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Abstract—Although iterative decoding of polar codes has
recently made huge progress based on the idea of permuted
factor graphs, it still suffers from a non-negligible performance
degradation when compared to state-of-the-art CRC-aided suc-
cessive cancellation list (CA-SCL) decoding. In this work, we
show that iterative decoding of polar codes based on the belief
propagation list (BPL) algorithm can approach the error-rate
performance of CA-SCL decoding and, thus, can be efficiently
used for decoding the standardized 5G polar codes. Rather
than only utilizing the cyclic redundancy check (CRC) as a
stopping condition (i.e., for error-detection), we also aim to benefit
from the error-correction capabilities of the outer CRC code.
For this, we develop two distinct soft-decision CRC decoding
algorithms: a Bahl-Cocke-Jelinek-Raviv (BCJR)-based approach
and a sum product algorithm (SPA)-based approach. Further, an
optimized selection of permuted factor graphs is analyzed and
shown to reduce the decoding complexity significantly. Finally,
we benchmark the proposed CRC-aided belief propagation list
(CA-BPL) to state-of-the-art 5G polar codes under CA-SCL
decoding and, thereby, showcase an error-rate performance not
just close to the CA-SCL but also close to the maximum likelihood
(ML) bound as estimated by ordered statistic decoding (OSD).

I. INTRODUCTION

Polar codes [1] are the first type of channel codes which
are theoretically proven to achieve channel capacity. However,
this is only true when the code length tends to infinity
under a low complexity successive cancellation (SC) decoder.
Due to the recent advances in polar code design and polar
decoding, short length cyclic redundancy check (CRC)-aided
polar codes are selected as the channel code for the uplink
and downlink control channel of the upcoming 5G standard
[2]. The concatenation of an outer CRC code is important
to enchance the short-length error-correcting capabilities of
the polar code. Thus, efficiently decoding short CRC-aided
polar codes in terms of error-rate performance and decoding
complexity/latency is an active topic of research, in particular
for ultra-reliable low-latency communications (URLLC).

The state-of-the-art successive cancellation list (SCL) de-
coder of polar codes [3] benefits significantly from the pos-
sibility of a seamless integration of the CRC into the decod-
ing process. For this, the CRC is used to pick the correct
candidate from the list of possible codewords. However, the
SCL algorithm suffers from unfavorable decoding latency
due to its sequential decoding nature and is also not well
suited for iterative detection and decoding due to the hard-
output nature of the decoder (and its latency). Another polar
decoding approach is to use an iterative belief propagation
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(BP) decoder [4] which is inherently parallel and, thus, allows
high throughput implementations [5] [6]. Also, it is a soft-
in/soft-out (SISO) decoder and, thus, is very suitable for
iterative detection and decoding. However, its main drawback
is a degraded error-rate performance when compared to the
CRC-aided successive cancellation list (CA-SCL) decoder.

Several algorithms have been proposed over the past few
years to enhance the error-rate performance of iterative polar
decoding algorithms. Among these was an outer graph-based
code (e.g., low-density parity-check (LDPC) code [7] or polar
code [8]) which was (partially) augmented to the inner polar
code factor graph to enhance the reliability of the semi-
polarized bit-channels. In [9], [10], virtual noise of low power
is added to the decoder input (i.e., channel output) to avoid
falling into trapping/stopping sets which also enhances the
error-rate of the BP decoder. Furthermore, polar codes can
be decoded over different permuted factor graphs which can
greatly enhance the error-rate performance. This was studied
for different channels (e.g., Binary Erasure Channel (BEC)
[11] and additive white Gaussian noise (AWGN) [12]) and
different decoders (e.g., BP [13] and SCL [14]). It is worth
mentioning that similar ideas were also investigated for Reed–
Muller (RM) codes [14], [15].

Iterative decoding of CRC-aided polar codes was studied
in few recent works (e.g., with only CRC detection in [12]
and with the aid of the CRC error-correcting capabilities in
[16]). However, to the best of our knowledge, there exists no
iterative decoding algorithm of polar codes which achieves (or
approaches) the performance of the CRC-aided polar codes
under SCL decoding (with a sufficiently large list size).

Belief propagation list (BPL) decoding of polar codes [13] is
an iterative BP-based decoding in which a list of different BP
decoders run in parallel, each with a different polar code factor
graph (FG). It was shown that it achieves the same error-rate
performance as SCL decoding of plain polar codes (i.e., no
outer CRC code). In this work, we focus on solving some open
problems in the BPL decoder such as: 1.) CRC incompatibility
and 2.) reducing complexity by optimizing the factor graph
selection. We combine the idea of iterative decoding of polar
codes over permuted factor graphs with SISO decoding of the
CRC, utilizing the error-correction capabilities of the CRC
(rather than only detection of errors). Our results, surprisingly,
show that it is possible to approach the CRC-aided SCL error-
rate performance with a BP-based decoding framework. As
such, the proposed algorithm suggests a competitive decoding
to CA-SCL for CRC-aided polar codes.
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II. POLAR CODES AND ITERATIVE DECODING

Polar codes are based on the channel polarization concept,
where N synthesized channels show a polarization behavior
(good and bad channels). Practically, polar codes can be seen
as a wide range of codes, each characterized by a set of good
bit-channels or its complementary set of bad channels (denoted
as the information set A and the frozen set Ac, respectively).

The polarization matrix of polar codes of block size N = 2n

is given by GN = F⊗n, where F =

[
1 0
1 1

]
and F⊗n denotes

the n-th Kronecker power of F. The k×N polar code generator
matrix G is a sub-matrix of GN with row indices corresponding
to A.1 Throughout this work, we use the notation P(N,k) to
denote a polar code of length N and code dimension k.

A. Belief Propagation Decoding

Unlike the SC-based polar decoders, an iterative BP decod-
ing scheme [4] is based on the idea of message passing over
the encoding FG, shown in Fig. 3 (rightmost box). Finally, a
hard decision is applied on the resultant log-likelihood ratio
(LLR) values on the left or the right of the FG in order to
recover the information bits (in the vector û) or the transmitted
codeword x̂, respectively.

The conventional BP decoder, BP(Nit,max), terminates when
a maximum number of iterations Nit,max is reached. Early
stopping conditions can speed up the decoding process [17]:
• G-based: decoding terminates when x̂ = û ·GN .
• CRC-based: decoding terminates when the checks of the

concatenated CRC code are satisfied. It is important to
keep in mind that in this case, the CRC code only acts
as a stopping condition (i.e., error-detection).

B. Belief Propagation List (BPL) Decoding

It has been observed that the stages of the encoding graph
of a polar code of length 2n can be permuted leading to
n! different graphs with the same encoding behavior [11].
This enables the possibility of BP decoding on different
realizations of the FG. Seeing that different permutations
contain different loops, one FG permutation may be better
than another permutation for a specific input (i.e., transmitted
codeword plus noise realization). BPL exploits this idea by
using a set S of L parallel independent BP decoders each with
a different permutation. Iterative decoding is conducted on the
L decoders in parallel with Nit,max iterations per decoder and
only those codewords satisfying the G-matrix-based stopping
condition are declared as the set of valid polar codewords.
Finally, that valid codeword from the L parallel BP decoders
which is closest, in terms of Euclidean distance, to the channel
output y is picked to be the BPL decoder output. Throughout
this work, we use the notation BPL (L,Nit,max) to denote this
decoder. For more details, we refer the interested reader to
[13].

Interestingly, it was shown in [18] that a stage-wise permu-
tation on the FG corresponds to certain bit-wise permutations

1Based on this insight, RM codes can be easily related to polar codes [11].
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Fig. 1: BLER comparison between BPL with permuted scheduling and
permuted factor graphs (FGs); 5G polar codes of rate 0.5 (i.e., P(N,N/2)-
codes); no CRC is used.

of the vectors u and x. This enables permuted-decoding on
the same FG while only doing these bit-mappings. It also en-
abled the same permuted-decoder concept with other decoders
without having to change the decoder structure itself which is
highly useful for hardware implementations (see [14]).

The selection of permutation sets S was originally done in a
random manner [12]. Later, it was shown that a smart permu-
tations selection would introduce additional performance gains
[18]–[21]. However, an optimal FG selection strategy remains
an open problem.

C. Factor Graph Permutations vs. Decoding Schedule Permu-
tations

Two implementation strategies have been found to realize
the BPL decoding of polar codes:

1) Graph permutations, as originally introduced in [13]
where the FG stages are permuted according to a specific
permutation. Afterwards, conventional BP decoding is
conducted on the permuted factor graph, following the
conventional decoding schedule (i.e., permuted stages
from 1 to n, or n to 1, are updated sequentially).

2) Decoding schedule permutations, where conventional BP
decoding is conducted on the conventional factor graph,
while permuting the decoding schedule (i.e., permuting
the order in which stages are being activated/updated).

Fig. 1 depicts that both strategies have a similar error-
rate performance, for different code lengths. We empirically
observed that the factor graph permutation-based BPL yields a
better performance in the short block length regime, while its
scheduling-based counterpart performs better for longer code
lengths.
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Fig. 2: Linear feedback shift register (LFSR) and length nCRC = 5 trellis of
the CRC code with g(x) = x2 + x + 1.

III. CRC-AIDED BPL DECODING

None of the previously described BPL decoding schemes
utilizes the presence of an outer CRC code during decoding.
In this paper, we propose a CRC-aided belief propagation
list (CA-BPL) decoding scheme that extends the standard
BPL decoding. Its underlying idea is to utilize estimated soft-
information from the CRC code to further enhance the BPL
decoder (i.e., we treat the CRC as an outer code component).
Accordingly, we present two SISO decoding algorithms for
the CRC code that enhance the error-correcting capability of
the BPL decoder.

CRC codewords are defined as polynomials of degree less
than nCRC that are divisible by the generator polynomial g(x)
of degree r. To check divisibility, a linear feedback shift reg-
ister (LFSR) of length r with input xi and feedback according
to g(x) can be used. The CRC code can be visualized in a
trellis diagram with the state s of the shift register on the
vertical axis and the discrete time index i on the horizontal
axis. Fig. 2 shows the LFSR and the trellis of a CRC-2 code
with polynomial g(x) = x2 + x + 1 as an example. The
register is initialized to the all-zero state. Every time index,
a state transition (s′,s) from state s′ to s occurs, depending
on the input bit value xi. A bit sequence fulfills the CRC,
i.e., it is a codeword, if and only if the shift register returns
to the all-zero state when the last bit enters the circuit. For
all transitions, λtrans(s′,s) ∈ {0,1} denotes the bit value of the
transition. Likewise, U0 and U1, depicted as solid black and
dashed red lines in the trellis diagram, denote the set of edges
(s′,s) corresponding to the 0 and 1 transitions, respectively.

We use the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm
[22] to enable maximum a posteriori (MAP) decoding of the
CRC code. Thus, we briefly present the log-domain BCJR
algorithm [23].

α̃i+1(s) = max∗
s′

(
α̃i(s′)−Lin,i ·λtrans(s′,s)

)
(1)

∀s and i = 0, ...,nCRC−1 starting with α̃0(0) = 0.

β̃i(s′) = max∗
s

(
β̃i+1(s)−Lin,i ·λtrans(s′,s)

)
(2)

∀s′ and i = nCRC−1, ...,0 starting with β̃nCRC(0) = 0.

Lout,i =max∗
U0

(
α̃i(s′)+ β̃i+1(s)

)
−max∗

U1

(
α̃i(s′)+ β̃i+1(s)

)
.

(3)
The inputs to the BCJR algorithm are the LLRs Lin,i of each

bit of the noisy CRC codeword. The BCJR algorithm estimates
a posteriori log-probabilities α̃ and β̃ recursively, based on
the current state along with state transition probabilities in a
forward pass (1) and a backward pass (2) on the trellis. The
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Fig. 3: Polar + CRC decoders based on the polar factor graph (FG) augmented
with BCJR trellis (left) and SPA factor graph (right) for the CRC. The code
used is a P(8,5) polar code concatenated with a CRC code with polynomial
g(x) = x2 + x + 1.

estimates are combined in a final step (3) to obtain the extrinsic
L-value Lout,i for each bit. To compute the sum of probabilities
in the log-domain, we use the max∗ operator, which can be

expressed as max∗
j

(x j) = log
(

∑
j

ex j

)
.

From the equations it is obvious that the complexity of
the BCJR algorithm scales proportional to the number of
states in the underlying state machine. Therefore, the overall
complexity is O(nCRC · 2r), making this algorithm infeasible
for long CRC lengths r.

To counteract complexity, we propose a second SISO de-
coder. It is based on the sum product algorithm (SPA) used to
decode LDPC codes. SPA operates on the parity-check matrix
HCRC of the CRC code. For details on the SPA, we refer the
interested reader to [23]. HCRC is directly obtained from the
systematic generator matrix, which is generated by the CRC
codewords corresponding to the unit vectors. As the SPA is
known to have poor performance on high density parity-check
matrices, the density of HCRC is reduced using row operations.
As a heuristic, a greedy algorithm that iteratively combines
two rows and replaces the one with higher Hamming weight,
proved to be sufficient for this task.2

For the example CRC code with polynomial
g(x) = x2 + x + 1, the resulting parity-check matrix is

HCRC =

[
1 0 1 1 0
0 1 1 0 1

]
.

Fig. 3 shows how both the BCJR and SPA decoders of
the CRC code are augmented to the left side of the polar
decoder. The CRC decoder only interacts with the non-frozen
bit-positions A of the polar code. After each right-to-left
message propagation on the polar FG, the CRC decoder is fed
with the left-most L-messages of the information bit channels
Lin = L0,A. Then, the CRC decoder is updated and its output
is fed back into the left-most R-message R0,A =Lout, followed
by a left-to-right message update on the polar FG.

In CA-BPL, a total of L permuted factor graphs is used,
each with its own instance of the CRC decoder. Throughout
this work, we only consider factor graph permutation-based
BPL rather than scheduling-based BPL (cf. Fig. 1).

2We empirically observed that the exact form of HCRC has only minor
impact on the error-rate performance.
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IV. RESULTS

We evaluate the performance of the CA-BPL algorithm on
a concatenated polar-CRC code with codelength N = 128 and
code dimension k = 64. As CRC polynomial, CRC-6 from the
5G standard [2] g(x) = x6 + x5 + 1 is used. Consequently,
the polar code has 70 non-frozen bits, to account for the rate
loss of the outer CRC code. For the sake of reproducibility,
we use the bit-reliability order specified in the 5G standard
[2] as the design criterion of the inner polar code (i.e., A).

A. Permutation Selection

One possible approach to reduce the complexity of the
proposed decoding scheme would be to smartly select the FG
permutations reducing the number of required FGs.

Remember that, in BPL, as long as the received vector
is maximum likelihood (ML)-decodable, only one of the L
permuted BP decoders has to converge to the correct codeword
to successfully decode. In other words, the block error proba-
bility of the ML-decodable received sequences P

(
EBPL

∣∣EML
)

of the BPL decoder is the probability of all the constituent BP
decoders being in error. This is expressed as

P
(
EBPL(S)

∣∣EML
)
= P

(⋂
i∈S

Ei

∣∣∣∣∣EML

)
(4)

where EML denotes an ML decoder success event, EBPL de-
notes the event of the BPL decoder block error, and Ei denotes
the event of the BP decoder using FG permutation i not
converging to the correct codeword within Nit,max iterations.

Therefore, to use the full potential of BPL, it is necessary
to find a set S of L factor graph permutations that yields the
best joint block error rate (BLER) performance. The intuition
behind this idea is to have more diverse permutations that lead
to more differentiated results (i.e., diversity in the final list of
candidates) than multiple good permutations that lead to the
same results (i.e., having the same candidate multiple times
in the list). Thus, we would like to minimize P

(
EBPL(S)

∣∣EML
)

over all possible sets S with the constraint |S|= L

minimize
S

P

(⋂
i∈S

Ei

∣∣∣∣∣EML

)
subject to |S|= L.

For a length N = 128 code, there exist 7! = 5040 different
permutations of the FG. Thus, the search space of the opti-
mization problem contains

(5040
L

)
possible permutation sets.

As we can only estimate the probabilities using Monte Carlo
simulation and error events are comparably rare, naive opti-
mization is computationally infeasible. For the 5G construction
of the polar code, however, we empirically observe that,
regarding standalone BP decoders, the default permutation D
achieves the lowest BLER. By assuming D is in the optimum
set S we can factor equation (4) into a conditional BP BLER
and a term corresponding to the list gain:

P

(⋂
i∈S

Ei

∣∣∣∣∣EML

)
D∈S
= P

(
ED
∣∣EML

)
·P

 ⋂
i∈S\{D}

Ei

∣∣∣∣∣∣ ED,EML


︸ ︷︷ ︸

List Gain

.

This factorization simplifies the optimization greatly, as
P
(
Ei
∣∣ ED,EML

)
� P

(
Ei
∣∣EML

)
, due to the correlation of the

permuted FG decoders. Consequently, a comparably small
dataset of 2 ·104 samples could be used to find the remaining
optimal L− 1 other permutations. The collected dataset con-
tains y vectors at Eb/N0 = 4 dB for which the BP decoder,
using the default permutation D, fails to decode. We then
evaluate the convergence of all other 5039 permutations.
Finally, a genetic algorithm is applied on 15000 samples of
the dataset to find the optimal S by minimizing the estimate
of P

(⋂
i∈S\{D}Ei

∣∣∣ ED

)
, i.e., maximizing the list gain. The

last 5000 samples serve as a validation set to test whether
the solution generalizes well. In Fig. 4 we compare different
permutation selection methods for CA-BPL with list size
L = 7 based on BLER performance. The genetic optimized
list outperforms both random permutations and the 7 cyclic
shifts of the default permutation.

B. Error-Rate Performance

We compare a classical BPL decoder that uses the CRC
solely as a stopping condition to our proposed CA-BPL
decoding scheme, with both BCJR and SPA CRC decoders.
Additionally, we use CA-SCL decoding with list size
L = 32 and order-4 ordered statistic decoding (OSD)
[24] as a lower bound on the BLER performance. The
CRC parity-check ensemble used has (edge-perspective)
variable node and check node degree distribution polynomials
λ (Z) = 0.06 + 0.16Z1 + 0.3Z2 + 0.3Z3 + 0.15Z4 + 0.03Z5

and ρ(Z) = 0.66Z32 + 0.34Z33, respectively.
The BPL and CA-BPL decoders use Nit,max = 200 iterations

and L = 32 parallel decoders. The FG permutations were
selected using the optimization technique described above.
Fig. 5 shows the BLER performance of the decoders over
the AWGN channel using binary phase shift keying (BPSK)
modulation. The proposed CA-BPL scheme outperforms a
classical BPL (with CRC used as a stopping criterion) by
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Fig. 5: BLER comparison between different CRC-aided BPL decoders and
CRC-aided SCL decoder; the considered CRC-aided polar code has a code
length N = 128, code dimension k = 64 and CRC-6 is used, thus, the overall
code rate is 0.5. The iterative decoders use a maximum number of iterations
of Nit,max = 200.

0.5 dB at a BLER of 10−3. Note that, this gain is solely due
to benefiting from the CRC error-correction capabilities rather
than only detecting errors. It is worth mentioning that CA-BPL
approaches the performance of CA-SCL closer than 0.15 dB at
a BLER of 10−4. The same BLER performance as CA-SCL is
reached at Eb/N0 = 5 dB. It is quite remarkable that the much
simpler SPA-aided BPL decoder is only marginally worse than
the (optimal) BCJR-aided BPL.

V. CONCLUSION

We have introduced a CRC-aided extension of the iterative
BPL decoding algorithm, where the CRC is used for error-
correction rather than the plain error-detection. For this, we
have developed two soft-in/soft-out decoding techniques for
CRC codes based on the trellis-based BCJR algorithm and the
iterative SPA decoder. To account for the additional decoding
overhead, we have further optimized the selection of factor
graph permutations and have shown that the required list size
can be reduced. As a result, the proposed CA-BPL algorithm
can compete with CA-SCL decoding in the typical SNR
region of interest while promising lower decoding latency and
offering the potential for parallel algorithm implementations.
For a large enough list size, the proposed algorithm even
approaches the estimated ML performance of the concatenated
polar+CRC coding scheme. To the best of our knowledge,
these are the best iterative polar+CRC decoding results that
have been reported in literature. Although we have given some
intuition why the selection of factor graph permutation works,
we leave it open for future work to derive a theoretical analysis
of why a certain set of permutations yields a better overall
performance than other selections.
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