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Abstract—We consider a problem of unsourced random access
in the quasi-static Rayleigh fading channel. In the previous work,
the authors have proposed LDPC code based solutions based
on joint and treat interference as noise in combination with
successive interference cancellation (TIN-SIC) decoder architec-
tures. The authors showed that TIN-SIC decoding significantly
outperforms the joint decoding approach and much simpler from
the implementation point of view. In this paper, we continue
the analysis of TIN-SIC decoding. We derive a finite length
achievability bound for TIN-SIC decoder using random coding
and propose a practical polar code based TIN-SIC scheme. The
latters performance becomes significantly better in comparison
to LDPC code based solutions and close to the finite length
achievability bound.

I. INTRODUCTION

The future of the 5G cellular systems is machine-type

communications with a huge number of autonomous devices,

short packets, and a lack of centralized coordination. This

scenario is actively investigated within the 3GPP standardiza-

tion committee [1, 2, 3] and known as massive machine-type

communications (mMTC). The main goal for such systems is

not the spectral efficiency, but the energy efficiency and con-

nectivity as the majority of autonomous devices are battery-

powered.

The previous work on this topic starts from [4] where the

model of unsourced multiple access was introduced and a finite

length random coding bound for the Gaussian multiple access

channel (MAC) was derived. The word unsourced means the

fact that the users utilize the same encoder or, equivalently, use

the same codebook. The improvement of the random coding

bound for the Gaussian MAC was given in [5]. There is

plenty of paper with low-complexity coding schemes for the

Gaussian MAC, namely T -fold slotted ALOHA (or ALOHA

with multi-packet reception) in combination with compute-

and-forward strategy [6, 7], T -fold irregular repetition slotted

ALOHA (IRSA) in combination with LDPC codes [8, 9, 10],

T -fold IRSA in combination with polar codes [11], coupled

compressive sensing [12, 13], sparse regression codes [14],

sparse spreading [15], polar codes with random spreading and

correlation-based energy detector [16].

The research was carried at Skolkovo Institute of Science and Technology
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The Gaussian MAC is an idealized channel model. The

synchronous quasi-static fading MAC has been considered

in [17, 18, 19, 20], where achievability bounds and LDPC

code based practical schemes have been proposed. The asyn-

chronous quasi-static fading MAC has been considered in

[21, 22, 23, 24]. Bounds and solutions for the MIMO MAC

have been proposed in [25]. Actually, the authors assume

multiple antennas at the receiver only which is reasonable

to reduce the energy consumption at transmitters. We also

note that the mentioned above papers assume the absence

of channel state information (no-CSI assumption) both at

transmitters and the receiver. The reason is as follows: it is

extremely difficult to estimate the channel for a huge number

of devices transmitting short packets.

In this paper, we focus on the synchronous quasi-static

fading MAC. In [21, 22] an LDPC code based TIN-SIC

decoder architecture was proposed. The main idea can be

explained as follows: at each step, we decode the strongest

user codeword (TIN part) and remove it from the channel

output (SIC part). SIC part is of the most interest as the

fading coefficient is unknown. We find a residual channel

output Y ′ as Y −P<C0>Y , where Y is the received vector and

P<C0>Y is an orthogonal projection of Y onto space spanned

by the set C0 of already decoded codewords. It was shown that

TIN-SIC decoding significantly outperforms the joint decoding

approach and much simpler from the implementation point of

view.

We continue the analysis of TIN-SIC decoding. We derive

a finite length achievability bound for TIN-SIC decoder using

random coding and show it to be better in comparison to the

bound from [18, 19]. We also improve the practical scheme by

utilizing polar codes [26] in it, taking into account the excellent

decoding performance of polar codes for short blocklength.

For this scheme to work we need the coarse fading coefficient

estimate which is done by means of Expectation-Maximization

(EM) clustering. We note that in contrast to [11] where a

polar code based IRSA scheme was proposed for the Gaussian

MAC here we utilize carefully constructed single user polar

codes. The performance of the resulting scheme is found to

be significantly better in comparison to LDPC code based

solutions and close to the finite length achievability bound.

http://arxiv.org/abs/2005.06899v1


II. SYSTEM MODEL

A. Rayleigh fading channel

Consider the typical mMTC scenario with a potentially

unbounded number of users Ktot in the system with only

Ka ≪ Ktot of them being active at each time instant. Com-

munication proceeds in a frame-synchronized fashion with the

frame length equals to n. Each user has k bits to transmit

within a frame. Within this paper we consider single antenna

scenario and assume the presence of an ideal synchronization.

All users utilize the same message set [M ] , {1, . . . ,M} and

the same codebook C = {Xn(W )}MW=1. In order to send a

message Wi the i-th user will use a codeword Xi = Xn(Wi).
Every transmission has a power constraint ‖Xn

i ‖2 ≤ nP . The

signal received within a frame is

Y n =

Ka
∑

i=1

Xn
i · diag(Hn

i ) + Zn, (1)

where Zn ∼ CN (0, In) are i.i.d. realizations of noise and

Hn
i are the fading coefficients which are independent of Xn

i

and Zn. Recall that we assume Hn
i to be unknown both at

the transmitters and the receiver (no-CSI assumption). We use

slow fading channel model and assume the fading coefficients

to be constant during n1 < n channel uses (so-called quasi-

static property or channel coherence time).

B. Per-user probability of error

Due to the same codebook assumption we require the

decoder to return only the list of transmitted messages (up

to permutation) and use the per-user probability of error

(PUPE) [4] as a performance measure. PUPE is defined as

follows.

Pe =
1

Ka

Ka
∑

j=1

P [Ej ] , (2)

where Ej , {Wj /∈ L(Y n)} ∪ {Wj = Wi for some i 6= j},
Y n is the channel output (1) and L(Y n) is the list of messages

returned by the decoder.

We measure the energy efficiency with use of energy per

information bit Eb/N0 = nP/k required to achieve Pe ≤ ε.

C. T -fold ALOHA

The T -fold ALOHA scheme is a good candidate for a

practical solution because it reduces the total number of

simultaneous transmissions by splitting the frame into slots.

Let T, n1 ∈ N such that T < Ka and n1 < n. The frame of

length n is partitioned into V = n/n1 slots of length n1. The

common codebook is of blocklength n1 and thus may use a

larger power V P per degree of freedom. Each user chooses a

slot to send his message uniformly at random independently

of other users. If there are r users placing their codewords in

a particular slot, then the signal received in a slot is as follows

Y n1 =

r
∑

i=1

HiX
n1

i + Zn1 , Wi,
iid∼ Unif[M ] . (3)

and Hi
iid∼ CN (0, 1), i = 1, . . . , r (in accordance with

Rayleigh block-fadin channel model).

The term “T -fold” means that the decoder aims to resolve

the collisions of order up to T , i.e. given some value of r, the

decoder can estimate all r ≤ T messages with good reliability,

while if r > T users were transmitting then no guarantees

can be given. The value of T controls the overall decoder

complexity. The case T = 1 corresponds to the usual slotted

ALOHA.

In what follows we do not make the long channel coherence

time assumption, i.e. the quasi-static fading property applies

only to a slot rather than to the whole frame. Thus, the

application of IRSA scheme [27] becomes impossible as

fading coefficients change at random between slots.

D. TIN-SIC decoder

For now, consider the slot decoding by means of afore-

mentioned TIN-SIC decoder. As soon as a single codeword

decoding algorithm is an ordinary decoder (LDPC or polar),

the main part of the TIN-SIC algorithm is the known codeword

subtraction. Let us consider this process in more detail.

Let us denote the TIN decoder by DTIN . It returns some

codeword or an empty set (or failure). The task of the decoder

is to return the set of unique codewords extracted from the

signal mixture Y (see (3)). We omit the subscript n1 here and

in what follows.

Let the C0 = {X1, X2, . . . , Xℓ}, be the set of successfully

decoded codewords. The SIC procedure needs to perform the

subtraction. We find a residual channel output Y ′ as

Y ′ = Y − P<C0>Y,

where P<C0>Y is an orthogonal projection of Y onto the

space spanned by the set of already decoded codewords C0.

Note that the projection can be calculated as (we emphasize

that we also estimate CSI as an intermediate step)

(

Ĥ1, . . . , Ĥℓ

)

= argmin
(H1,...,Hℓ)

∥

∥

∥

∥

∥

Y −
ℓ
∑

l=1

HlXl

∥

∥

∥

∥

∥

2

(4)

and thus

Y ′ = Y −
ℓ
∑

l=1

ĤlXl.

This is algorithm is inspired by a well-known orthogonal

matching pursuit (OMP) approach described in [28]. Note that

MMSE-based analog [29] is not required here because the

number of channel uses is high enough. The formal algorithm

description is given by Algorithm 1.

III. TIN-SIC ACHIEVABILITY BOUND

In this section, we discuss our main achievability bound for

T –fold ALOHA protocol in combination with TIN-SIC slot

decoder. Let us fix some slot code C and assume that the slot

decoder is aware of the actual number of users transmitting

in a slot (genie assumption). Then the PUPE per slot can be

calculated as follows

pe,genie(C, T, r) =
1

r

r
∑

i=1

P [Wi 6∈ L(Y, T, r)] .



Algorithm 1 TIN-SIC decoder

C0 ← ∅

Y ′ ← Y
for i = 1, . . . , T do ⊲ Run T decoding attempts

Xi = DTIN (Y ′) ⊲ Perform a TIN decoding attempt

if Xi = ∅ then

Break

end if

C0 = C0 ∪Xi ⊲ Update the set of unique codewords

ℓ← |C0|
Calculate (Ĥ1, . . . , Ĥℓ) ⊲ See (4)

Y ′ = Y −
ℓ
∑

l=1

ĤlXl ⊲ Perform cancellation

end for

and the overall PUPE of the T -fold ALOHA access scheme

is bounded by

εT,genie(C) , 1−
Ka
∑

r=1

(1 − pe,genie(C, T, r))

×
(

Ka − 1

r − 1

)(

1

V

)r−1(

1− 1

V

)Ka−r

.

Our main contribution in this section is a random coding

bound for pe,genie(C, T, r). Before we shift to the theorem

statement and the proof, let us discuss the genie assumptions

which we use in what follows:

• Assumption 1. The exact number of users in a slot is

known to the decoder. Actually, we do not need this

information in a case r ≥ T . Indeed, we will decode

T strongest users and stop. But in a case r < T and the

use of maximum likelihood (ML) TIN decoder we will

find T − r false messages.

• Assumption 2. We assume perfect interference cancella-

tion, i.e. as soon as the codeword is found the decoder is

given the exact value of the fading realization.

Due to genie assumptions, the proposed below bound is not a

true achievability bound but as we will see later, the practical

scheme is rather close to it. At the same time, we note that

we do not use genie assumptions in the practical scheme.

We use random coding with Gaussian ensemble E(M,n1):

X(Wi)
iid∼ CN (0, P ′In1

) where P ′ ≤ P . If ‖X(Wi)‖2 > n1P
then that user sends 0.

The last thing we need to specify is the TIN decoding

method. Here we follow [30] and use a projection decoder

X̂ = argmax
X∈C
‖PXY ‖2 .

The paper [30] gives an achievability bound

R∗
noCSI(n, ε, P,H) for the code rate when a projection

decoder is applied for a single user channel Y = HX + Z ,

Z ∼ iid∼ CN (0, In), the required error probability is ε and H
is a fading coefficient which can have arbitrarily pdf. It is

better for us to work with a bound on the error probability

thus we introduce the function

p∗(M,n, P,H) = inf
ε

{

ε :
logM

n
≤ R∗

noCSI(n, ε, P,H)

}

.

Theorem 1: Let P ′ < P be fixed. Under Assumptions 1 and

2, there exists a code C ∈ E(M,n1) such that for TIN-SIC

decoder the following bound holds

pe,genie(C, T, r) ≤ p0 +max

{

r − T

r
, 0

}

+
1

r

min{r,T}
∑

i=1

(r − i+ 1)E

[

p∗

(

M,n1,
P ′V

1 +
∑r

j=i+1 |Hj |2
, Hi

)]

,

where

p0 =

(

Ka

2

)

M
+KaP

[

P ′

2

2n1
∑

i=1

S2
i > nP

]

, Si
iid∼ N (0, 1)

and the expectation is taken over H1, H2, . . . , Hr: |H1| ≥
|H2| ≥ . . . ≥ |Hr|.

Proof: Without loss of generality, let us assume that

|H1| ≥ |H2| ≥ . . . ≥ |Hr| and the corresponding users’ code-

words are X1, X2, . . . , Xr. Consider the TIN-SIC decoder. In

case of error at the i-th step we have PUPE = (r − i + 1)/r
and thus

pe,genie(C, T, r) ≤ max

{

r − T

r
, 0

}

+
1

r

min{r,T}
∑

i=1

(

(r − i+ 1)P
[

Xi 6= X̂i| {Xj}i−1
j=1

])

, (5)

where X̂i = DTIN (Y ′) and Y ′ is a residual channel output at

step i.

Let us calculate the average PUPE over the ensemble

E(M,n1), i.e. EX1,...,Xr
[pe,genie(C, T, r)]. First, by p0 we

upper bound the probabilities of the events E1 = {Wj =
Wi for some i 6= j, i, j ∈ [Ka]} and E2 = {‖X(Wi))‖ >
n1P for some i ∈ [Ka]}.

Consider the i-th step, let us estimate

EX1,...,Xr

[

P

[

Xi 6= X̂i| {Xj}i−1
j=1

]]

.

Clearly, for the TIN-SIC algorithm, we can consider the

equivalent single user channel model

Y ′ = XiHi +

r
∑

j=i+1

XjHj +

i−1
∑

j=1

Xj

(

Hj − Ĥj

)

+ Z, (6)

where the first term is the signal to be decoded, while the

last three terms are the interference, interference caused by

non-ideal SIC procedure and noise respectively. Ĥ is the CSI

estimate, see Algorithm 1.

Due to Assumption 2 we have
i−1
∑

j=1

Xj

(

Hj − Ĥj

)

= 0.

We are going to apply the bound p∗(M,n, P,H), the

only problem is caused by the ordered statistics Hi. But at

the same time if we fix H1, H2, . . . , Hr, we can use the

bound p∗
(

M,n1,
P ′V

1+
∑

r
j=i+1

|Hj |2
, Hi

)

. To finish the proof we

calculate the expectation over H1, H2, . . . , Hr.
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Fig. 1. Example of received signal in case of r = 3 users and SNR equals to
15 dB. 8 clusters can be distinctly seen at this SNR. Orange line shows the
two component GM representation. Ellipse is 1-σ contour of corresponding
GM component covariance matrix. Noiseless signal ±H1 ± H2 ± H3 is
represented by green dots.

IV. POLAR CODE BASED SCHEME

A. TIN decoding

To apply a TIN decoder we first construct the coarse channel

estimate for the codeword with the highest received power.

Recall that the fading coefficients corresponding to transmitted

codewords are H1, . . . , Hr, |H1| ≥ |H2| ≥ . . . ≥ |Hr|.
Given noiseless conditions and the BPSK modulation (which

we use in our scheme), one can observe up to 2r complex

values within n1 channel uses (see Fig. 1). The CSI estimation

problem can be solved easily in this case.

In the noisy case, the problem is much more difficult, so

we are going to estimate CSI for the strongest use only. To

solve the problem we use clustering methods. Under BPSK

modulation the received signal in every channel use can be

clustered into two components (±H
√
P + Z̃). The clustering

is performed in two-dimensional space corresponding to real

and imaginary components of the received signal Y n1 . This

procedure tries to extract the signal corresponding to the

strongest user and treat all other transmissions as a noise.

Another benefit of this procedure is noise plus interference

(NI) power estimation: with the EM clustering, the covariance

matrix of each component provides the estimate of the NI

power, see Fig. 1. Under the block-fading channel model, this

approach does not require any preambles or pilot symbols.

Thus, at the i-th TIN-SIC step we have the following

approximate a posterior pdf for Hi in the form of Gaussian

mixture (GM)

p(Hi) =

2
∑

l=1

µlCN
(

Ĥ l
i , P̂

l
)

. (7)

After the clustering procedure, a two-component GM is repre-

senting the CSI pdf (7). Further decoding procedure must take

into account both components, and we perform two decoding

attempts with at most one being successful. The decoder is

a polar list successive cancellation decoder with the cyclic

redundancy check (CRC).

We calculate the decoder input log-likelihood ratios ln1 as

follows

ln1 = log





Ehp
(

Y n1 |x = +
√
P , h

)

Ehp
(

Y n1 |x = −
√
P , h

)



 ,

where the expectation is taken over one of two GM compo-

nents

h ∼ CN
(

Ĥ l
i , P̂

l
)

, l = 1, 2.

The list of codewords is a result of the decoding procedure.

We first check the CRC and thus reduce the list size. The de-

coder outputs the most probable codeword from the remaining

list or the empty set if the list is empty. The final TIN decoder

Algorithm 2 TIN decoder with on-the-fly CSI estimation

Y ′ ⊲ Residual signal after several SIC attempts

p(H)← EM (Y ′) ⊲ perform the 2D EM clustering of the

received signal.

for l ∈ {1, 2} do ⊲ Try two hypotheses on H

Calculate ln1 , h ∼ CN
(

Ĥ l, P̂ l
)

⊲ Demodulate given

representation (7)

Ŵ ← decode (ln1) ⊲ polar decoder

if Ŵ 6= ∅ then

return Ŵ
end if

end for

return ∅

is presented within Algorithm 2.

B. Polar code construction

In contrast to [11] in this paper, all the users utilize the same

polar code. Density evolution based polar code construction

for Rayleigh fading channel was presented in [31]. In the case

of TIN-SIC decoder, the equivalent users’ channels become

rather complex, so the methods of [31] cannot be used directly.

At the same time, the codelength is small, so we used Monte-

Carlo simulations in order to choose frozen subchannels. We

constructed the code for r = T , i.e. for the largest collision

order, we are going to resolve. During this simulation, the bit

error for i-th bit has been evaluated given the i − 1 previous

bits. Given bit error distribution, the k + c most reliable bits

have been selected to be information bits, where c is the CRC

length.

V. NUMERICAL RESULTS AND DISCUSSION

Let us start with the slot decoding performance. In compar-

ison with the previous work [18], we have selected a slightly

longer slot (n1 = 512 channel uses) and utilize polar slot

codes. We use a successive cancellation list decoder with the

list size equals to 64. Recall that r denotes the number of users

transmitting in a slot. The PUPE (Pe) has been evaluated for

r up to 15. The most surprising result is that the TIN-SIC

scheme can resolve a relatively high number of simultaneous

transmissions (see Fig. 2). For r ≤ 9, the PUPE performance

does not significantly deviate from the r = 1 performance
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Fig. 2. TIN-SIC PUPE. Simulation results for a slot decoding performance
for different r. Polar code with k = 100 information bits, n1 = 512 and
BPSK modulation. List size 64, CRC-21 (polar code with equivalent k̃ =

k + c = 121 bits).

curve. Pe remains below the target Pe ≤ ε = 0.1 up to

r = 14. The LDPC based solution from [21] has achieved

this result for r ≤ 8. Given the fact that the weakest users in

a slot deliver the most fraction of Pe, we concluded to use

T = 14 in our energy efficiency curve. We have tested CRC

length equal to 11, 16 and 21. Finally, the CRC length has

been selected to be equal to 21 bits to achieve sufficiently low

false alarm rate (< 10−2Pe) while performing a high number

of decoding attempts (especially for r < T ).

The energy efficiency is the minimum energy required to

serve Ka users in a frame of length n = 30000 with PUPE less

than ε = 0.1 in our reference setup (see Fig. 3). In comparison

with LDPC codes, one can observe better performance when

the system load is low due to better polar codes performance.

At high system load, the performance is still better due to

the TIN-SIC ability to extract a high number of simultaneous

transmission from every slot. The optimal over n1 achiev-

ability bound means the minimum required energy among

all possible slot lengths n1. For example, the green dashed

line represents the achievability bound for n1 = 512. The

solid green line represents the optimal over n1 achievability

bound. Both lines touch each other at Ka ≈ 600. Thus, given

Ka < 600 the longer slot length is optimal, while shorter

codes perform better at Ka > 600. The same achievability

for T = 4 has been constructed (yellow line). On the other

hand, the achievability bound from [19] (ALOHA plus FBL)

provides better results at high loads.

One can see that the polar code curve passes about ∆ <
1 dB below the achievability bound for n1 = 512 at low

loads (dashed green versus purple lines, Fig. 3. This result

corresponds to k = 100 information bits and CRC length c =
21. A more careful look at this gap allows us to formulate

the main result of our practical scheme: the performance loss

caused by the additional CRC bits, ∆ ≈ 10 · log10 (1 + c/k).
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Fig. 3. Ka vs Eb/N0 for ε = 0.1, n = 30000, k = 100 information bits for
different schemes (LDPC from [19] and polar) with different T . Achievability
bounds for fixed code length (n1 = 512, dashed line) and for adjustable code
length (optimal n1) shown for reference as well as converse bound [30].
ALOHA plus finite blockelngth (FBL) taken from [19].

Thus, the additional CRC bits is the major source of the energy

efficiency loss with respect to achievability bound.

To the best knowledge of the authors, the derived achiev-

ability bound and the proposed polar code based scheme

outperform the existing results from the literature on the

unsourced random access in the fading MAC. Further research

should be devoted to the following directions: (a) developing

an achievability bound with non-ideal SIC step taken into

account, (b) improving the decoding algorithm for polar code

based scheme, and (c) considering multiple antennas at the

receiver.
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