2blog2 sc ≤ x}.

Note that the BMRQ and the DBMRQ are not asymptotically scale-invariant.

III. QUANTITIES OF INTEREST

The cell size cdf provides some information about the quantizer Q. We define the following useful quantity.

Definition 6. For a quantizer Q where FQ exists, define its Rényi entropy rate as

Rη(Q) :=
1

1− η
log2

ˆ ∞
0

γη−1dFQ(γ)

for η ∈ R>0\{1}, and

R1(Q) :=

ˆ ∞
0

log2(γ−1)dFQ(γ).

1We can, for example, use step sizes that are powers of 3, i.e., Qs(x) := 3blog3 sc(b3−blog3 scxc + 1/2), though it provides less control over the step
size, since {3blog3 sc}s are spaced farther apart than {2blog2 sc}s.
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We call R0(Q) the log-rate of Q.

Several quanities of interest can be obtained from the Rényi entropy rate. If X ∼ Unif[x0, x1], then:
• The number of reconstruction levels (possible values of Q(X) with positive probability) is

|{x : P(Q(X) = x) > 0}| = (x1 − x0)

ˆ ∞
0

γ−1dFQ,[x0,x1](γ).

The reason is that for a quantization cell of size γ, the probability that X is in that cell is γ/(x1 − x0), and hence its
contribution to (x1− x0)

´∞
0
γ−1dFQ,[x0,x1](γ) is (x1− x0)γ−1(γ/(x1− x0)) = 1. Hence, the number of bits needed to

encode the levels (using fixed-length code) is dlog2((x1 − x0)
´∞

0
γ−1dFQ,[x0,x1](γ))e. Therefore, the log-rate

R0(Q) = log2

ˆ ∞
0

γ−1dFQ(γ)

is the logarithm of the rate of increase of the number of reconstruction levels as the interval [x0, x1] becomes longer.
• The entropy of the output is

H(Q(X)) =

ˆ ∞
0

log2(γ−1(x1 − x0))dFQ,[x0,x1](γ).

Therefore,

R1(Q) =

ˆ ∞
0

log2(γ−1)dFQ(γ)

describes how H(Q(X)) increases as the interval [x0, x1] becomes longer.
• The average Lp error is lower-bounded by

E[|X−Q(X)|p] ≥
ˆ ∞

0

(γ/2)p

p+ 1
dFQ,[x0,x1](γ). (2)

The reason is that for a quantization cell of size γ, the expected Lp error conditioned on that X is in that cell is at least
(γ/2)p/(p + 1) (equality holds if the quantization cell is an interval, and the reconstruction level is its midpoint). The
following proposition shows the relation between the asymptotic Lp error and Rp+1(Q).

Proposition 7. Fix p > 0 and a quantizer Q where FQ exists. Let X ∼ Unif[x0, x1]. We have

lim inf
x1−x0→∞

E[|X −Q(X)|p] ≥ 1

p+ 1
2−p(Rp+1(Q)+1).

Moreover, if Q is centered, then

lim
x1−x0→∞

E[|X −Q(X)|p] =
1

p+ 1
2−p(Rp+1(Q)+1).

Proof: For the first part, if x1 − x0 →∞, then FQ,[x0,x1] → FQ (in Lévy metric), and hence by (2),

lim inf
x1−x0→∞

E[|X−Q(X)|p]

≥ lim inf
x1−x0→∞

ˆ ∞
0

(γ/2)p

p+ 1
dFQ,[x0,x1](γ)

≥
ˆ ∞

0

(γ/2)p

p+ 1
dFQ(γ)

=
1

p+ 1
2−p(Rp+1(Q)+1).

For the second part, assume that Q is centered. We first show that there exists b > 0 such that each quantization cell has
size upper-bounded by b. Assume the contrary that the quantization cells can be arbitrarily large. Then there exists a sequence
{(x0,i, x1,i)}i such that x1,i − x0,i → ∞ and FQ,[x0,i,x1,i](γ) = 1{γ ≥ x1,i − x0,i} (take x0,i, x1,i to be the end points of
cells in a sequence of cells with sizes tend to ∞). This contradicts (1) since FQ,[x0,i,x1,i] does not have a limit. Hence such
b > 0 exists. For X ∼ Unif[x0, x1], we have

E[|X −Q(X)|p]

≤ E [1{X ∈ [x0 + b, x1 − b]}|X −Q(X)|p] + P (X /∈ [x0 + b, x1 − b])
(b/2)p

p+ 1

≤
ˆ ∞

0

(γ/2)p

p+ 1
dFQ,[x0,x1](γ) +

2b

x1 − x0
· (b/2)p

p+ 1

→
ˆ ∞

0

(γ/2)p

p+ 1
dFQ(γ) =

1

p+ 1
2−p(Rp+1(Q)+1)
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Figure 1. Plot of the asymptotic L1 error against the log-rate (more precisely, plot of inf{2−R2(Qs)−2 : s > 0, R0(Qs) ≤ x} against x) for the BMRQ
{Qbin

s } (black), the DBMRQ {Qdi
s } (red), and the BBMRQ {Qbias,α

s } for α close to 1/2 (blue). We can see that the BBMRQ provides a smoother trade-off
between the error and the rate (the log plot is a straight line due to scale invariance). Also, the BBMRQ outperforms the BMRQ and DBMRQ except when
the log rate is close to an integer.

as x1 − x0 →∞.

IV. BIASED BINARY MULTI-RESOLUTION QUANTIZER

We now state the main result in this paper, which is proved later in this section.

Theorem 8. For any ε > 0, there exists an asymptotically scale-invariant centered MRQ {Qs}s>0 with F {Qs}s(1/2− ε) = 0,
F {Qs}s(1) = 1, and dL(F {Qs}s , F2Unif[−1,0]) < ε, where

F2Unif[−1,0](x) := min {max{log2(x) + 1, 0}, 1} ,

i.e., F2Unif[−1,0] is the cdf of 2Z where Z ∼ Unif[−1, 0].

As a result, the Rényi entropy rate Rη(Qs) can be arbitrarily close to

1

1− η
log2

(
1− 21−η

η − 1
log2 e

)
− log2 s (3)

for η 6= 1, and R1(Qs) can be arbitrarily close to 1/2− log2 s. We will show in Corollary 11 that this tradeoff between log-rate
and Lp error can be arbitrarily close to optimal.

To prove Theorem 8, we introduce the following construction.

Definition 9. We define the biased quantization tree with parameter 0 < α < 1 recursively as follows. For any n ∈ Z and
sequence {zi}i≤n (zi ∈ {0, 1}, the index i is over Z ∩ (−∞, n]) with finitely many 1’s, define

(T bias,α
n ({zi}i≤n), T

bias,α

n ({zi}i≤n))

:=


(0, αn) if zn=zn−1 = · · ·=0(
Tn−1, αTn−1+(1−α)Tn−1

)
else if zn = 0(

αTn−1+(1−α)Tn−1, Tn−1

)
otherwise.

where we write Tn−1 = T
bias,α

n−1 ({zi}i≤n−1) (likewise for Tn−1) for brevity. Note that the first case above serves as the base
case of the recursive definition.

Define the biased binary multi-resolution quantizer (BBMRQ) with parameter 0 < α < 1 as follows. For x ≥ 0, define

Qbias,α
s (x) :=

1

2

(
T bias,α
n ({zi}i≤n) + T

bias,α

n ({zi}i≤n)
)
,

where {zi}i≤n satisfies x ∈ [T bias,α
n ({zi}i≤n), T

bias,α

n ({zi}i≤n)) and T
bias,α

n ({zi}i≤n)−T bias,α
n ({zi}i≤n) ≤ s, and we select

the {zi}i≤n with the smallest n satisfying these two constraints. For x < 0, define Qbias,α
s (x) := −Qbias,α

s (−x).

Intuitively, the BBMRQ repeatedly divides an interval into two subintervals of proportion α and 1− α, until the lengths of
the intervals fall below s (see Figure 2). It is clear that the BBMRQ is a centered MRQ.
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Figure 2. The quantization tree of BMRQ, DBMRQ and BBMRQ (from left to right). The x-axis is the input x, and the y-axis is the parameter s. A rectangle
in the figure means that each point (x, s) in the rectangle has the same quantized value Qs(x).

We then use the BBMRQ to prove Theorem 8.
Proof: Fix any 1/2 < α < 3/4 such that (lnα)/(ln(1 − α)) is irrational. Write Qs = Qbias,α

s for brevity. Let X ∼
Unif[0, 1], and

Wt := 2tλ ({y : Q2−t(y) = Q2−t(X)})

for t ≥ 0, where λ denotes the Lebesgue measure. Note that − log2Wt is the residual life of a renewal process with interarrival
time distribution αδ− log2 α + (1− α)δ− log2(1−α), where δw is the degenerate distribution at w (as t increases, each time the
quantization cell containing X splits into two, there is a probability α for X to be in the cell with proportion α, and a
probability 1− α for X to be in the cell with proportion 1− α). Since (lnα)/(ln(1− α)) is irrational, the interarrival times
have a non-lattice distribution. Denote the Markov kernel (conditional distribution of Ws+t given Ws) as κtα. By the key
renewal theorem [17], we have

dL(κtαδ1, Fbias,α)→ 0

as t → ∞, where κtαδ1 denotes the distribution of Wt conditioned on W0 = 1, and Fbias,α is the cdf of the stationary
distribution of the process {Wt}, given by

Fbias,α(γ) := (−α log2 α− (1− α) log2(1− α))
−1

·
(
αmax {log2(min{γ, 1}/α), 0}

+ (1−α) max {log2(min{γ, 1}/(1−α)), 0}
)
. (4)

For τ > 0, let ετ be such that dL(κtαδ1, Fbias,α) ≤ ετ for all t ≥ τ , and ετ → 0 as τ →∞.
Fix any s > 0, τ > 1 and l > τ2τ+3s. Fix any x0, x1 such that x1−x0 ≥ l. Let X ∼ Unif[x0, x1]. Let [Tn(i)(z(i)), Tn(i)(z(i)))

be the quantization cells of Q2τ+2s that are subsets of [x0, x1], where n(i) ∈ Z and z(i) ∈ {0, 1}Z∩(−∞,n(i)] for i = 1, 2, . . . , Ñ .
Since X is not in one of [Tn(i)(z(i)), Tn(i)(z(i))) only when X is in a quantization cell of Q2τ+2s that includes x0 or x1, and
each quantization cell of Q2τ+2s has length between 2τs and 2τ+2s (since 1/2 < α < 3/4), we have

P

(
X /∈

Ñ⋃
i=1

[Tn(i)(z(i)), Tn(i)(z(i)))

)
≤ 2(2τ+2s)

x1 − x0

≤ 1/τ.

Let Wt := 2tλ({y : Q2−t(y) = Q2−t(X)}). Conditioned on X ∈ [Tn(i)(z(i)), Tn(i)(z(i))) (let L := Tn(i)(z(i))−Tn(i)(z(i))),
we have W− log2 L = 1, and {Wt}t≥− log2 L is a stochastic process with Markov kernel κtα, and thus W− log2 s ∼ κ

log2 L−log2 s
α δ1,

and dL(κ
log2 L−log2 s
α δ1, Fbias,α) ≤ ετ since log2 L− log2 s ≥ log2 2τs− log2 s = τ . Let W̄ := s−1λ({y ∈ [x0, x1] : Qs(y) =

Qs(x)}). Since W̄ = W− log2 s if X ∈
⋃Ñ
i=1[Tn(i)(z(i)), Tn(i)(z(i))), we have dL(FW̄ , Fbias,α) < ετ + 1/τ . Therefore

FW̄ → Fbias,α as τ →∞, and thus {Qs} is asymptotically scale-invariant with cell size cdf Fbias,α. The result follows from
the fact that dL(Fbias,α, F2Unif[−1,0])→ 0 as α→ 1/2.
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V. CONVERSE RESULTS

In this section, we show a fundamental tradeoff between the log-rate and the Lp error of asymptotically scale-invariant
multi-resolution quantizers, and that BBMRQ can be arbitrarily close to optimal in this regard. We first show an inequality
that must be satisfied by all asymptotically scale-invariant multi-resolution quantizers.

Theorem 10. For any asymptotically scale-invariant multi-resolution quantizer {Qs}s>0 with finite log-rate (i.e., R0(Q1) =
log2

´∞
0
γ−1dF (γ) <∞, where we write F = F {Qs}s ), the distribution given by the cdf F is a continuous distribution, and

its pdf f̄ satisfies ˆ ∞
0

x−1
(
1 + 1

{
f(x) ≥ ζf(xζ)

}) (
f(x)− ζf(xζ)

)
dx ≤ 0 (5)

for any ζ > 1. As a result,

f̄(y) ≤
ˆ ∞

0

x−1 (1 + 1{x > y}) f̄(x)dx (6)

for almost all y > 0.

Proof: Let ps,γ be the probability mass function corresponding to the cdf FQs,[−γ,γ] for γ > 0 (note that it is a discrete
distribution so pmf exists). The number of quantization cells of Qs in [−γ, γ] of size x is 2γx−1ps,γ(x). Let nx (resp. ñx)
be the number of quantization cells of Qs (resp. Qs/γ) in [−γ, γ] of size x that are not quantization cells of Qs/γ (resp.
Qs). We have nx − ñx = 2γx−1(ps,γ(x) − ps/ζ,γ(x)). Since each cell of Qs is split into 2 or more cells in Qs/γ , we have
2
∑
x nx ≤

∑
x ñx (the summation is over x in the support of ps,γ or ps/ζ,γ), and hence

2
∑

x: ps,γ(x)>ps/ζ,γ(x)

x−1(ps,γ(x)− ps/ζ,γ(x))

= 2γ−1
∑

x:nx>ñx

(nx − ñx)

= γ−1

(
2
∑
x

nx − 2
∑
x

min{nx, ñx}

)

≤ γ−1

(∑
x

ñx − 2
∑
x

min{nx, ñx}

)
≤ γ−1

∑
x:nx<ñx

(ñx − nx)

=
∑

x: ps,γ(x)<ps/ζ,γ(x)

x−1(ps/ζ,γ(x)− ps,γ(x)). (7)

Let ν be the signed measure induced by F (x)− F (xζ) (i.e., ν(B) =
´
B

d(F (x)− F (xζ))). Fix any ε > 0. Let A ⊆ R>0

be a measurable set. Since the measure B 7→
´
B
x−1d(F (x) + F (xζ)) is a regular measure over R>0

2, there exists an open
set A′ such that A ⊆ A′ and

´
A′\A x

−1d(F (x) + F (xζ)) < ε. Since A′ is open, it can be expressed as a countable disjoint
union of open intervals A′ =

⋃
i(ai, bi). Let A′δ :=

⋃
i(ai + δ, bi− δ) for δ > 0 (where (ai + δ, bi− δ) = ∅ if ai + δ ≥ bi− δ).

Let gδ(x) := min{(x − ai)δ−1, (bi − x)δ−1, 1} if x ∈ (ai, bi) (gδ(x) = 0 if x is not in any of those invervals). Then gδ is
continuous and 1{x ∈ A′δ} ≤ gδ(x) ≤ 1{x ∈ A′}. Hence,ˆ

A

x−1ν(dx)

≤
ˆ
A′
x−1ν(dx) +

ˆ
A′\A

x−1d(F (x) + F (xζ))

≤
ˆ
x−1gδ(x)ν(dx) +

ˆ
A′\A′δ

x−1d(F (x) + F (xζ)) + ε

→
ˆ
x−1gδ(x)ν(dx) + ε

2We can reparameterize the space by y = lnx. Then
´
B x
−1d(F (x)+F (xζ)) =

´
ln(B) e

−yd(F (ey)+F (eyζ)). We have
´
B′ e
−yd(F (ey)+F (eyζ)) ≤

2e− inf B′ , and hence the measure B′ 7→
´
B′ e
−yd(F (ey) + F (eyζ)) is locally finite, and hence regular.
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as δ → 0 since A′δ ↗ A′. Also, ˆ
A

x−1ν(dx)

≥
ˆ
A′
x−1ν(dx)

≥
ˆ
x−1gδ(x)ν(dx)−

ˆ
A′\A′δ

x−1d(F (x) + F (xζ))

→
ˆ
x−1gδ(x)ν(dx)

as δ → 0. Therefore, we can let g := gδ for a δ > 0 small enough that∣∣∣∣ˆ
A

x−1ν(dx)−
ˆ
x−1g(x)ν(dx)

∣∣∣∣ < 2ε. (8)

Since FQs,[−γ,γ] → F as γ →∞, and x 7→ 1 + g(x) is bounded and continuous, we have
´
x−1(1 + g(x))dFQ1,[−γ,γ](x)→´

x−1(1 + g(x))dF (x). Also,
´
x−1(1 + g(x))dFQ1/ζ ,[−γ,γ](x)→

´
x−1(1 + g(x))dF (xζ). As a result,

ˆ
x−1(1 + g(x))d

(
FQ1,[−γ,γ](x)− FQ1/ζ ,[−γ,γ](x)

)
→
ˆ
x−1(1 + g(x))d

(
F (x)− F (xζ)

)
=

ˆ
x−1(1 + g(x))ν(dx). (9)

It can be deduced from (7) that ∑
x

x−1(1 + g̃(x))(ps,γ(x)− ps/ζ,γ(x)) ≤ 0

for any g̃ : R>0 → [0, 1], where the summation is over x in the support of ps,γ or ps/ζ,γ (because to maximize the above
expression, we should assign g̃(x) = 0 to x’s where ps/ζ,γ(x)− ps,γ(x) > 0, and g̃(x) = 1 otherwise). Substituting g̃ = g,ˆ

x−1(1 + g(x))d
(
FQ1,[−γ,γ](x)− FQ1/ζ ,[−γ,γ](x)

)
≤ 0.

By (9), ˆ
x−1(1 + g(x))ν(dx) ≤ 0.

By (8), ˆ
x−1ν(dx) +

ˆ
A

x−1ν(dx) ≤ 2ε.

Taking ε→ 0 and rearranging the terms, ˆ
x−1(1 + 1{x ∈ A})ν(dx) ≤ 0, (10)

ˆ ∞
0

x−1(1 + 1{x ∈ A})dF (x) ≤ ζ
ˆ ∞

0

x−1(1 + 1{x/ζ ∈ A})dF (x),

ˆ ∞
0

x−1(1 + 1{x ∈ A} − ζ − ζ1{x/ζ ∈ A})dF (x) ≤ 0.

Substituting A = {x : x > y},

0 ≥
ˆ ∞

0

x−1(1 + 1{x > y} − ζ − ζ1{x > yζ})dF (x)

=

ˆ ∞
0

x−1 (1{y < x ≤ yζ} − (ζ − 1) (1 + 1{x > yζ})) dF (x)

≥ F (yζ)− F (y)

yζ
− (ζ − 1)

ˆ ∞
0

x−1 (1 + 1{x > yζ}) dF (x).

Hence,
F (yζ)− F (y)

yζ − y
≤ ζ
ˆ ∞

0

x−1 (1 + 1{x > yζ}) dF (x).
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Since the right hand side is bounded by ζ2R0+1, f̄ exists and (6) holds for almost all y > 0. Therefore, (10) becomesˆ
x−1(1 + 1{x ∈ A})

(
f(x)− ζf(xζ)

)
dx ≤ 0.

We can obtain (5) by substituting A = {x : f(x) ≥ ζf(xζ)}.
As a result, we can bound the log-rate and the Lp error of an asymptotically scale-invariant multi-resolution quantizer using

the following corollary and Proposition 7.

Corollary 11. For any asymptotically scale-invariant multi-resolution quantizer {Qs}s>0 with finite log-rate, for any s > 0,
p > 0,

R0(Qs)−Rp+1(Qs) ≥
1

p
log2

(
1− 2−p

p
(log2 e)

p+1

)
. (11)

Recall that for the BBMRQ, by (3), R0(Qs) can be arbitrarily close to log2 log2 e− log2 s, and Rp+1(Qs) can be arbitrarily
close to

−1

p
log2

(
1− 2−p

p
log2 e

)
− log2 s.

Therefore the lower bound in (11) can be approached. This shows that the tradeoff between log-rate and Lp error of BBMRQ
can be arbitrarily close to optimal.

Nevertheless, it is unknown whether the lower bound in (11) can be attained exactly. It can be tracked in the proof of
Corollary 11 that the equality in (11) holds if and only if there exists s > 0 such that F {Qs}s(γ) = F2Unif[−1,0](γs) for all γ,
i.e., Theorem 8 can be attained exactly. We conjecture that this is impossible.

Conjecture 12. There does not exist an asymptotically scale-invariant centered MRQ {Qs}s>0 with F {Qs}s = F2Unif[−1,0] .

We now prove Corollary 11.
Proof: By Theorem 10, for any pdf ψ : R>0 → R≥0,ˆ

f̄(y)ψ(y)dy ≤
ˆ ∞

0

ˆ ∞
0

x−1 (1 + 1{x > y}) f̄(x)dx · ψ(y)dy

=

ˆ ∞
0

x−1

(
1 +

ˆ x

0

ψ(y)dy

)
f̄(x)dx,

ˆ ∞
0

(
x−1

(
1 +

ˆ x

0

ψ(y)dy

)
− ψ(x)

)
f̄(x)dx ≥ 0. (12)

Substitute
ψ(y) = 1{1/2 ≤ y ≤ 1} (1− 2−p) log2 y − yp + 1

(1− 2−p)
(

1−log2 e
2

)
− 1−2−(p+1)

p+1 + 1/2
.

For 1/2 ≤ x ≤ 1,

x−1

(
1 +

ˆ x

0

ψ(y)dy

)
− ψ(x)

= x−1 +
x−1
´ x

1/2
((1− 2−p) log2 y − yp + 1) dy − ((1− 2−p) log2 x− xp + 1)

(1− 2−p)
(

1−log2 e
2

)
− 1−2−(p+1)

p+1 + 1/2

= x−1 +
x−1

(
(1− 2−p) (−x log2 e+ x log2 x+ (log2 e)/2 + 1/2)− xp+1−2−(p+1)

p+1 + x− 1/2
)
− ((1− 2−p) log2 x− xp + 1)

(1− 2−p)
(

1−log2 e
2

)
− 1−2−(p+1)

p+1 + 1/2

= x−1 +
(1− 2−p)

(
− log2 e+ log2 x+ (log2 e)x

−1/2 + x−1/2
)
− xp−2−(p+1)x−1

p+1 + 1− x−1/2− (1− 2−p) log2 x+ xp − 1

(1− 2−p)
(

1−log2 e
2

)
− 1−2−(p+1)

p+1 + 1/2

= x−1 +
(1− 2−p)

(
− log2 e+ (log2 e)x

−1/2 + x−1/2
)
− xp−2−(p+1)x−1

p+1 − x−1/2 + xp

(1− 2−p)
(

1−log2 e
2

)
− 1−2−(p+1)

p+1 + 1/2

=

1 +
(1− 2−p) ((log2 e)/2 + 1/2) + 2−(p+1)

p+1 − 1/2

(1− 2−p)
(

1−log2 e
2

)
− 1−2−(p+1)

p+1 + 1/2

x−1 +
(1− 2−p) (− log2 e)− xp

p+1 + xp

(1− 2−p)
(

1−log2 e
2

)
− 1−2−(p+1)

p+1 + 1/2
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=

 p
p+1 (1− 2−p)

(1− 2−p)
(

1−log2 e
2

)
− 1−2−(p+1)

p+1 + 1/2

x−1 +
(1− 2−p) (− log2 e) + xp p

p+1

(1− 2−p)
(

1−log2 e
2

)
− 1−2−(p+1)

p+1 + 1/2

=

p
p+1

(
(1− 2−p)x−1 + xp

)
− (1− 2−p) log2 e

(1− 2−p)
(

1−log2 e
2

)
− 1−2−(p+1)

p+1 + 1/2

=

p
p+1

(
(1− 2−p)x−1 + xp

)
− (1− 2−p) log2 e

(1− 2−p)
(

1−log2 e
2

)
+ p/2−(1/2)(1−2−p)

p+1

= 2 ·
p
p+1

(
(1− 2−p)x−1 + xp

)
− (1− 2−p) log2 e

p
p+1 (2− 2−p)− (1− 2−p) log2 e

For x ≥ 1, we have
p ≥ (1− 2−p) log2 e,

p+ 1

p
≥ p+ 1

p2
(1− 2−p) log2 e,

xp+1 ≥ 1 ≥ p+ 1

p2

(
(1− 2−p) log2 e−

p

p+ 1

)
,

p2

p+ 1
xp−1 ≥

(
(1− 2−p) log2 e−

p

p+ 1

)
x−2.

Integrating both sides from 1 to x,

p

p+ 1
(xp − 1) ≥

(
(1− 2−p) log2 e−

p

p+ 1

)
(1− x−1),(

(1− 2−p) log2 e−
p

p+ 1

)
x−1 +

p

p+ 1
xp − (1− 2−p) log2 e ≥ 0.

Therefore,

2 ·
p
p+1

(
(1− 2−p)x−1 + xp

)
− (1− 2−p) log2 e

p
p+1 (2− 2−p)− (1− 2−p) log2 e

−
(
x−1

(
1 +

ˆ x

0

ψ(y)dy

)
− ψ(x)

)
= 2 ·

p
p+1

(
(1− 2−p)x−1 + xp

)
− (1− 2−p) log2 e

p
p+1 (2− 2−p)− (1− 2−p) log2 e

− 2x−1

= 2 ·

(
(1− 2−p) log2 e−

p
p+1

)
x−1 + p

p+1x
p − (1− 2−p) log2 e

p
p+1 (2− 2−p)− (1− 2−p) log2 e

≥ 0.

For 0 < x ≤ 1/2, by the concavity of y 7→ y log2(1/y),

p2−p = 2−p log2 2p ≤ (1− 2−p) log2 e,

p+ 1

p
2−(p+1) ≤ p+ 1

2p2
(1− 2−p) log2 e,

xp+1 ≤ p+ 1

2p2
(1− 2−p) log2 e−

1

2p
2−p,

xp+1 ≤ p+ 1

2p2

(
(1− 2−p) log2 e−

p

p+ 1
2−p

)
,

2p2

p+ 1
xp−1 ≤

(
(1− 2−p) log2 e−

p

p+ 1
2−p

)
x−2,

Integrating both sides from x to 1/2,

2p

p+ 1
(2−p − xp) ≤

(
(1− 2−p) log2 e−

p

p+ 1
2−p

)
(x−1 − 2),
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(
(1− 2−p) log2 e−

p

p+ 1
2−p

)
x−1 +

2p

p+ 1
xp − 2(1− 2−p) log2 e ≥ 0.

Therefore,

2 ·
p
p+1

(
(1− 2−p)x−1 + xp

)
− (1− 2−p) log2 e

p
p+1 (2− 2−p)− (1− 2−p) log2 e

−
(
x−1

(
1 +

ˆ x

0

ψ(y)dy

)
− ψ(x)

)
= 2 ·

p
p+1

(
(1− 2−p)x−1 + xp

)
− (1− 2−p) log2 e

p
p+1 (2− 2−p)− (1− 2−p) log2 e

− x−1

=

(
(1− 2−p) log2 e−

p
p+12−p

)
x−1 + 2p

p+1x
p − 2(1− 2−p) log2 e

p
p+1 (2− 2−p)− (1− 2−p) log2 e

≥ 0.

Hence, for any x > 0,

x−1

(
1 +

ˆ x

0

ψ(y)dy

)
− ψ(x) ≤

p
p+1

(
(1− 2−p)x−1 + xp

)
− (1− 2−p) log2 e

p
p+1 (2− 2−p)− (1− 2−p) log2 e

.

By (12),
p(1− 2−p)

p+ 1

ˆ ∞
0

x−1f̄(x)dx+
p

p+ 1

ˆ ∞
0

xpf̄(x)dx ≥ (1− 2−p) log2 e,

(1− 2−p)

ˆ ∞
0

x−1f̄(x)dx+

ˆ ∞
0

xpf̄(x)dx ≥ p+ 1

p
(1− 2−p) log2 e.

Therefore,
(1− 2−p)2R0(Q1) + 2−pRp+1(Q1) ≥ p+ 1

p
(1− 2−p) log2 e.

Note that the above also holds when Q1 is replaced by Qs. Since Rη(Qs) = Rη(Q1)− log2 s, we have, for any s > 0,

(1− 2−p)2R0(Q1)−log2 s + 2−p(Rp+1(Q1)−log2 s) ≥ p+ 1

p
(1− 2−p) log2 e,

(1− 2−p)s−12R0(Q1) + sp2−pRp+1(Q1) ≥ p+ 1

p
(1− 2−p) log2 e.

Substituting

s =

(
1

p
(1− 2−p)2R0(Q1)+pRp+1(Q1)

) 1
p+1

,

we have
p+ 1

p
(1− 2−p) log2 e

≤ (1− 2−p)s−12R0(Q1) + sp2−pRp+1(Q1)

= (1− 2−p)

(
1

p
(1− 2−p)2R0(Q1)+pRp+1(Q1)

)− 1
p+1

2R0(Q1) +

(
1

p
(1− 2−p)2R0(Q1)+pRp+1(Q1)

) p
p+1

2−pRp+1(Q1)

= (1− 2−p)
p
p+1 p

1
p+1 2

p
p+1R0(Q1)− p

p+1Rp+1(Q1) + (1− 2−p)
p
p+1 p−

p
p+1 2

p
p+1R0(Q1)− p

p+1Rp+1(Q1)

=
(

(1− 2−p)2R0(Q1)−Rp+1(Q1)
) p
p+1
(
p

1
p+1 + p−

p
p+1

)
.

Hence, (
(1− 2−p)2R0(Q1)−Rp+1(Q1)

) p
p+1 ≥ (p+ 1)(1− 2−p) log2 e

p1+ 1
p+1 + p

1
p+1

= p−
1
p+1 (1− 2−p) log2 e,

(1− 2−p)2R0(Q1)−Rp+1(Q1) ≥ p−
1
p
(
(1− 2−p) log2 e

) p+1
p ,

2R0(Q1)−Rp+1(Q1) ≥ p−
1
p (1− 2−p)

1
p (log2 e)

p+1
p ,



12

R0(Q1)−Rp+1(Q1) ≥ log2

(
p−

1
p (1− 2−p)

1
p (log2 e)

p+1
p

)
=

1

p
log2

(
1− 2−p

p
(log2 e)

p+1

)
.
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