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Abstract

We consider the fundamental tradeoff between the storage cost and the download cost in private
information retrieval systems, without any explicit structural restrictions on the storage codes, such as
maximum distance separable codes or uncoded storage. Two novel outer bounds are provided, which have
the following implications. When the messages are stored without any redundancy across the databases,
the optimal PIR strategy is to download all the messages; on the other hand, for PIR capacity-achieving
codes, each database can reduce the storage cost, from storing all the messages, by no more than one
message on average. We then focus on the two-message two-database case, and show that a stronger
outer bound can be derived through a novel pseudo-message technique. This stronger outer bound
suggests that a precise characterization of the storage-download tradeoff may require non-Shannon type
inequalities, or at least more sophisticated bounding techniques.

1 Introduction

Private information retrieval [1], or simply referred to as PIR, is a fundamental privacy-preserving information
processing primitive. PIR has deep connections to other well-known communication and coding problems
such as locally decodable codes [2, 3] and interference alignment [4]. The PIR capacity, i.e., the inverse of
the minimum download cost, was recently characterized by Sun and Jafar [5], and the PIR capacities under
other variations have also been considered [6–20].

Since the databases from which the information is retrieved are basically storage nodes, designing efficient
storage strategies in PIR systems is of significant importance, and the problem has received considerable
attention recently. Some of the existing efforts assume certain specific coding structures in the storage side,
such as using maximum distance separable (MDS) codes [6, 15] or in an uncoded form [21]. In two recent
works [11,22], the tradeoff was considered without any structural constraints on the storage or retrieval codes
for the special case of two databases and two messages, and it was found that non-linear codes can provide
further improvement over linear codes. Other notable efforts can be found in [23–27] and references therein.

Despite these efforts, our understanding of the fundamental tradeoff between the storage cost α and the
download cost β is still quite limited, mainly due to the lack of general information theoretic converse results
when the storage codes are not required to follow any potentially restricting structural constraint. In this
work, we initialize such an effort and derive several information theoretical outer bounds of the fundamental
tradeoff between the storage cost and the download cost. Instead of attempting to characterize the complete
optimal tradeoff curve, in this work we focus on the two extreme points: the point when the storage cost
is minimal, and the point when the download cost is minimal. For the former, the question is when the
storage has no redundancy, what the minimum download cost can be; for the latter, the question is for PIR
capacity-achieving codes, what the minimum storage cost can be; see Fig. 1 for an illustration. In other
words, in this work, our goal is to identity the two anchor points of the fundamental tradeoff curve, from
which the general tradeoff can hopefully be further built through subsequent efforts.

Our main result is a precise characterization of the first extreme point (no redundancy in storage), and
an approximate characterization of the second (capacity-achieving PIR codes). More precisely, by providing
two novel outer bounds, we show that for the former, the optimal PIR strategy is in fact to download all the
messages, whereas for the latter, i.e., for PIR capacity-achieving codes, each database can reduce the storage
cost by no more than one message on average, compared to the simple strategy of storing every message. In
order to better understand the second extreme point, we then focus on the two-message two-database case,
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Figure 1: Instead of characterizing the optimal tradeoff curve between the storage cost α and download cost
β, we focus on finding (approximate) characterizations of the minimum α on the horizontal axis and the
minimum β on the vertical axis.

and show that a stronger outer bound can be derived. This stronger bound requires a novel pseudo-message
technique, the origin of which can be traced back to Ozarow’s bounding technique [28] of extending the
original probability space through Markov coupling. This technique has been developed significantly over
the years and found many applications, e.g., [29–31], and it is also the technique based on which all known
non-Shannon type inequalities were derived in the literature [32–34]. In the specific context of PIR, however,
the value of this refined outer bound is the following: it strongly suggests that a precise characterization of the
storage-download tradeoff may require non-Shannon type inequalities, or at least certain more sophisticated
bounding techniques.

2 Problem Definition

The problem setting of private information retrieval is well known, see e.g., [5], however in order to fix
the notation and derive the outer bounds in question, we need to first introduce a rigorous version of the
problem definition. We then provide the formal definitions of the operational download cost and storage
cost, together with the informational version, in order to unify the different conventions in the literature and
avoid confusion in subsequent discussions.

2.1 Encoding and Decoding Functions

There are a total of K messages W1,W2, . . . ,WK in the system, and there are a total of N databases that
the messages are to be retrieved; the messages (Wi,Wi+1, . . . ,Wj) will sometimes be written together as
Wi:j for conciseness. Denote the set of possible queries that server-n can accommodate as Qn, and denote
its cardinality as |Qn|. The cardinality of a set A will be similarly denoted as |A| in the rest of the paper.
Assume that a random key F is uniformly distributed on a certain finite set F , which is used by the user
to produce the (random) queries to the N databases. The servers, after receiving the queries for message-k,

denoted as Q
[k]
n , will reply with an answer A

[k]
n . A message Wk consists of L symbols, each symbol belonging

to a finite alphabet X . The messages are mutually independent, each of which is uniformly distributed on
XL. We further allow the query answers to be represented as a variable-length vector, whose elements are
in the finite alphabet Y. A mathematically precise description of the problem is given next via a set of
encoding and decoding functions.

Definition 1. An N -server private information retrieval (PIR) storage code for K messages, each of L-
symbols in the alphabet X , consists of

1. N storage encoding functions:

Φn : XKL → Sn, n ∈ {1, 2, ..., N}, (1)

i.e., the stored information at database-n is Sn = Φn(W1:K);
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2. N query functions:

φn : {1, 2, . . . ,K} × F → Qn, n ∈ {1, 2, ..., N}, (2)

i.e., the user chooses the query Q
[k]
n = φn(k,F) for server-n, using the index of the desired message

and the random key F;

3. N answer length functions:

`n : Qn → {0, 1, 2, . . .}, n ∈ {1, 2, ..., N}, (3)

i.e., the length of the answer at each server, a non-negative integer, is a deterministic function of the
query, but not the particular realization of the messages;

4. N answer functions:

ϕn : Qn × Sn → Y`n , n ∈ {1, 2, ..., N}, (4)

where `n = `n(qn) with qn ∈ Qn being the (random) query for server-n, Y is the coded symbol alphabet,

and in the sequel we write the query answer as A
[k]
n , ϕn(Q

[k]
n , Sn) when the message index k is relevant;

5. A reconstruction function using the answers from the servers together with the desired message index
and the random key:

ψ :

N∏
n=1

Y`n × {1, 2, ...,K} × F → XL, (5)

i.e., Ŵk = ψ(A
[k]
1:N , k,F) is the retrieved message.

These functions should satisfy the following two requirements:

1. Correctness: For any k ∈ {1, 2, ...,K}, Ŵk = Wk.

2. Privacy: For every k, k′ ∈ {1, 2, ...,K}, n ∈ {1, 2, ..., N}, and q ∈ Qn,

Pr(Q[k]
n = q) = Pr(Q[k′]

n = q). (6)

It should be noted that A
[k]
n is a function of both the messages and the query Q

[k]
n . Sometimes we need

to refer to the answer for a fixed query Q
[k]
n = q, and this shall be written as A

(q)
n ; the effectiveness of this

notation can be seen immediately next. Because of the coding protocol requirement, the overall probability
distribution factorizes as follows

P
(

(Q[k]
n ,W1;K , S1:N , A

[k]
n ) = (q, w1;K , s1:N , a)

)
= P (Q[k]

n = q)P ((W1;K , S1:N ) = (w1;K , s1:N ))P
(
A[k]

n = a
∣∣∣(Q[k]

n ,W1;K , S1:N ) = (q, w1;K , s1:N )
)
, (7)

where the conditional distribution is a deterministic one induced by the encoding function ϕn, which can
further be simplified to

P
(
A[k]

n = a
∣∣∣(Q[k]

n ,W1;K , S1:N ) = (q, w1;K , s1:N )
)

= P
(
A[k])

n = a
∣∣∣(Q[k]

n , Sn) = (q, sn)
)

= P
(
A(q)

n = a
∣∣∣(Q[k]

n , Sn) = (q, sn)
)
. (8)

As a consequence of the privacy requirement and the factorization above, the following joint distributions
must also be identical for any n = 1, 2, . . . , N ,

(A[k]
n , Q[k]

n ,W1;K , S1:N ) ∼ (A[k′]
n , Q[k′]

n ,W1;K , S1:N ), k, k′ ∈ {1, 2, . . . ,K}, (9)

which implies that their marginal distributions will also be identical.
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2.2 Operational and Informational Costs

The operational normalized storage cost for database-n is defined as

αn ,
log2|Sn|
L log2|X |

, n = 1, 2, . . . , N, (10)

which is the amount of stored data per bit of individual message; the average storage (per node) cost is then
defined as

α =
1

N

N∑
n=1

αn. (11)

The operational normalized download cost for database-n is defined as

βn ,
log2|Y|E(`n)

L log2|X |
, n = 1, 2, . . . , N, (12)

which is the expected amount of downloaded data per bit desired message at database-n, and the average
per node download cost is

β =
1

N

N∑
n=1

βn. (13)

Note that βn does not depend on k, since the privacy requirement stipulates that the random variable `n
has an identical distribution for all k = 1, 2, . . . ,K.

In the literature (e.g., [11]), the informational storage cost is sometimes used directly in place of the
operational storage cost, i.e.,

α′n ,
H(Sn)

L log2|X |
, n = 1, 2, . . . , N, (14)

and correspondingly the average informational storage cost can be defined as

α′ =
1

N

N∑
n=1

α′n. (15)

Similarly the informational download cost can be given as

β′n ,
H(A

[k]
n |F)

L log2|X |
, n = 1, 2, . . . , N, (16)

and the average informational download cost

β′ =
1

N

N∑
n=1

β′n. (17)

Once again β′n does not depend on k, which can be justified as

H(A
[k]
n |F)

L log2|X |
=
H(A

[k]
n |Q[k]

n )

L log2|X |
=
H(A

[k′]
n |Q[k′]

n )

L log2|X |
=
H(A

[k′]
n |F)

L log2|X |
, (18)

where the first and last equality are due the Markov string F↔ Q
[k]
n ↔ A

[k]
n , and the equality in the middle

is due to the privacy condition (9).
It is clear that

αn ≥ α′n, n = 1, 2, . . . , N. (19)
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The relation between βn and β′n is slightly more subtle. It can be seen that for any n = 1, 2, . . . , N ,

βn =
log2|Y|E(`n)

L log2|X |
=

E [E(`n|F)] log2|Y|
L log2|X |

≥
E
[
H(A

[k]
n |F = f)

]
L log2|X |

=
H(A

[k]
n |F)

L log2|X |
. (20)

As a consequence, we have

α ≥ α′, β ≥ β′, (21)

but they may not be equal. In this work, we adopt from a first principle the operational definitions, from
which the informational definitions will emerge as the substitutes naturally.

It was shown [5] that the minimum download cost is

minβ =
1

N
+ . . .+

1

NK
=

NK − 1

NK(N − 1)
, (22)

and codes that can achieve this minimal value are often referred to as optimal private information retrieval
codes, or capacity-achieving private information retrieval codes. The codes are optimal in the sense that
the download cost is minimal. Note that the capacity achieving code given in [5] assumed fully replicated
messages at all databases, however in our setting the databases are not necessarily replicated.

3 Extreme Point Characterizations

We consider the two extreme points in question in the following two subsections, respectively.

3.1 Minimizing PIR Download Cost without Storage Redundancy

The first main result we present is for the extreme case when the messages are stored across the databases
without any redundancy, i.e., Nα = K. With such compressed storage, we shall provide a converse to confirm
the folklore that the best PIR download strategy is to download everything. This is essentially established
through a cut-set-like bound, however, we must apply the privacy condition in the bounding steps, instead
of using the cut-set argument directy, to obtain the needed result.

Theorem 1. The per-node retrieval cost β and per-node storage cost α must satisfy

(N − 1)α+ β ≥ K. (23)

Proof. We start by writing the following inequalities,∑
n′ 6=n

αn′L log2|X |+βnL log2|X |

≥ H(S1:n−1,n+1:N , A
[1]
n |F)

= H(S1:n−1,n+1:N , A
[1]
n ,W1|F)

= L log2|X |+H(S1:n−1,n+1:N , A
[1]
n |W1,F)

(∗)
= L log2|X |+H(S1:n−1,n+1:N , A

[2]
n |W1,F), (24)

where the inequality (∗) can be justified as follows

H(S1:n−1,n+1:N , A
[k]
n |W1:k,F)

= H(S1:n−1,n+1:N , A
[k]
n |W1:k, Q

[k]
n )

= H(S1:n−1,n+1:N , A
[k+1]
n |W1:k, Q

[k+1]
n )

= H(S1:n−1,n+1:N , A
[k+1]
n |W1:k,F), (25)
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Figure 2: Bounds in Theorem 1 and Theorem 2 when N = 6 and K = 10, where the arrow indicates the
intercept of the bound in Theorem 2 and β = 1

5 −
1

5∗610 is the minimum download cost.

where the first equality is because of the Markov string F↔ Q
[k]
n ↔ (W1:K , S1:N , A

[k]
n ) and the last equality

because of F↔ Q
[k+1]
n ↔ (W1:K , S1:N , A

[k]+1
n ), and the equality in the middle is due to the privacy relation,

or more precisely here the identical distribution between

(S1:n−1,n+1:N ,W1:k, A
[k]
n , Q[k]

n ) ∼ (S1:n−1,n+1:N ,W1:k, A
[k+1]
n , Q[k+1]

n ), (26)

due to (9). Continuing to apply the bounding approach on the second term in a similar manner, we eventually
arrive at ∑

n′ 6=n

αn′L log2|X |+βnL log2|X |≥ KL log2|X |. (27)

Dividing both sides by L log2|X | gives ∑
n′ 6=n

αn′ + βn ≥ K. (28)

Summing (28) over n = 1, 2, . . . , N then normalizing give the desired result.

This bound is illustrated in Fig. 2, together with the achievable tradeoffs with MDS-coded storage [9]
and uncoded storage [21]. It is seen that this bound is almost vertical, but it is sufficient to characterize one
of two extreme points. The next corollary now follows directly from the theorem, which states that when
the storage code has no redundancy, the optimal strategy is to download every message.

Corollary 1. At the minimum storage point α = K
N , we must have

β ≥ K

N
. (29)

Moreover, the equality can be achieved by downloading all the information from the databases.
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3.2 Minimum Storage Overhead for PIR Capacity-Achieving Codes

The next main result is a novel lower bound on the storage cost and download cost tradeoff, which leads to
an approximate characterization of the extreme point for capacity-achieving codes.

Theorem 2. The per-node retrieval cost β and per-node storage cost α when N ≥ 3 must satisfy

α+ (N − 1)β

N − 2
+NK−1β ≥ K

N − 2
+

NK − 1

N(N − 1)
. (30)

The proof of this theorem can be found in Appendix B. The most important implication of this theorem
is the following corollary, which states that for capacity-achieving PIR codes, each database must store at
least K − 1 messages on average.

Corollary 2. At the PIR capacity point β = NK−1
NK(N−1) , we have

α ≥
(
K − NK − 1

NK

)
> (K − 1). (31)

An illustration of this bound can also be found in Fig. 2. It can be seen that the proposed bound in
Theorem 2 is almost horizontal, and its intersection with the horizontal axis gives a lower bound on the
minimum storage cost when the code is capacity-achieving. Since a trivial storage solution is to replicate all
the messages at all the databases, this corollary in fact provides a characterization of the minimum storage
cost for capacity-achieving codes within an additive gap of one message.

In the proof of Theorem 2, the following auxiliary quantities and their relation are important :

T k , H(A
[k]
1:N |W1:k,F), k = 1, 2, . . . ,K, (32)

V k
n , H(A

[k]
1:n−1,n+1:N , Sn|W1:k,F), n = 1, 2, . . . , N, k = 1, 2, . . . ,K, (33)

V k =

∑N
n=1 V

k
n

N
, k = 1, 2, . . . ,K. (34)

Due to the definitions above, it is clear that

TK = V K = 0. (35)

The following two auxiliary lemmas are instrumental to the proof of the theorem, whose proofs can be
found in Appendix A. The first lemma is a recursive relation on T k.

Lemma 1. For any k = 1, 2 . . . ,K − 1

T k ≥ L log2|X |
N

+
T k+1

N
. (36)

The second lemma is a refined recursive relation involving both V k and T k.

Lemma 2. For any k = 1, 2 . . . ,K − 1 and n = 1, 2, . . . , N ,

V k

N − 2
+ T k ≥

(
1

N − 2
+

1

N

)
L log2|X |+

V k+1

N − 2
+
T k+1

N
. (37)

Using the recursive relations among T k’s and V k’s in these two lemmas, an induction can be used to
prove Theorem 2, which can be found in Appendix B.
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4 An Improved Outer Bound via Pseudo Messages

In this section, we shall take a closer look at the special case N = K = 2. Theorem 1 in this case specializes
to the bound

α+ β ≥ 2. (38)

As a consequence, the minimum download cost β when the storage cost is minimal is clearly β = 1, and
this settles one of the two extreme points. Since the messages must be held in the databases as a whole,
it is clear that α ≥ 1 regardless β, however, the more sophisticated bound in Theorem 2 does not apply to
N = 2. The question we wish to address in this section is for this special case N = K = 2, whether the
other extreme point, where the download cost is minimal, can be more accurately approximated. For this
purpose, we present a novel outer bound based on a pseudo-message technique.

The main result of this section is the following theorem, which provides an improved outer bound for the
storage cost and download cost tradeoff.

Theorem 3. For N = K = 2, we must have 3α+ 8β ≥ 10.

Corollary 3. For N = K = 2, any capacity achieving codes, i.e., codes with β = 0.75, must satisfy α ≥ 4/3.

This bound is illustrated in Fig. 3, together with the best known achievable tradeoff discovered in [22].
It can be seen that this new bound can indeed improve the accuracy of the approximation for the extreme
point on the horizontal axis. The proof of this bound is rather technical, the details of which are relegated to
Appendix C, but the main proof idea is given and discussed in the remainder of this section. The new bound
in Theorem 3 appears difficult to generalize to larger values of N and K. Nevertheless, it can be viewed
as a strong piece of evidence that the outer bounds we have at this point are likely not tight, and more
sophisticated techniques involving non-Shannon type inequalities may provide additional improvement. In
fact, without using the pseudo-message technique, we have indeed applied the computational approach [35,36]
on this two-message two-database problem, i.e., invoking all Shannon type inequalities, which did not produce
any bound stronger than that in Theorem 1.

In order to prove this bound, we need to first introduce some necessary simplifications on the code struc-
ture used in the derivation. With such simplification, we shall discuss the main pseudo-message technique
in some more details.
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4.1 Symmetry Assumptions

It was shown in [19] that there are three types of symmetry relations in this private information retrieval
problem. By applying the three types of symmetry relations, it can be shown that it is without loss of
optimality to consider only codes such that

H(Sn) = H(Sn′), n, n′ ∈ {1, 2, . . . , N}

H(A(q)
n ) = H(A

(q′)
n′ ), n, n′ ∈ {1, 2, . . . , N}, q ∈ Qn, q′ ∈ Qn′

H(A(q)
n ,Wk) = H(A

(q′)
n′ ,Wk′), n, n′ ∈ {1, 2, . . . , N}, q ∈ Qn, q′ ∈ Qn′ , k, k′ ∈ {1, 2, . . . ,K}. (39)

In other words, the databases use the same amount of storage, the answers all have the same entropy, and
the combinations of any single answer and any single message all have the same joint entropy. Moreover, for
such symmetrized codes, we also have

β = βn, n = 1, 2, . . . , N. (40)

As a consequence, we have

β ≥ H(A(q)
n ), q ∈ Qn, n = 1, 2, . . . , N. (41)

The symmetry in terms of the joint entropy can be extended beyond that in (39), however in this work there
is no need for such generality. The discussion in the following in effect utilizes the concept of answer variety
introduced in [19], though we will not explicitly invoke the concept, and the discussion will be self-contained.

4.2 A Subtle Dependence Structure

Our first step is to consider the relation among different answers:

1. First consider an answer at database-1 for an arbitrary but fixed q1 ∈ Q1 which can be used to retrieve

W1, denoted as X1 = A
(q1)
1 . Clearly there exists a query q2 ∈ Q2 such that together with the answer

Y1 = A
(q2)
2 , the message W1 can recovered, i.e., H(W1|X1, Y1) = 0.

2. Because of the privacy constraint, the answer X1 = A
(q1)
1 from database-1 can be used, together with

an query q′2 ∈ Q2, to retrieve W2, i.e., with the answer Y2 = A
(q′2)
2 we have H(W2|X1, Y2) = 0. Note

that the answer Y1 and Y2 are not necessarily distinct.

3. Continuing the same argument, an answer X2 = A
(q′1)
1 must exist such that H(W2|X2, Y1) = 0.

4. Finally, an answer X3 = A
(q′′1 )
1 must also exist such that H(W1|X3, Y2) = 0.

Clearly, (X1, X2, X3, Y1, Y2) are functions of W1,W2, i.e., H(X1, X2, X3, Y1, Y2|W1,W2) = 0.
Since the answers must come from the stored content, H(X1, X2, X3|S1) = 0, we must have

α ≥ H(S1) ≥ H(X1, X2, X3), (42)

and similarly

α ≥ H(S2) ≥ H(Y1, Y2). (43)

This is the dependence structure and constraints in the original problem setting that we shall avail. Note
that in this line of proof, the random key F is not playing any significant role, unlike in the proofs for
Theorem 1 and 2.
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4.3 A Pseudo Message Technique

Our next step is to extend the random variable space, by introducing some random variables not in the
original problem. The random variables V1, V2, referred to as the pseudo messages, are introduced into the
setting using the so-called Markov coupling

(V1, V2)↔ (Y1, Y2)↔ (W1,W2, X1, X2, X3). (44)

Moreover, the two sets of random variables have the identical marginal distribution

(Y1, Y2, V1, V2) ∼ (Y1, Y2,W1,W2). (45)

Similarly, the second set of pseudo message random variables (U1, U2) are also introduced such that

(U1, U2)↔ (X1, X2, X3)↔ (W1,W2, Y1, Y2, V1, V2), (46)

and the two sets of random variables have the identical marginal distribution

(X1, X2, X3, U1, U2) ∼ (X1, X2, X3,W1,W2). (47)

As a consequence, the extended set of random variables can be factorized as

P (W1,W2, X1, X2, X3, Y1, Y2)P (U1, U2|X1, X2, X3)P (V1, V2|Y1, Y2). (48)

The proof of Theorem 3 utilizes the symmetry, the Markov condition in the extended random variable
space, as well as the encoding and decoding constraints. The basic idea is to bound or substitute the
conditional entropy involving (W1,W2, X1, X2, X3, Y1, Y2) using conditional entropy involving subsets of
(U1, U2, V1, V2,W1,W2, X1, X2, X3, Y1, Y2) in matching forms, and then to cancel terms using the identical
distribution relations.

The proof technique of introducing pseudo messages can be viewed as being closely related to non-Shannon
type inequalities, since all known non-Shannon type inequalites are essentially produced by introducing
certain mirrored copies. This proof was obtained with the assistance of the computational tool that the
author developed previously [36], which was found valuable in the investigation of the regenerating code
problem [35] and the coded caching problem [37]. The main difference between the technique we use in this
work and those seen in generating non-Shannon type inequalities is that instead of introducing a single-sided
mirrored set, we introduce mirrors on two sides–one side being (V1, V2), and the other being (U1, U2)–both
of which through the Markov coupling.

5 Conclusion

We initiated the investigation of the fundamental tradeoff between the storage cost and the download cost
in general private information retrieval systems. Several novel outer bounds are provided. On the one hand,
we were able to confirm the folklore that when the messages are stored without any redundancy, the retrieval
must download all the messages. On the other hand, when the code is PIR capacity-achieving, we establish
the somewhat surprising result that the storage cost cannot be too much lower than storing all the messages
at each database. Moreover, we show that for the two-message two-database case, a more elaborate pseudo-
message technique can be used to derive a stronger outer bound. As an ongoing work, we are investigating
more general outer bounds of the fundamental tradeoff between the storage cost and the download cost.
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A Proof of Lemmas 1 and 2

Proof of Lemma 1. We write the following chain of inequalities

T k = H(A
[k]
1:N |W1:k,F)

≥ 1

N

N∑
n=1

H(A[k]
n |W1:k,F)

(∗)
=

1

N

N∑
n=1

H(A[k+1]
n |W1:k,F)

≥ 1

N
H(A

[k+1]
1:N |W1:k,F)

=
1

N
H(A

[k+1]
1:N ,Wk+1|W1:k,F)

≥ L log2|X |
N

+
1

N
H(A

[k+1]
1:N |W1:k+1,F). (49)

The inequality (∗) can be justified as follows

H(A[k]
n |W1:k,F) = H(A[k]

n |W1:k, Q
[k]
n ) = H(A[k+1]

n |W1:k, Q
[k+1]
n ) = H(A[k+1]

n |W1:k,F), (50)

where the first equality is because of the Markov string F↔ Q
[k]
n ↔ (W1:K , S1:N , A

[k]
n ) and the last equality

because of F↔ Q
[k+1]
n ↔ (W1:K , S1:N , A

[k]+1
n ), and the equality in the middle is due to the privacy relation,

i.e.,

(W1:k, A
[k]
n , Q[k]

n ) ∼ (W1:k, A
[k+1]
n , Q[k+1]

n ), (51)

because of (9). This (∗) notation will also be used in the rest of the paper. The proof is now complete.

Proof of Lemma 2. We first notice that

V k
n = H(A

[k]
1:n−1,n+1:N , Sn|W1:k,F)

= H(Sn|F,W1:k) +H(A
[k]
1:n−1,n+1:N |Sn,W1:k,F)

≥ H(Sn|F,W1:k) +
1

N − 1

∑
n′ 6=n

H(A
[k]
n′ |Sn,W1:k,F) (52)

(∗)
= H(Sn|F,W1:k) +

1

N − 1

∑
n′ 6=n

H(A
[k+1]
n′ |Sn,W1:k,F) (53)

≥ H(Sn|F,W1:k) +
1

N − 1
H(A

[k+1]
1:n−1,n+1:N |Sn,W1:k,F) (54)

= H(Sn|F,W1:k) +
1

N − 1
H(A

[k+1]
1:n−1,n+1:N ,Wk+1|Sn,W1:k,F) (55)

=
N − 2

N − 1
H(Sn|F,W1:k) +

1

N − 1
H(A

[k+1]
1:n−1,n+1:N ,Wk+1, Sn|W1:k+1,F)

=
N − 2

N − 1
H(Sn|F,W1:k) +

L log2|X |
N − 1

+
1

N − 1
H(A

[k+1]
1:n−1,n+1:N , Sn|W1:k+1,F)

=
N − 2

N − 1
H(Sn|F,W1:k) +

L log2|X |
N − 1

+
1

N − 1
V k+1
n . (56)
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With the inequality above, we can then write

V k
n

N − 2
+ T k ≥ H(A

[k]
1:N |W1:k,F) +

1

N − 1
H(Sn|W1:k,F) +

L log2|X |+V k+1
n

(N − 1)(N − 2)

= H(A
[k]
1:N |W1:k,F) +

1

N − 1
H(Sn, A

[k]
n |W1:k,F) +

L log2|X |+V k+1
n

(N − 1)(N − 2)

=
N − 2

N − 1
H(A

[k]
1:N |W1:k,F) +

2

N − 1
H(A[k]

n |W1:k,F)

+
1

N − 1

(
H(A

[k]
1:n−1,n+1:N |A

[k]
n ,W1:k,F) +H(Sn|A[k]

n ,W1:k,F)

)
+
L log2|X |+V k+1

n

(N − 1)(N − 2)

≥ N − 2

N − 1
H(A

[k]
1:N |W1:k,F) +

2

N − 1
H(A[k]

n |W1:k,F)

+
1

N − 1
H(A

[k]
1:n−1,n+1:N , Sn|A[k]

n ,W1:k,F) +
L log2|X |+V k+1

n

(N − 1)(N − 2)

=
N − 2

N − 1
H(A

[k]
1:N |W1:k,F) +

1

N − 1
H(A[k]

n |W1:k,F)

+
1

N − 1
H(Sn|W1:k,F) +

1

N − 1
H(A

[k]
1:n−1,n+1:N |Sn,W1:k,F) +

L log2|X |+V k+1
n

(N − 1)(N − 2)
, (57)

where the first term and third term have a similar form as the first and the second term at the beginning of
the chain, only with slightly different coefficients. Continuing the same manipulation as in (57), we arrive at

V k
n

N − 2
+ T k

≥ H(A[k]
n |W1:k,F) +H(A

[k]
1:n−1,n+1:N |Sn,W1:k,F) +

1

N − 1
H(Sn|W1:k,F) +

L log2|X |+V k+1
n

(N − 1)(N − 2)

≥ H(A[k]
n |W1:k,F) +

1

N − 1

N−1∑
n′ 6=n

H(A
[k]
n′ |Sn,W1:k,F) +

1

N − 1
H(Sn|W1:k,F) +

L log2|X |+V k+1
n

(N − 1)(N − 2)

(∗)
= H(A[k+1]

n |W1:k,F) +
1

N − 1

N−1∑
n′ 6=n

H(A
[k+1]
n′ |Sn,W1:k,F) +

1

N − 1
H(Sn|W1:k,F) +

L log2|X |+V k+1
n

(N − 1)(N − 2)

≥ H(A[k+1]
n |W1:k,F) +

1

N − 1
H(A

[k+1]
1:n−1,n+1:N , Sn|W1:k,F) +

L log2|X |+V k+1
n

(N − 1)(N − 2)

= H(A[k+1]
n |W1:k,F) +

1

N − 1
H(A

[k+1]
1:n−1,n+1:N , Sn,Wk+1|W1:k,F) +

L log2|X |+V k+1
n

(N − 1)(N − 2)

≥ H(A[k+1]
n |W1:k,F) +

L log2|X |
N − 2

+
V k+1
n

N − 2
. (58)

Now summing (58) over n = 1, 2, . . . , N and then taking the average, we arrive at

V k

N − 2
+ T k ≥ 1

N

N∑
n=1

H(A[k+1]
n |W1:k,F) +

L log2|X |
N − 2

+
V k+1

N − 2

≥ 1

N
H(A

[k+1]
1:N |W1:k,F) +

L log2|X |
N − 2

+
V k+1

N − 2

=
L log2|X |

N
+

1

N
T k+1 +

L log2|X |
N − 2

+
V k+1

N − 2
. (59)

The proof is now complete.
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B Proof of Theorem 2

Proof of Theorem 2. We first prove the following bound by induction

V k

N − 2
+NK−k−1T k ≥ NK−k − 1

N(N − 1)
L log2|X |+

(K − k)L log2|X |
N − 2

, k = 1, 2, . . . ,K − 1. (60)

For this purpose, first consider k = K − 1, which is simply Lemma 2 since TK = V K = 0. Now assume the
claim is true for k = k∗, and we next show that it is true for k = k∗ − 1. For this purpose we write

V k∗−1

N − 2
+NK−k∗T k∗−1 =

V k∗−1

N − 2
+ T k∗−1 + (NK−k∗ − 1)T k∗−1

≥
(

1

N − 2
+

1

N

)
L log2|X |+

V k∗

N − 2
+
T k∗

N
+ (NK−k∗ − 1)

(
L log2|X |

N
+

1

N
T k∗

)
=

V k∗

N − 2
+NK−k∗−1T k∗ +NK−k∗−1L log2|X |+

L log2|X |
N − 2

, (61)

where the inequality is by applying Lemma 1 and Lemma 2. By the assumption that (60) holds for k = k∗,
we have

V k∗−1

N − 2
+NK−k∗T k∗−1 ≥ NK−k∗ − 1

N(N − 1)
L log2|X |+

(K − k∗)L log2|X |
N − 2

+NK−k∗−1L log2|X |+
L log2|X |
N − 2

=
NK−k∗+1 − 1

N(N − 1)
L log2|X |+

(K − k∗ + 1)L log2|X |
N − 2

, (62)

which is the desired inequality for k = k∗ − 1.
The bound stated in the theorem can now be obtained by taking k = 1 in (60)

V 1

N − 2
+NK−2T 1 ≥ NK−1 − 1

N(N − 1)
L log2|X |+

(K − 1)L log2|X |
N − 2

(63)

and noticing that by the definition of α and β

α+ (N − 1)β

N − 2
L log2|X |+NK−1βL log2|X |

≥
∑N

n=1H(A
[1]
1:n−1,n+1:N , Sn|F)

N(N − 2)
+NK−2H(A

[1]
1:N |F)

=

∑N
n=1H(A

[1]
1:n−1,n+1:N , Sn,W1|F)

N(N − 2)
+NK−2H(A

[1]
1:N ,W1|F)

=
L log2|X |
N − 2

+NK−2L log2|X |+
V 1

N − 2
+NK−2T 1

≥ L log2|X |
N − 2

+NK−2L log2|X |+
NK−1 − 1

N(N − 1)
L log2|X |+

(K − 1)L log2|X |
N − 2

=
KL log2|X |
N − 2

+
NK − 1

N(N − 1)
L log2|X |, (64)

where the last inequality is due to (63). Dividing both sides by L log2|X | completes the proof.

C Proof of Theorem 3

Proof of 3. We start by

6αL log2|X |+16βL log2|X | ≥ 3H(S1) + 3H(S2) + 8H(X1) + 8H(Y2)

≥ 3H(X1, X2, X3) + 3H(Y1, Y2) + 8H(X1, Y2). (65)
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Note that

H(Y1, Y2) = H(Y1, Y2, V1, V2)−H(V1, V2|Y1, Y2)

(m)
= H(Y1, Y2, V1, V2)−H(V1, V2|W1,W2, Y1, Y2)

(f)
= H(Y1, Y2, V1, V2)−H(V1, V2|W1,W2)

(i)
= H(Y1, Y2,W1,W2)−H(V1, V2|W1,W2)

(f)
= H(W1,W2)−H(V1, V2|W1,W2)

= 2L log2|X |−H(V1, V2|W1,W2), (66)

where (m) means by the Markov string relation (44), (f) means because of the coding function relation
H(Y1, Y2|W1,W2) = 0, and (i) means the identical (i.e., mirrored) distribution (45). We will also use (m),
(f), and (i) in the sequel to indicate the justifications for the same (or similar) reasons. Similarly we can
write

H(X1, X2, X3) = H(X1, X2, X3, U1, U2)−H(U1, U2|X1, X2, X3)

(m)
= H(X1, X2, X3, U1, U2)−H(U1, U2|X1, X2, X3,W1,W2, V1, V2)

(f)
= H(X1, X2, X3, U1, U2)−H(U1, U2|W1,W2, V1, V2)

(i)
= H(X1, X2, X3,W1,W2)−H(U1, U2|W1,W2, V1, V2)

= H(W1,W2)−H(U1, U2|W1,W2, V1, V2)

= 2L log2|X |−H(U1, U2|W1,W2, V1, V2). (67)

It follows that

6αL log2|X |+16βL log2|X |
≥ 3H(X1, X2, X3) + 3H(Y1, Y2) + 8H(X1, Y2)

≥ 12L log2|X |−3H(V1, V2|W1,W2)− 3H(U1, U2|W1,W2, V1, V2) + 8H(X1, Y2)

(f)
= 18L log2|X |−3H(U1, U2,W1,W2, V1, V2) + 8H(X1, Y2,W2). (68)

Now we wish to upper bound the second term

H(U1, U2,W1,W2, V1, V2)

= H(W1,W2, V1, V2, U2) +H(U1|W1,W2, V1, V2, U2)

(f)
= H(W1,W2, V1, V2, U2) +H(U1, X2|X1, X3,W1,W2, V1, V2, U2)

≤ H(W1,W2, V1, V2, U2) +H(U1, X2|X1, X3, U2)

= H(W1,W2, V2, U2) +H(V1|W1,W2, V2, U2) +H(U1, X2|X1, X3, U2)

≤ H(W1,W2, V2, U2) +H(V1|Y1, Y2, V2) +H(U1, X2|X1, X3, U2)

≤ H(W1,W2, V2, U2) +H(V1, V2, Y1, Y2)−H(Y1, Y2, V2) +H(U1, U2, X1, X2, X3)−H(X1, X3, U2)

(i,f)
= H(W1,W2, V2, U2) +H(W1,W2)−H(Y1, Y2, V2) +H(W1,W2)−H(X1, X3, U2)

= H(W1,W2, V2, U2) + 4L log2|X |−H(Y1, Y2, V2)−H(X1, X3, U2). (69)

Thus we have

6αL log2|X |+16βL log2|X |
≥ 6L log2|X |−3H(W1,W2, V2, U2) + 3H(Y1, Y2, V2) + 3H(X1, X3, U2) + 8H(X1, Y2,W2). (70)
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We bound the last three terms as

3H(Y1, Y2, V2) + 3H(X1, X3, U2) + 8H(X1, Y2,W2)

≥ 3[H(Y1, Y2, V2) +H(X1, Y2,W2)] + 3[H(X1, X3, U2) +H(X1, Y2,W2)] + 2H(X1,W2)

(i)
= 3[H(Y1, Y2,W2) +H(X1, Y2,W2)] + 3[H(X1, X3,W2) +H(X1, Y2,W2)] + 2H(X1,W2)

= 3[2H(Y2,W2) +H(Y1|Y2,W2) +H(X1|Y2,W2)]

+ 3[2H(X1,W2) +H(X3|X1,W2) +H(Y2|X1, ,W2)] + 2H(X1,W2)

≥ 3[2H(Y2,W2) +H(Y1, X1|Y2,W2)] + 3[2H(X1,W2) +H(X3, Y2|X1,W2)] + 2H(X1,W2)

= 3[H(Y2,W2) +H(Y1, X1, Y2,W2)] + 3[H(X1,W2) +H(X3, Y2, X1,W2)] + 2H(X1,W2)

(f)
= 3[H(Y2,W2) +H(Y1, X1, Y2,W1,W2)] + 3[H(X1,W2) +H(X3, Y2, X1,W1,W2)] + 2H(X1,W2)

= 12L log2|X |+3H(Y2,W2) + 3H(X1,W2) + 2H(X1,W2)

(s)
= 12L log2|X |+8H(X1,W2), (71)

where (s) is due to the symmetry relation (39); we will continue to use (s) to indicate the same justification.
The second term in (70) needs to be upper-bounded, which is given as

3H(W1,W2, V2, U2)

(f)
= [H(Y2,W1, V2, U2) +H(X1|Y2,W1, V2, U2)] + [H(Y1,W2, V2, U2) +H(X1|Y1,W2, V2, U2)]

+ [H(W1, V2, U2) +H(W2|W1, V2, U2)]

≤ [H(Y2,W1, V2, U2) +H(X1|W1, V2, U2)] + [H(Y1,W2, V2, U2) +H(X1|W2, V2, U2)]

+ [H(W1, V2, U2) +H(W2|V2, U2)]

= H(Y2,W1, V2, U2) +H(X1,W1, V2, U2) +H(Y1,W2, V2, U2) +H(X1,W2, V2, U2)−H(V2, U2)

≤ H(Y2, X3,W1, V2, U2) +H(X1, Y1,W1, V2, U2) +H(X2, Y1,W2, V2, U2)

+H(X1, Y2,W2, V2, U2)−H(V2, U2). (72)

Thus we have

6αL log2|X |+16βL log2|X |
≥ 18L log2|X |+8H(X1,W2) +H(V2, U2)− [H(Y2, X3,W1, V2, U2) +H(X1, Y1,W1, V2, U2)

+H(X2, Y1,W2, V2, U2) +H(X1, Y2,W2, V2, U2)] (73)

Notice

H(Y2, X3,W1, V2, U2)−H(X1,W2)

(s)
= H(Y2, X3,W1, V2, U2)−H(X3,W2)

(i)
= H(Y2, X3,W1, V2, U2)−H(X3, U2)

= H(Y2, V2|X3, U2) ≤ H(Y2, V2|U2). (74)

We can similarly bound the other terms in (73), and arrive at

6αL log2|X |+16βL log2|X |
≥ 18L log2|X |+4H(X1,W2) +H(V2, U2)−H(Y2, V2|U2)−H(Y1, V2|U2)−H(Y1, V2|U2)−H(Y2, V2|U2)

≥ 22L log2|X |+4H(X1,W2) +H(V2, U2)− 2H(Y2, V2, U2)− 2H(Y1, V2, U2)

(s)
= 22L log2|X |+2H(Y1, V2) + 2H(Y2, V2) +H(V2, U2)− 2H(Y2, V2, U2)− 2H(Y1, V2, U2)

= 22L log2|X |+H(V2, U2)− 2H(U2|Y2, V2)− 2H(U2|Y1, V2)

≥ 22L log2|X |+H(V2, U2)− 4H(U2|V2)

≥ 22L log2|X |+H(V2, U2)−H(U2|V2)− 3H(U2)

= 22L log2|X |+H(V2, U2)−H(V2)−H(U2|V2)− 2H(U2) ≥ 20L log2|X |, (75)
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where the second equality and the last equality are due to the identical distribution of U2 and V2, which are
both identically distributed to W2. Normalizing both sides gives the stated result.
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