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Abstract

We consider the following problem, which is useful in applications such as joint image and
shape alignment. The goal is to recover n discrete variables gi ∈ {0, . . . , k − 1} (up to some
global offset) given noisy observations of a set of their pairwise differences {(gi − gj) mod k};
specifically, with probability 1

k
+ δ for some δ > 0 one obtains the correct answer, and with

the remaining probability one obtains a uniformly random incorrect answer. We consider a
learning-based formulation where one can perform a query to observe a pairwise difference, and
the goal is to perform as few queries as possible while obtaining the exact joint alignment.
We provide an easy-to-implement, time efficient algorithm that performs O

(

n lgn
kδ2

)

queries, and
recovers the joint alignment with high probability. We also show that our algorithm is optimal
by proving a general lower bound that holds for all non-adaptive algorithms. Our work improves
significantly recent work by Chen and Candés [CC16], who view the problem as a constrained
principal components analysis problem that can be solved using the power method. Specifically,
our approach is simpler both in the algorithm and the analysis, and provides additional insights
into the problem structure.
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1 Introduction

Learning a joint alignment from pairwise differences is a problem with various important applica-
tions ranging from shape matching [HSG13], to spectroscopy imaging [WS13]. In this work we
adopt the following established mathematical formalization of this problem. There exists a set
V = [n] of n discrete items, and an assignment g : V → [k] according to which each item is assigned
one out of k possible labels. To give an example, imagine a set of n images of the same object in k
possible orientations/angles, where each g(i) is one of k possible orientations (angles) of the camera
when taking the i-th image. Recovering g would allow a better understanding of the 3-dimensional
structure of the object. The assignment function g is unknown, but we may obtain a set of pairwise
noisy difference samples {f̃(i, j)

def
= (g(i)−g(j)+noise) mod k}(i,j)∈Ω where Ω ⊆

([n]
2

)

is a symmetric
index set, i.e., a set of pairs {i, j} with i < j. In this work, we consider the setting where each pair
can be queried at most once (e.g., the measurement will not change on repeated queries), and the
noisy measurement f̃(x, y) is equal to

f̃(x, y) =
(

g(x) − g(y) + ηxy
)

mod k (1)

where the additive noise values ηxy are i.i.d. random variables supported on {0, 1, · · · , k− 1}, with
the following probability distribution that is slightly biased towards zero for some parameter δ > 0:

Pr [ηxy = i] =

{ 1
k + δ, if i = 0;
1
k − δ

k−1 , for each i 6= 0.
(2)

In this work we study the problem of recovering g up to some global offset by choosing the set
of queries Ω.

Related Work. Learning joint alignments is a major problem that appears in numerous settings
under different guises. In cryo-electron microscopy, the problem corresponds to recovering the
angles from which 2d pictures of a 3d object were taken. This allows for the construction of a 3d
model of the objective [SS12]. In shape matching, a key problem is assembling fractured surfaces
[HFG+06] and fusing scans to model reality [HH02], jointly optimizing the maps between shapes
improves the performance compared to matching shapes in isolation [HG13].

Closest to our work lies the work of Chen and Candès [CC16], who study the same model
(Equation (1)1). They provide an algorithm that is non-adaptive, and the underlying queries form
a random binomial graph, i.e. each edge as queried independently with a fixed probability. They
show that, in the setting where queries form a random binomial graph, the minimax probability

of error tends to 1 if the number of queries is less than Ω
(

n logn
kδ2

)

[CC16, Theorem 2,p. 7]. Their

algorithm, based on the projected power method, has a required number of queries that matches
the lower bound. Inferior results have been obtained in the past as well. Notably, a simpler
non-adaptive algorithm with somewhat inferior query complexity that relies on simple breadth-
first search was proposed by Mitzenmacher and Tsourakakis [MT18]. Chen et al. provide an
SDP-based algorithm [CGH14] that is slower and with more stringent recovery conditions than
[CC16]. A closely related but different approach with respect to the mathematical formulation is
the phase/angular synchronization problem [Sin11, ZB18]. It is worth remarking that the special
case k = 2 reduces to an active learning problem related to graph partitioning problem that is

1The parameter π0 in their random corruption model, and our bias δ are connected with the following equation

δ = π0
k−1

k
.
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well-studied, e.g. [MS17, TML+17], with close connections to the classic planted partition problem
[AS15, HWX16, McS01, Tso15].

Our Results. In this paper we provide a simpler non-adaptive algorithm that we prove also

succeeds with high probability with O
(

n logn
kδ2

)

queries. Our algorithm is based on selecting a small

seed set and using queries to obtain and reconcile all edge measurements for edges adjacent to these
vertices; this approach itself appears of interest. We also provide a simpler lower bound argument
showing our result is tight in terms of the number of queries required in this more general setting
where queries are arbitrary.

2 Proposed Method

2.1 Preliminaries

Both our algorithm and our lower bound proof need tight concentration inequalities on the proba-
bility that the majority of a collection of biases ηxy is equal to 0. We state the two concentration
inequalities here. The proofs are in Section 2.4. The first lemma considers the case of small δ:

Lemma 2.1. Let k ≥ 2 be an integer, let 0 ≤ δ ≤ 1/2k and let X1, . . . ,Xn be i.i.d. random
variables such that each Xi takes the value 1 with probability 1/k + δ, the value −1 with probability
1/k − δ/(k − 1) and the value 0 otherwise. There exists constants c1, c2 > 0 such that:

Pr[
∑

i

Xi ≤ 0] ≤ c1 exp(−δ2nk/c1)

and
Pr[

∑

i

Xi ≤ 0] ≥ c−1
2 exp(−δ2nkc2).

And the second considers the case of large δ:

Lemma 2.2. Let k ≥ 2 be an integer, let 1/2k < δ ≤ 1/4 and let X1, . . . ,Xn be i.i.d. random
variables such that each Xi takes the value 1 with probability 1/k + δ, the value −1 with probability
1/k − δ/(k − 1) and the value 0 otherwise. There exists constants c1, c2 > 0 such that:

Pr[
∑

i

Xi ≤ 0] ≤ c1 exp(−δn/c1)

and
Pr[

∑

i

Xi ≤ 0] ≥ c−1
2 exp(−δnc2).

2.2 Upper bound - Proposed Algorithm

Our algorithm is a simple and efficient non-adaptive algorithm. The basic idea is to choose a set
of nodes S as a seed set of nodes. We then make all queries between S and the full node set V .
Based on these queries, we first determine the label g(s) of all nodes s ∈ S (up to a cyclic shift).
Once these have been determined, we can determine the labels of all remaining nodes v by using a
plurality vote on {g(s) + f̃(v, s) mod k | s ∈ S}. We proceed to give the details.
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Lemma 2.3 (Plurality vote). Let S ⊆ V be an arbitrary seed set of nodes and assume k ≤ no(1).
For any node v ∈ V \ S, the plurality vote among {g(s) + f̃(v, s) mod k | s ∈ S} is equal to g(v)
with probability at least 1 − 1

n2 if either:

• 0 ≤ δ ≤ 1/2k and |S| = Ω( lgn
δ2k

), or

• 1/2k ≤ δ ≤ 1/4 and |S| = Ω( lgnδ ).

By taking a union bound over all nodes v /∈ S, we obtain the following straight-forward corollary.

Corollary 2.4. Assume we have a seed of nodes S, such that for all s ∈ S, we know g(s)+α mod k
for some (shared) cyclic shift α ∈ {0, . . . , k − 1}. Then it is possible to recover g(v) + α mod k for
all v ∈ V in O(n|S|) time whp. provided that k ≤ no(1) and either:

• 0 ≤ δ ≤ 1/2k and |S| = Ω( lgnδ2k ), or

• 1/2k ≤ δ ≤ 1/4 and |S| = Ω( lgnδ ).

Proof of Lemma 2.3. Each query f̃(v, s) returns (g(v) − g(s) + ηvs) mod k. We thus have (g(s) +
f̃(v, s)) mod k = (g(v) + ηvs) mod k. Therefore (g(s) + f̃(v, s)) mod k = g(v) with probability
1/k + δ, and for every i ∈ {1, . . . , k − 1}, we have (g(s) + f̃(v, s)) mod k = (g(v) + i) mod k with
probability 1/k − δ/(k − 1). Using Lemma 2.1 and a union bound over all i ∈ {1, . . . , k − 1},
we thus conclude for 0 ≤ δ ≤ 1/2k, that the plurality vote equals g(v) with probability at least
1 − kc1 exp(−δ2|S|k/c1) for a constant c1 > 0. For |S| = Ω( lgn

δ2k
) and k ≤ no(1), this is at least

1− 1/n2. Similarly we use Lemma 2.2 and a union bound over all i ∈ {1, . . . , k− 1} to conclude for
1/2k ≤ δ ≤ 1/4, that the plurality vote equals g(v) with probability at least 1 − kc1 exp(−δ|S|/c1)
for a constant c1 > 0. For |S| = Ω( lgnδ ) and k ≤ no(1), this is at least 1 − 1/n2. �

Given Corollary 2.4 it suffices to find a seed set S ⊆ V and determine the labels of the nodes in
S up to the same cyclic shift α. Our next lemma shows how to do so via queries f̃(s, v) for nodes
s ∈ S and v ∈ V \ S. Our key idea is to determine the difference (g(s) − g(s′)) mod k for pairs
s, s′ ∈ S via queries f̃(s, b) − f̃(s′, b) for nodes b ∈ V \ S.

Lemma 2.5 (Learning Pairwise Differences). Let S ⊆ V be an arbitrary set of nodes and assume
k ≤ no(1). Let s, s′ ∈ S be two distinct nodes. Define Zs,s′ as the plurality vote among the answers

{(f̃(s, b) − f̃(s′, b)) mod k}b∈V \S. If |V \ S| = Ω( lgnkδ4 + lgn
δ2 ), then Za,a′ = (g(a) − g(a′)) mod k with

probability at least 1 − 1
n2 .

Proof. Since

f̃(s, b) − f̃(s′, b) = (g(s) − g(s′) mod k) + (ηs,b − ηs′,b mod k),

we need to understand the probability distribution of Zb = ηs,b − ηs′,b mod k. Intuitively, we wish
that the probability Pr[Zb = 0] is greater enough than each Pr[Zb = i] where i 6= 0 so that the
plurality vote gives the correct estimate for g(s) − g(s′). Indeed,

Pr[Zb = 0] =
k−1
∑

j=0

Pr[ηs,b = ηs′,b = j] = Pr[ηs,b = ηs′,b = 0] +
k−1
∑

j=1

Pr[ηs,b = ηs′,b = j] =

=
(1

k
+ δ

)2
+ (k − 1)

(1

k
−

δ

k − 1

)2
=

1

k
+

kδ2

k − 1
.
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Also Zb is uniform over 1, . . . , k− 1 with the remaining probability, i.e. Pr[Zb = i] = 1
k −

kδ2

(k−1)2

for i 6= 0. We thus obtain the exact same guarantees as in Lemma 2.3 with δ replaced by δ′ = kδ2

k−1 .
That is, if either

• 0 ≤ kδ2

k−1 ≤ 1/2k and |V \ S| = Ω( (k−1)2 lgn
k3δ4

), or

• 1/2k ≤ kδ2

k−1 ≤ 1/4 and |V \ S| = Ω( (k−1) lgn
kδ2

).

then the plurality vote among {(f̃(s, b) − f̃(s′, b)) mod k}b∈B equals (g(s) − g(s′)) mod k with
probability at least 1 − 1/n2. Combining the two, we conclude from the above that the plurality

vote is correct with probability at least 1− 1/n2 provided that |V \S| = Ω( (k−1)2 lgn
k3δ4

+ (k−1) lgn
kδ2

) =

Ω( lgnkδ4 + lgn
δ2 ). �

In light of the above, our proposed algorithm is thus to pick a set S and perform all queries
between S and V \S. Based on Lemma 2.3 and Lemma 2.5, we set |S| = O( lgn

kδ2
) when 0 ≤ δ ≤ 1/2k

and |S| = O( lgnδ ) when 1/2k ≤ δ ≤ 1/4. We then fix a node s ∈ S and assign it the label ĝ(s) = 0.
We thus have ĝ(s) = (g(s) + (0 − g(s))) mod k, i.e. g(s) has been recovered up to a cyclic shift of
(0 − g(s)). Our goal is to recover all other labels up to the same cyclic shift.

We now compute an estimate µs′ of (g(s) − g(s′)) mod k for every s′ ∈ S \ {s} using a plu-
rality vote on {(f̃(s, b) − f̃(s′, b)) mod k}b∈V \S . A union bound over all nodes in S together with
Lemma 2.5 shows that all these estimates are correct whp. We then assign the label ĝ(s′) = µs′ to all
remaining nodes s′ ∈ S. If all plurality votes were correct, then ĝ(s′) = µs′ = (g(s′)−g(s)) mod k =
(g(s′) + (0 − g(s))) mod k for all s′. That is, we have recovered each g(s′) up to the same cyclic
shift (0 − g(s)) mod k.

To recover the labels of all remaining nodes v ∈ V \S in the graph (up to the shift (0−g(s)) mod
k), we use a plurality vote on {ĝ(s′)+ f̃(v, s′) mod k}s′∈S = {g(s′)+(0−g(s))+ f̃(v, s′) mod k}s′∈S.
Corollary 2.4 and a union bound over all nodes in V \ S gives us that our algorithm recovers all
labels whp. Our proposed algorithm is also shown in pseudocode, see Algorithm 1.

Algorithm 1 Learning Joint Alignment with a Faulty Oracle

Choose S ⊆ V such that |S| = O( logn
kδ2

) if 0 ≤ δ ≤ 1/2k and |S| = O( lgnδ ) if 1/2k ≤ δ ≤ 1/4.
Perform all queries between S and V \ S.
Fix a node s ∈ S and assign it the label ĝ(s) = 0.
For each s′ ∈ S \ {s}, compute an estimate µs′ of (g(s′) − g(s)) mod k using the plurality vote
among the queries {f̃(s′, b) − f̃(s, b)}b∈V \S and assign s′ the label ĝ(s′) = µs′ .
For each v /∈ V \ S, assign it a label corresponding to the result of the plurality vote among
{ĝ(s) + f̃(v, s)}s∈S .

As a last remark, notice that we can only choose |S| = O( lgnkδ2 ) or |S| = O( lgnδ ) provided that
lgn
kδ2

= O(n) in the first case and lgn
δ = O(n) in the second case. Assume first that indeed |S| ≤ n/2.

Then Lemma 2.5 further requires that |V \S| = Ω( lgn
kδ4

+ lgn
δ2

). Since |V \S| ≥ n/2 when |S| ≤ n/2,

this translates into lgn
kδ4

+ lgn
δ2

= O(n). This is a more strict requirement than lgn
kδ2

= O(n) and
lgn
δ = O(n). We can thus invoke our algorithm as long as δ = Ω((lg n/nk)1/4) and δ = Ω(

√

1/n).

We assume k ≤ no(1), hence the dominating requirement is δ = Ω((lg n/nk)1/4).
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The algorithm is completely non-adaptive, correct whp. and each plurality vote can be computed
in linear time in the number of estimates involved. The total running time of the algorithm is thus
O(|V ||S|) and so is the number of queries. When 0 ≤ δ ≤ 1/2k, this is O(n lgn

δ ) and when

1/2k ≤ δ ≤ 1/4, this is O(n lgn
kδ2

).

Theorem 2.6. If (lg n/nk)1/4 ≤ δ ≤ 1/2k and k ≤ no(1), then there is a non-adaptive and
deterministic query algorithm that makes O(n logn

δ2k
) queries, runs in O(n logn

δ2k
) time and is correct

whp.
If 1/2k ≤ δ ≤ 1/4 and k ≤ no(1), then there is a non-adaptive and deterministic query algorithm

that makes O(n logn
δ ) queries, runs in O(n logn

δ ) time and is correct whp.

2.3 Lower bound

In this section, we complement our algorithm with a matching lower bound:

Theorem 2.7. If 1/n1/4 ≤ δ ≤ 1/2k and k ≤ no(1), then any non-adaptive and possibly randomized
query algorithm making o(n logn

δ2k
) queries has success probability at most exp(−nΩ(1)).

If 1/2k ≤ δ ≤ 1/4 and k ≤ no(1), then any non-adaptive and possibly randomized query algorithm
making o(n logn

δ ) queries has success probability at most exp(−nΩ(1)).

Let n be the number of vertices and consider a (possibly randomized) non-adaptive query
algorithm A, i.e. an algorithm that chooses the set of queries to make before seeing the results of
the queries. Let ε be the success probability of A, that is, for any latent function g, A recovers g
(up to a cyclic rotation of the labels) with probability at least ε. Let t be the number of queries
made by A. The choice of queries is allowed to be randomized. Our goal is to show that ε is small
if t is small.

Hard Distribution. We start by defining a hard distribution. Let g be a random latent
function that assigns label 0 to the first vertex and a uniform random and independently chosen
label in {0, . . . , k − 1} to the remaining vertices.

Simplifying A. Our first step is to simplify A for a cleaner analysis. Recall that a correct
algorithm is allowed to return any cyclic rotation of the latent function g, i.e. any labeling that is
equal to g up to adding the same constant mod k to all labels. Under our hard distribution g, we
always have that the first vertex has label 0. Therefore, we can define a new algorithm A1 which
makes the same queries as A, but when returning an assignment of labels, A1 takes the output of
A and subtracts the label assigned by A to the first vertex from every single output label, mod k.
In this way, for every g ∈ supp(g), we get that A1 returns g whenever A is correct up to a cyclic
rotation. That is, we now have an algorithm A1 that makes t queries and has success probability ε
for any g ∈ supp(g), even if we define success as returning the exact labeling (i.e. no cyclic shifts
allowed). Our next simplifying step is to derandomize A1. By fixing the random coins of A1 (easy
direction of Yao’s principle), we obtain a deterministic algorithm A2 that makes t non-adaptive
queries and is correct with probability ε over the random choice of g. Since A2 is deterministic
and non-adaptive, we can let E be the set of edges queried by A2 and let f ∈ E → {0, . . . , k − 1}
give the (random) results of the queries E.

We wish to simplify A2 even further by making assumptions about the labeling it returns when
seeing a set of answers f ∈ supp(f) to queries. Let S denote the event that A2 is correct. Then

Pr[S] =
∑

f∈supp(f)

Pr[f = f ] Pr[S | f = f ].

5



Since A2 is deterministic, it outputs a concrete labeling A2(f) for any f ∈ f. Thus

Pr[S | f = f ] = Pr[g = A2(f) | f = f ].

Let G(f) be the collection of all maximum likelihood labelings g ∈ g conditioned on f = f , i.e.
G(f) contains all g ∈ supp(g) such that Pr[g = g | f = f ] ≥ Pr[g = g′ | f = f ] for all g′ ∈ supp(g).
The above allows us to conclude that if we define the algorithm A∗ which makes the same queries
as A2, but always returns a uniform random g ∈ G(f), then A∗’s success probability is at least ε.
This completes our simplifying steps and we will show that A∗ has small success probability if t is
small.

Performance of A∗. To prove that A∗ has low success probability if it makes few queries, we
will show that there is a good chance that the correct labeling g is not the maximum likelihood
estimate after seeing f. For this, consider a vertex v different from the first vertex and let Ev be
the subset of edges from E that have v as an end point. Since each edge in E has two end points,
there must be a set W of at least n/2 vertices that have |Ev | ≤ 4t/n. We form an independent set
I from W by repeatedly selecting one vertex v from W and adding it to an initially empty I. We
then remove all vertices incident to v from W . Since each v removes at most 4t/n other vertices
from W , we are left with an I of size at least (n−1)/(4t/n+ 1). The reason why we choose I as an
independent set is that it implies that the queries corresponding to edges incident to a node v ∈ I
are independent of the queries incident to any other node w ∈ I.

Now let f ∈ supp(f) be an assignment to the edges and let g ∈ supp(g) be a classification of the

vertices. Define from f and g the noise on edge (u, v) ∈ Ev as ηfguv = (g(u) − g(v) − f(u, v)) mod k.

For each i ∈ {0, . . . , k − 1}, define cfgv (i) as the number of edges (u, v) incident to v for which

ηfguv = i. Define the subset I∗fg ⊆ I containing all vertices v ∈ I such that cfgv (1) ≥ cfgv (0). We

claim that there are at least 2|I
∗
fg

| distinct labelings g′ ∈ supp(g) that all have Pr[g = g′ | f =
f ] ≥ Pr[g = g | f = f ]. To see this, consider any labeling g′ where g′(v) = g(v) for v /∈ I∗fg and

either g′(v) = g(v) − 1 or g′(v) = g(v) for v ∈ I∗fg. There are 2|I
∗
fg

| such g′. We will prove that
Pr[g = g′ | f = f ] ≥ Pr[g = g | f = f ]. For a classification g ∈ supp(g) and assignment to the edges
f ∈ supp(f), define E+

fg as the subset of edges for which (g(u) − g(v) − f(u, v)) mod k = 0 and let

E−
fg = E \ E+

fg. Since the noises on the edges are independent, it follows that

Pr[f = f | g = g] =

(

1

k
+ δ

)|E+

fg
|(1

k
−

δ

k − 1

)|E−
fg

|

Comparing g′ and g, we notice that all edges (u,w) with v /∈ {u,w} contribute the same
to Pr[f = f | g = g] and Pr[f = f | g = g′]. However, for g′, it holds that any edge where
g(v) − g(u) mod k = 1 we now have g′(v) − g′(u) mod k = g(v) − 1 − g(u) mod k = 0. Hence

cfg
′

v (0) = cfgv (1) ≥ cfgv (0). It follows that Pr[f = f | g = g′] ≥ Pr[f = f | g = g]. Using Bayes’
theorem, we get

Pr[g = g | f = f ] =
Pr[f = f | g = g] Pr[g = g]

Pr[f = f ]
.

and

Pr[g = g′ | f = f ] =
Pr[f = f | g = g′] Pr[g = g′]

Pr[f = f ]
.

6



Since g is uniform over its support, we have Pr[g = g] = Pr[g = g′]. Hence we conclude that

Pr[g = g′ | f = f ] ≥ Pr[g = g | f = f ]

as claimed.
The above implies that A∗ outputs g with probability at most 2−|I∗

fg
| when it sees the query

answers f . Indeed, if there is even a single g′ with Pr[g = g′ | f = f ] > Pr[g = g | f = f ], then A∗

never outputs g, and otherwise, A∗ outputs a uniform random labeling among the 2|I
∗
fg

| candidates.
To upper bound the succes probability of A∗, we thus argue that I∗fg is large with high probability
when t is small.

Assume first that 1/n1/4 ≤ δ ≤ 1/2k and k ≤ no(1). Using Lemma 2.1, each v ∈ I is included in
I∗fg with probability at least c−1

2 exp(−δ2|Ev |kc2) for a constant c2 > 0. Since |Ev | ≤ 4t/n, it follows

that for t = o((n lg n)/(kδ2)), v will appear in I∗fg with probability at least n−o(1). Furthermore,

|I| ≥ (n − 1)/(4t/n + 1) = Ω(δ2nk/ lg n) = Ω(n1/3). Moreover, these events are independent
for different v ∈ I since I forms an independent set. A Chernoff bound implies that |I∗fg| ≥

c−1
2 exp(−δ2|Ev|kc2)|I|/2 ≥ n1/3−o(1) with probability at least 1 − exp(−n1/3−o(1)). When this

event B happens, the conditional success probability is no more than exp(−n1/3−o(1)). Hence the
overall success probability is at most exp(−n1/3−o(1)) Pr[B] + (1 − Pr[B]) = exp(−nΩ(1)).

Assume next that 1/2k ≤ δ ≤ 1/4 and k ≤ no(1). Using Lemma 2.2, each v ∈ I occurs in I∗fg
with probability at least c−1

2 exp(−δ|Ev |c2) for a constant c2 > 0. Since |Ev | ≤ 4t/n, it follows
that for t = o((n lg n)/δ), v will appear in I∗fg with probability at least n−o(1). We also have

|I| ≥ (n− 1)/(4t/n + 1) = Ω(δn/ lg n) = Ω(n1/3). A Chernoff bound like above concludes that the
success probability is no more than exp(−nΩ(1)).

2.4 Concentration Inequalities

In this section, we prove the two concentration inequalities stated in Section 2.1. Our proofs use
the standard Chernoff bounds as well as the following “reverse” Chernoff bound:

Theorem 2.8 ([Mou10]). Let C1, . . . , Cm be i.i.d. 0/1 random variables with Pr[Ci = 1] = p. For
p ≤ 1/2 and for any 0 ≤ t ≤ m(1 − 2p) it holds that:

Pr[

m
∑

i=1

Ci ≥ t + pm] ≥
1

4
exp(−2t2/pm).

We start by proving Lemma 2.1:

Proof of Lemma 2.1. For 0 ≤ δ ≤ 1/2k and n ≥ k/2, we first upper bound Pr[
∑

i Xi ≤ 0]. Let Yi

take the value 1 if Xi takes the value 1 and 0 otherwise. Let Zi take the value 1 if Xi = −1 and
0 otherwise. By a Chernoff bound with (1 − ε)(1/k + δ) = (1/k + δ/2) ⇒ ε = δ/(2(1/k + δ)), we
get Pr[

∑

i Yi ≤ (1/k + δ/2)n] ≤ exp(−ε2(1/k + δ)n/2). This is at most exp(−δ2n/(8(1/k + δ))) ≤
exp(−δ2nk/8). Similarly, a Chernoff bound with (1 + ε)(1/k − δ/(k − 1)) = (1/k + δ/2) ⇒ ε =
(δ/2 + δ/(k − 1))/(1/k − δ/(k − 1)) ≥ δ/(2(1/k − δ/(k − 1))), we have Pr[

∑

i Zi ≥ (1/k + δ/2)n] ≤
exp(−ε2(1/k − δ/(k − 1))n/3) ≤ exp(−δ2n/(12(1/k − δ/(k − 1)))) ≤ exp(−δ2nk/12). A union
bound gives Pr[

∑

iXi ≤ 0] ≤ 2 exp(−δ2nk/12). If n ≤ k/2, then δ2nk < 1 and the statement
follows trivially since there is a constant c1 making c1 exp(−δ2nk/c1) greater than or equal to 1.
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To lower bound Pr[
∑

i Xi ≤ 0], let W =
∑

i(Yi + Zi). Conditioned on W = m, we have that
∑

iXi is distributed as the sum of m i.i.d. random variables taking the value 1 with probability
(1/k + δ)/(2/k + δk/(k − 1)) ≤ 1/2 + δk/2 and the value −1 with probability at least 1/2 − δk/2.
We will use the following “reverse” Chernoff bound:

Conditioned on W = m > 0, we ask what is the probability that we see at least ⌈m/2⌉ −1’s,
i.e.

∑

iXi ≤ 0. Fixing t = ⌈m/2⌉ − (1/2 − δk/2)m ≤ δkm/2 + 1 we see that

Pr[
∑

i

Xi ≤ 0 | W = m] ≥
1

4
exp(−2(δkm/2 + 1)2/(1/2 − δk/2)m) ≥

1

4
exp(−8(δkm/2 + 1)2/m) ≥

1

4
exp(−16(δ2k2m/4 + 1)).

Using that E [W ] = (2/k + δk/(k − 1))n, Markov’s inequality gives us that W ≤ (4/k + 2δk/(k −
1))n ≤ 8n/k with probability at least 1/2. We also have

∑

iXi = 0 when
∑

iWi = 0. Hence

Pr[
∑

i

Xi ≤ 0] ≥
1

8
exp(−32(δ2kn + 1)) ≥

1

8 · e−32
exp(−32δ2nk).

�

Next we prove Lemma 2.2:

Proof of Lemma 2.2. We start by upper bounding Pr[
∑

iXi ≤ 0]. Let Yi take the value 1 if Xi

takes the value 1 and 0 otherwise. Let Zi take the value 1 if Xi = −1 and 0 otherwise. A Chernoff
bound gives

Pr[
∑

i

Yi ≤ (1/k + δ/2)n] ≤ exp(−δ2n/(8(1/k + δ))) ≤ exp(−δn/8).

Similarly, we have

Pr[
∑

i

Zi ≥ (1/k + δ/2)n] ≤ exp(−δ2n/(12(1/k − δ/(k − 1)))) ≤ exp(−δ2n/(12(1/k − 1/3(k − 1))))

≤ exp(−δ2n/(12(1/k − 2/3k))) = exp(−δ2kn/4) ≤ exp(−δn/8)

A union bound gives Pr[
∑

iXi ≤ 0] ≤ 2 exp(−δn/8). To lower bound Pr[
∑

i Xi ≤ 0], first notice
that

Pr[
∑

i

Yi = 0] = (1 − 1/k − δ)n ≥ (1 − 3δ)n = exp(−n

∞
∑

j=1

(3δ)j/j) ≥

≥ exp(−n(3δ)

∞
∑

j=0

(3/4)j) = exp(−12δn).

We conclude that Pr[
∑

i Xi ≤ 0] ≥ exp(−12δn). �
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3 Conclusion

In this work we provide an optimal algorithm both in terms of running time and query complexity
for the problem of learning joint alignments with a faulty oracle. The algorithm is simple and
performs well in practice compared to previous work. An interesting open problem is to explore
whether there exists an adaptive algorithm with better query complexity. Finally, a remaining open
question from Chen and Candés is whether we can characterize the performance of existing joint
alignment algorithms if one is satisfied with approximate solutions.
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