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Abstract—For a discrete memoryless channel with finite input
and output alphabets, we prove convergence of a parametric
family of iterative computations of the optimal correct-decoding
exponent. The exponent, as a function of communication rate, is
computed for a fixed rate and for a fixed slope.

I. INTRODUCTION

Consider a standard information theoretic setting of trans-

mission through a discrete memoryless channel (DMC), with

finite input and output alphabets, using block codes. For

communication rates above capacity, the average probability

of correct decoding in a block code tends to zero exponentially

fast as a function of the block length. In the limit of a large

block length, the lowest possible exponent corresponding to

the probability of correct decoding, also called the reliability

function above capacity, for all1 rates R ≥ 0 is given by [1]

Ec(R) = min
Q(x),

W (y | x)

{
D(W ‖P |Q) +

∣∣R− I(Q,W )
∣∣+
}
, (1)

where P denotes the channel’s transition probability P (y |x),
D(W ‖P |Q) is the Kullback-Leibler divergence between the

conditional distributions W and P , averaged over Q, I(Q,W )
is the mutual information of a pair of random variables with

a joint distribution Q(x)W (y |x), and |t|+ = max {0, t}.

For certain applications, it is important to be able to know

the actual value of Ec(R) when it is positive. For example,

in applications of secrecy, it might be interesting to know

the correct-decoding exponent of an eavesdropper. Several

algorithms have been proposed for computation of Ec(R).
In the algorithm by Arimoto [2] the computation of Ec(R)

is facilitated by an alternative expression for it [3], [1], [4]:

Ec(R) = sup
0≤ ρ< 1

min
Q

{
E0(−ρ,Q) + ρR

}
, (2)

where E0(−ρ,Q) is the Gallager exponent function [6,

Eq. 5.6.14]. In [2], minQ E0(−ρ,Q) is computed for a

fixed slope parameter ρ. The computation is performed itera-

tively as alternating minimization, based on the property that

minQ E0(−ρ,Q) can be written as a double minimum:

min
Q

min
V

{
− log

∑

x, y

Q1−ρ(x)V ρ(x | y)P (y |x)

}
, (3)

1The expression gives zero for the rates R ≤ maxQ I(Q,P ).

where the inner minimum is in fact equal to E0(−ρ,Q).
In [4], [5] a different alternating-minimization algorithm is

introduced, based on the property, that minQ E0(−ρ,Q) can

be written as another double minimum over distributions:

min
T, V

min
T1, V1

{
−

∑

x, y

T (y)V (x | y) log
V

ρ
1 (x | y)P (y |x)

U
ρ−1
1 (x)T (y)V (x | y)

}
,

(4)

where U1(x) =
∑

y T1(y)V1(x | y). As with (3), the compu-

tation of Ec(R) with (4) is also performed for a fixed ρ.

Sometimes, however, it is suitable or desirable to com-

pute Ec(R) directly for a given rate R. For example, when

Ec(R) = 0, and we would like to find such a distribution Q,

for which the minimum (1) is zero, as a by-product of the

computation. Such distribution Q has a practical meaning of a

channel input distribution achieving reliable communication.

In [7], an iterative minimization procedure for computation of

Ec(R) at fixed R is proposed, using the property that Ec(R)
can be written as a double minimum [8]:

min
Q(x)

min
T (y),

V (x | y)

{
D(TV ‖QP ) +

∣∣R−D(V ‖Q |T )
∣∣+
}
,

(5)

where the inner min equals sup 0≤ ρ< 1

{
E0(−ρ,Q) + ρR

}
.

In [7], the inner minimum of (5) is computed stochastically

by virtue of a correct-decoding event itself, yielding the

minimizing solution T
∗
V

∗
. The computation is then repeated

iteratively, by assigning Q(x) =
∑

y T
∗
(y)V

∗
(x | y). It is

shown in [7, Theorem 1], that the iterative procedure using the

inner minimum of (5) leads to convergence of this minimum

to the double minimum (5), which is evaluated at least over

some subset of the support of the initial distribution Q0.

In addition, a sufficient condition on Q0 is provided, which

guarantees convergence of the inner minimum in (5) to zero.

This condition on Q0 in [7, Lemma 6] is rather limiting, and

is hard to verify.

In the current work, we improve the result of [7]. We

modify the method of Csiszár and Tusnády [9] to prove that

the iterative minimization procedure of [7] converges to the

global minimum (5) over the support of the initial distribution

Q0 itself, for any R (i.e., not only if the global minimum is

zero), and without any additional condition. In particular, use

of a strictly positive Q0 guarantees convergence to Ec(R).
By a similar method, we also show convergence of the

fixed-slope counterpart of the minimization (5), which is
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an alternating minimization at fixed ρ, based on the double

minimum [10]

min
Q

min
T, V

{
−
∑

x, y

T (y)V (x | y) log
Q1−ρ(x)P (y |x)

T (y)V 1−ρ(x | y)

}
, (6)

where the inner minimum is in fact equal to E0(−ρ,Q).
Furthermore, in the current paper we extend the analysis,

presented in the shorter version of the paper [11]. Here we

slightly generalize the expression (5). Using this generaliza-

tion, we prove convergence of a parametric family of iterative

computations, of which the computation according to (5) from

[7], as well as the computations according to (6), [10], and

according to (4), [4], become special cases.

As in the shorter version of the paper [11], besides the

variable R, we take into account also a possible channel-

input constraint, denoted by α. In Section II we examine the

expression for the correct-decoding exponent. In Section III

we prove convergence of the iterative minimization for fixed

(R,α). In Section IV we prove convergence of the iterative

minimization for fixed gradient w.r.t. (R,α). In Sections V

and VI we prove convergence of mixed scenarios: for fixed

α and slope ρ in the direction of R, and vice versa.

II. CORRECT-DECODING EXPONENT

Let P (y |x) denote transition probabilities in a DMC from

x ∈ X to y ∈ Y , where X and Y are finite channel input and

output alphabets, respectively. Suppose also that the channel

input x with an additive cost function f : X → R satisfies

on average an input constraint α ∈ R, chosen large enough,

such that α ≥ min x f(x). The maximum-likelihood correct-

decoding exponent ( [1], [12]) of this channel, as a function

of the rate R ≥ 0 and the input constraint α, is given by

Ec(R,α) = (7)

min
Q(x):

EQ[f(X)] ≤ α

min
W (y | x)

{
D(W ‖P |Q) +

∣∣R − I(Q,W )
∣∣+
}
,

where EQ[f(X)] denotes the expectation of f(x) w.r.t. the

distribution Q(x) over X .

Let Q(x)W (y |x) ≡ T (y)V (x | y), or QW , denote a

distribution over X × Y , and let Q̃W̃ be another such distri-

bution. We can think of 4 different divergences from Q̃W̃ to

QW : D(Q ‖ Q̃), D(W ‖ W̃ |Q), D(T ‖ T̃ ), and D(V ‖ Ṽ |T ).
Using 4 non-negative parameters ti ≥ 0, i = 1, 2, 3, 4, we

define a non-negative linear combination of these divergences:

D
t
(QW, Q̃W̃ ) , t1D(Q ‖ Q̃) + t2D(W ‖ W̃ |Q)+

t3D(T ‖ T̃ ) + t4D(V ‖ Ṽ |T ), (8)

where t , (t1, t2, t3, t4) is an index. With the help of

D
t
(QW, Q̃W̃ ), the expression (7) can be rewritten as follows:

min
Q,W :

EQ[f(X)] ≤ α

{
D(W ‖P |Q) +

∣∣R− I(Q,W )
∣∣+
}

= min
Q,W :

EQ[f(X)] ≤ α

max
{
D(W ‖P |Q),

D(W ‖P |Q) +R− I(Q,W )
}

= min
Q̃, W̃

min
Q,W :

EQ[f(X)] ≤ α

max
{
D(W ‖P |Q) +D

t
(QW, Q̃W̃ ),

D(W ‖P |Q) +R− I(Q,W )
}
,

(9)

where the first equality holds because |a|+ = max {0, a}, and

the second equality follows since min
Q̃W̃

D
t
(QW, Q̃W̃ ) = 0

and the minima can be interchanged. In [7] a special case (t =
(1, 0, 0, 0)) of the inner minimum of (9) was used as a basis of

an iterative procedure to find minimizing solutions of (7). In

what follows, we modify the method of Csiszár and Tusnády

[9] to show convergence of that minimization procedure. The

method allows us to prove convergence in a slightly more

general setting (9), (8), with arbitrary non-negative parameters

(t1, t2, t3, t4).

III. CONVERGENCE OF THE ITERATIVE MINIMIZATION FOR

FIXED (R,α)

Let us define a short notation for the maximum in (9):

F
t

1(QW, Q̃W̃ ) , D(W ‖P |Q) +D
t
(QW, Q̃W̃ ), (10)

F 2(QW,R) , D(W ‖P |Q)− I(Q,W ) +R, (11)

F
t(QW, Q̃W̃ , R) , max

{
F

t

1(QW, Q̃W̃ ), F 2(QW,R)
}
.

(12)

Define notation for the inner minimum in (9):

E
t

c (Q̃W̃ , R, α) , min
Q,W :

EQ[f(X)] ≤ α

F
t
(QW, Q̃W̃ , R) (13)

The iterative minimization procedure from [7], consisting of

two steps in each iteration2, in a more general form is given

by

QℓWℓ ∈ argmin
Q,W :

EQ[f(X)] ≤ α

F
t
(QW, Q̃ℓW̃ℓ, R),

Q̃ℓ+1W̃ℓ+1 = QℓWℓ,

(14)

ℓ = 0, 1, 2, ... .

We assume that Q̃0W̃0 in (14) is chosen such that the set{
QW :

∑
xQ(x)f(x) ≤ α, F

t

1(QW, Q̃0W̃0) < +∞
}

is non-empty, which guarantees F
t
(Q0W0, Q̃0W̃0, R) =

E
t

c (Q̃0W̃0, R, α) < +∞. By (10) it is clear that (14) produces

a monotonically non-increasing sequence E
t

c (Q̃ℓW̃ℓ, R, α),
ℓ = 0, 1, 2, ... . Our main result is given by the following

theorem, which is an improvement on [7, Theorem 1] and

[7, Lemma 6]:

Theorem 1: Let
{
QℓWℓ

}+∞

ℓ=0
be a sequence of iterative

solutions produced by (14). Then

E
t

c (Q̃ℓW̃ℓ, R, α)
ℓ→∞

ց min
Q̃, W̃ :

Dt(Q̃W̃, Q̃
0
W̃

0
)<∞

E
t

c (Q̃W̃ , R, α),

(15)

2Note that (14) is not just an alternating minimization procedure w.r.t.

F t(QW, Q̃W̃ , R), or not the only one possible, in a sense that other choices

of Q̃ℓ+1
W̃ℓ+1

may also minimize F t(QℓWℓ, · , R).



where E
t

c (Q̃W̃ , R, α) is defined in (13) and D
t
(· , ·) in (8).

Suppose Q
∗
W

∗
is a minimizing solution of (7). If the initial

distribution Q̃0W̃0 in the iterations (14) is chosen such that

D
t
(Q

∗
W

∗
, Q̃0W̃0) < +∞ (for example, if support(Q̃0W̃0) =

X ×Y), then by (9) the RHS of (15) gives (7). The choice of

t = (1, 0, 0, 0) in (8) corresponds to the iterative minimization

in [7]. In order to prove Theorem 1, we use a lemma, which

is similar to “the five points property” from [9].

Lemma 1: Let Q̂Ŵ be such, that
∑

x Q̂(x)f(x) ≤ α and

F
t

1(Q̂Ŵ , Q̃0W̃0) < +∞. Then

F
t(Q0W0, Q̃0W̃0, R) ≤ F

t(Q̂Ŵ , Q̂Ŵ , R)

+
∣∣F t

1(Q̂Ŵ , Q̃0W̃0)− F
t

1(Q̂Ŵ , Q̃1W̃1)
∣∣+. (16)

Proof: Let us define a set of distributions QW :

S ,

{
QW :

∑

x

Q(x)f(x) ≤ α, F
t

1(QW, Q̃0W̃0) < +∞

}
.

Observe that S is a closed convex set. Since Q̂Ŵ ∈ S, then

S is non-empty and by (14) we have also that Q0W0 ∈ S.

Observe further that the two terms in the maximization of (12),

F
t

1(QW, Q̃0W̃0) and F 2(QW,R), as functions of QW , are

convex (∪) and continuous in S.

Consider the case F
t

1(Q0W0, Q̃0W̃0) > F 2(Q0W0, R)

first. Then F
t
(Q0W0, Q̃0W̃0, R) = F

t

1(Q0W0, Q̃0W̃0) by

(12). By (14), we conclude that F
t

1(Q0W0, Q̃0W̃0) cannot be

decreased in the vicinity of QW = Q0W0 inside the convex

set S. Let us define a point inside S:

Q
(λ)

(x)W
(λ)

(y |x) , (17)

λQ̂(x)Ŵ (y |x) + (1− λ)Q0(x)W0(y |x), λ ∈ (0, 1).

We have that Q
(λ)

W
(λ)

∈ S, and the function f1(λ) ,

F
t

1(Q
(λ)

W
(λ)

, Q̃0W̃0) is convex (∪) and differentiable w.r.t.

λ ∈ (0, 1). Since f1(λ) has to be non-decreasing at λ = 0,

the following condition must hold:

lim
λ→ 0

df1(λ)

dλ
≥ 0. (18)

Differentiating f1(λ), similarly as in the proof of the

“Pythagorean” theorem for divergence [13] (proved as “the

three points property” in [9, Lemma 2]), we obtain:

F
t

1(Q0W0, Q̃0W̃0) +D(Ŵ ‖W0 | Q̂) +D
t
(Q̂Ŵ , Q0W0)

≤ F
t

1(Q̂Ŵ , Q̃0W̃0). (19)

Since F
t

1(Q̂Ŵ , Q̃0W̃0) < +∞, then the divergences on the

LHS of (19) are also finite. By the definition (10),

F
t

1(Q̂Ŵ , Q̃0W̃0) = F
t

1(Q̂Ŵ , Q̂Ŵ ) +D
t
(Q̂Ŵ , Q̃0W̃0).

(20)

Omitting D(Ŵ ‖W0 | Q̂) ≥ 0 from (19), noting that Q0W0 =

Q̃1W̃1, and combining (19) with (20), we get

F
t

1(Q0W0, Q̃0W̃0) ≤ F
t

1(Q̂Ŵ , Q̂Ŵ )

+D
t(Q̂Ŵ , Q̃0W̃0)−D

t(Q̂Ŵ , Q̃1W̃1). (21)

Now, (16) follows because F
t
(Q0W0, Q̃0W̃0, R) =

F
t

1(Q0W0, Q̃0W̃0) and F
t

1(Q̂Ŵ , Q̂Ŵ ) ≤ F
t
(Q̂Ŵ , Q̂Ŵ , R).

Consider the case F
t

1(Q0W0, Q̃0W̃0) < F 2(Q0W0, R)

next. Then F
t
(Q0W0, Q̃0W̃0, R) = F 2(Q0W0, R) by (12).

By (14), we conclude that F 2(Q0W0, R) cannot be decreased

in the vicinity of QW = Q0W0 inside the convex set S, and

by convexity (∪) of F 2(QW,R) it follows that

F 2(Q0W0, R) = min
QW∈S

F 2(QW,R)

(a)

≤ F 2(Q̂Ŵ , R)
(b)

≤ F
t
(Q̂Ŵ , Q̂Ŵ , R),

where (a) follows because Q̂Ŵ ∈ S, and (b) follows by (12).

This again gives (16).

Finally, assume now the equality F
t

1(Q0W0, Q̃0W̃0) =
F 2(Q0W0, R). In this case, using the definition (17), we look

at two functions: f1(λ) and f2(λ) , F 2(Q
(λ)

W
(λ)

, R), both

of which are convex (∪) and differentiable w.r.t. λ ∈ (0, 1).
At least one of these two functions has to be non-decreasing

at λ = 0. This implies either (18) or

lim
λ→ 0

df2(λ)

dλ
≥ 0. (22)

The condition (18) results in (16) as before, while (22) by

convexity (∪) of f2(λ) implies

F 2(Q0W0, R) ≤ F 2(Q̂Ŵ , R) ≤ F
t
(Q̂Ŵ , Q̂Ŵ , R),

where the second inequality is by definition (12). Since

F 2(Q0W0, R) = F
t(Q0W0, Q̃0W̃0, R), this gives (16). �

A similar, alternative, lemma can be proved if we add

D
t
(QW, Q̃W̃ ) to the second term of the maximum in (9),

and not to the first.

Proof of Theorem 1: By (9) we can rewrite the RHS of (15)

as

min
Q̃, W̃ :

Dt(Q̃W̃, Q̃
0
W̃

0
)<∞

E
t

c (Q̃W̃ , R, α) = min
Q,W :

EQ[f(X)] ≤ α

Dt(QW, Q̃
0
W̃

0
)<∞

F
t
(QW,QW,R).

(23)

Suppose (23) is finite, and let Q̂Ŵ achieve the RHS min in

(23). Then F
t

1(Q̂Ŵ , Q̃0W̃0) < +∞ and
∑

x Q̂(x)f(x) ≤ α.

Then Lemma 1 implies that there exist only two possibilities

for the outcome of the iterations in (14). One possibility is

that at some iteration ℓ it holds that

F
t(QℓWℓ, Q̃ℓW̃ℓ, R) ≤ F

t(Q̂Ŵ , Q̂Ŵ , R),

meaning that the monotonically non-increasing sequence of

F
t
(Qℓ Wℓ, Q̃ℓW̃ℓ, R) = E

t

c (Q̃ℓW̃ℓ, R, α) has converged to

(23). The alternative possibility is that for all iterations ℓ =
0, 1, 2, ... , it holds that

F
t
(QℓWℓ, Q̃ℓW̃ℓ, R) ≤ F

t
(Q̂Ŵ , Q̂Ŵ , R)

+ F
t

1(Q̂Ŵ , Q̃ℓW̃ℓ) − F
t

1(Q̂Ŵ , Q̃ℓ+1W̃ℓ+1),

with all terms finite. Now, just like in [9, Lemma 1], it has to

be true that

lim inf
ℓ→∞

{
F

t

1(Q̂Ŵ , Q̃ℓW̃ℓ) − F
t

1(Q̂Ŵ , Q̃ℓ+1W̃ℓ+1)
}

≤ 0,



because the divergences in (10) are non-negative (i.e., bounded

from below). Therefore F
t
(QℓWℓ, Q̃ℓW̃ℓ, R) must converge

to F
t
(Q̂Ŵ , Q̂Ŵ , R), yielding (23), and this concludes the

proof of Theorem 1. �

IV. CONVERGENCE OF THE ITERATIVE MINIMIZATION FOR

FIXED GRADIENT

Let us define for two real numbers 0 ≤ ρ < 1 and η ≥ 0

F
t
(ρ, η, QW, Q̃W̃ ) , D(W ‖P |Q) − ρ I(Q,W )

+ η EQ[f(X)] + (1 − ρ)D
t
(QW, Q̃W̃ ), (24)

E
t

0(ρ, η, Q̃W̃ ) , min
Q,W

F
t(ρ, η, QW, Q̃W̃ ). (25)

If finite, the quantity E
t

0(ρ, η, Q̃W̃ ) has a meaning of the

vertical axis intercept (“E0”) of a lower supporting plane in the

variables (R,α) for the function E(R,α) = E
t

c (Q̃W̃ , R, α),
defined in (13), as the following lemma shows.

Lemma 2: For any 0 ≤ ρ < 1 and η ≥ 0 it holds that

E
t

c (Q̃W̃ , R, α) ≥ E
t

0(ρ, η, Q̃W̃ ) + ρR − ηα, (26)

and there exist R ≥ 0 and α ≥ min x f(x) which satisfy (26)

with equality.

Proof: By definition (13)

min
Q,W :

EQ[f(X)] ≤ α

{
D(W ‖P |Q) + D

t
(QW, Q̃W̃ )+

∣∣R− I(Q,W )−D
t(QW, Q̃W̃ )

∣∣+
}

(27)

(a)

≥ min
Q,W :

EQ[f(X)] ≤ α

{
D(W ‖P |Q) + D

t
(QW, Q̃W̃ )+

ρ
[
R− I(Q,W )−D

t
(QW, Q̃W̃ )

]
+ η

[
EQ[f(X)]− α

]}
,

≥ min
Q,W

{
D(W ‖P |Q) + D

t
(QW, Q̃W̃ )+

ρ
[
R− I(Q,W )−D

t
(QW, Q̃W̃ )

]
+ η

[
EQ[f(X)]− α

]}
,

(28)

where (a) holds for any 0 ≤ ρ < 1 and η ≥ 0. Using (24) and

(25), we see that the lower bound expression (28) is equal to

the RHS of (26). Suppose (28) is finite. Let Qρ, η , Wρ, η denote

distributions Q, W , respectively, which jointly minimize (28).

Observe that for each 0 ≤ ρ < 1 and η ≥ 0 we can find

R ≥ 0 and α ≥ min x f(x), such that the differences in the

square brackets are zero. In this case, Qρ, η will satisfy the

input constraint and there will be equality between (28) and

(27). �

Lemma 3: Suppose Q̃W̃ ≡ T̃ Ṽ is such that the minimum

(25) is finite. If t1 = t4 + 1 in (8), then, with definitions of

a , (t2 + t4)(1− ρ) and b , (t3 + t4)(1− ρ), 0 ≤ ρ < 1 and

η ≥ 0, the unique minimizing solution of the minimum (25)

can be written as

Q
∗
(x)W

∗
(y |x) =

1

K

[
Q̃

1−ρ
(x)Ṽ

b
(x | y)Pη(x, y)

] 1
b+1−ρ

× T̃
a

a+1 (y)

{∑

x̃

[
Q̃

1−ρ
(x̃)Ṽ

b
(x̃ | y)Pη(x̃, y)

] 1
b+1−ρ

} b−a−ρ
a+1

,

(29)

where Pη(x, y) , e−ηf(x)P (y |x) and K is a normalization

constant, resulting in

E
t

0(ρ, η, Q̃W̃ ) = −(a+ 1) log
∑

y

T̃
a

a+1 (y)×

{∑

x

[
Q̃

1−ρ
(x)Ṽ

b
(x | y)Pη(x, y)

] 1
b+1−ρ

} b+1−ρ
a+1

. (30)

If t3 = t2+
ρ

1−ρ
in (8), then, with c , (t1+t2)(1−ρ) and a as

defined above, 0 < ρ < 1 and η ≥ 0, the unique minimizing

solution of the minimum (25) can be written as

Q
∗
(x)W

∗
(y |x) =

1

K

[
W̃

a
(y |x)Ṽ

ρ
(x | y)Pη(x, y)

] 1
a+1

× Q̃
c

c+ρ (x)

{∑

ỹ

[
W̃

a
(ỹ |x)Ṽ

ρ
(x | ỹ)Pη(x, ỹ)

] 1
a+1

} a+1−c−ρ
c+ρ

,

(31)

where Pη(x, y) is defined as above and K is a normalization

constant, resulting in

E
t

0(ρ, η, Q̃W̃ ) = −(c+ ρ) log
∑

x

Q̃
c

c+ρ (x)×

{∑

y

[
W̃

a
(y |x)Ṽ

ρ
(x | y)Pη(x, y)

] 1
a+1

} a+1

c+ρ

. (32)

Proof: Similarly to [7, Lemma 3]. �

An iterative minimization procedure at a fixed gradient

(ρ, η), 0 < ρ < 1, η ≥ 0, is given by

QℓWℓ = argmin
Q,W

F
t
(ρ, η, QW, Q̃ℓW̃ℓ),

Q̃ℓ+1W̃ℓ+1 = QℓWℓ,
(33)

ℓ = 0, 1, 2, ... .

We assume that the initial distribution Q̃0W̃0 in (33) is

chosen such that the set
{
QW : F

t

1(QW, Q̃0W̃0) < +∞
}

is non-empty, which guarantees F
t
(ρ, η, Q0W0, Q̃0W̃0) =

E
t

0(ρ, η, Q̃0W̃0) < +∞. By (24) it is clear that (33) produces

a monotonically non-increasing sequence E
t

0(ρ, η, Q̃ℓW̃ℓ),
ℓ = 0, 1, 2, ... . Depending on the choice of the non-negative

parameters (t1, t2, t3, t4) in (8), the update of Qℓ Wℓ in (33)

can be done according to the expression (29) with any a ≥ 0
and b ≥ 0, or according to (31) with any a ≥ 0 and c ≥ 0, with

Q̃, Ṽ , T̃ , W̃ replaced by Q̃ℓ, Ṽ ℓ, T̃ ℓ, W̃ℓ, correspondingly.

The choice of a = b = 0 in (29) gives the fixed-slope

counterpart of the algorithm in [7], analysed in [10]. The

choice (a, c) = (0, 1) in (31) gives the fixed-slope counterpart



of the algorithm in [14]. The choice (a, b) = (0, ρ) in (29),

or, alternatively, (a, c) = (0, 1−ρ) in (31) gives the algorithm

in [4], [5]. The main result of the section is given by the

following theorem:

Theorem 2: Let
{
QℓWℓ

}+∞

ℓ=0
be a sequence of iterative

solutions produced by (33). Then

E
t

0(ρ, η, Q̃ℓW̃ℓ)
ℓ→∞

ց min
Q̃, W̃ :

Dt(Q̃W̃, Q̃
0
W̃

0
)<∞

E
t

0(ρ, η, Q̃W̃ ),

(34)

where E
t

0(ρ, η, Q̃W̃ ) is defined in (25) and D
t
(· , ·) in (8).

In order to prove Theorem 2, we use the following lemma:

Lemma 4: Let Q̂Ŵ be such that F
t

1(Q̂Ŵ , Q̃0W̃0) < +∞.

Then

F
t(ρ, η, Q0W0, Q̃0W̃0) ≤ F

t(ρ, η, Q̂Ŵ , Q̂Ŵ )

+ (1− ρ)
[
F

t

1(Q̂Ŵ , Q̃0W̃0) − F
t

1(Q̂Ŵ , Q̃1W̃1)
]
. (35)

Proof: Since +∞ > F
t

1(Q̂Ŵ , Q̃0W̃0), then also +∞ >

F
t

1(Q0W0, Q̃0W̃0). Let Q
(λ)

W
(λ)

be a convex combination

of Q̂Ŵ and Q0W0, as in (17). Then the function g(λ) =

F
t(ρ, η, Q(λ)

W
(λ)

, Q̃0W̃0) is convex (∪) and differentiable

in λ ∈ (0, 1). Since Q0W0 achieves the minimum of

F
t
(ρ, η, QW, Q̃0W̃0) over QW , then necessarily

lim
λ→ 0

dg(λ)

dλ
≥ 0.

Differentiation results in the following condition in the limit:

F
t
(ρ, η, Q0W0, Q̃0W̃0) + ρD(T̂ ‖T 0)

+ (1 − ρ)
[
D(Ŵ ‖W0 | Q̂) +D

t
(Q̂Ŵ ‖Q0W0)

]

≤ F
t
(ρ, η, Q̂Ŵ , Q̃0W̃0), (36)

where T̂ and T 0 denote the y-marginal distributions of Q̂Ŵ

and Q0W0, respectively. Since F
t

1(Q̂Ŵ , Q̃0W̃0) < +∞, then

all terms in (36) are finite. On the other hand, by (24)

F
t
(ρ, η, Q̂Ŵ , Q̃0W̃0) =

F
t
(ρ, η, Q̂Ŵ , Q̂Ŵ ) + (1− ρ)D

t
(Q̂Ŵ ‖ Q̃0W̃0). (37)

Combining (37) with (36), noting that Q0W0 = Q̃1W̃1, and

omitting non-negative terms (1 − ρ)D(Ŵ ‖W0 | Q̂) ≥ 0 and

ρD(T̂ ‖T 0) ≥ 0, we obtain a weaker inequality (35). �

Proof of Theorem 2: Using (24), (25), it can be verified,

that the RHS of (34) can be rewritten as

min
Q̃, W̃ :

Dt(Q̃W̃, Q̃
0
W̃

0
)<∞

E
t

0(ρ, η, Q̃W̃ ) = min
Q,W :

Dt(QW, Q̃
0
W̃

0
)<∞

F
t(ρ, η,QW,QW ).

(38)

Suppose (38) is finite and let Q̂Ŵ achieve the minimum on

the RHS of (38). Then by Lemma 4 we conclude that for all

iterations ℓ = 0, 1, 2, ... , it holds that

F
t
(ρ, η, QℓWℓ, Q̃ℓW̃ℓ) ≤ F

t
(ρ, η, Q̂Ŵ , Q̂Ŵ )

+ (1− ρ)
[
F

t

1(Q̂Ŵ , Q̃ℓW̃ℓ) − F
t

1(Q̂Ŵ , Q̃ℓ+1W̃ℓ+1)
]
.

The conclusion of the proof is the same as in Theorem 1. �

The next two sections show convergence of fixed-slope

computation in the directions of R and α, respectively. They

are similar in structure to Section IV.

V. CONVERGENCE FOR FIXED α AND ρ

In this section we show convergence of an iterative mini-

mization at a fixed slope ρ in the direction of R, i.e., for a given

α. With the help of (24) let us define F
t
(ρ,QW, Q̃W̃ ) ,

F
t
(ρ, η,QW, Q̃W̃ )

∣∣∣
η=0

and

E
t

0(ρ, Q̃W̃ , α) , min
Q,W :

EQ[f(X)] ≤ α

F
t
(ρ,QW, Q̃W̃ ). (39)

Here E
t

0(ρ, Q̃W̃ , α) plays a role of “E0” of a supporting line

in the variable R of the function E(R) = E
t

c (Q̃W̃ , R, α),
defined in (13), as shown by the following lemma.

Lemma 5: For any 0 ≤ ρ < 1 it holds that

E
t

c (Q̃W̃ , R, α) ≥ E
t

0(ρ, Q̃W̃ , α) + ρR, (40)

and there exists R ≥ 0 which satisfies (40) with equality.

Proof: Similar to Lemma 2. �

An iterative minimization procedure at a fixed slope ρ is

given by

QℓWℓ ∈ argmin
Q,W :

EQ[f(X)] ≤ α

F
t
(ρ, QW, Q̃ℓW̃ℓ),

Q̃ℓ+1W̃ℓ+1 = QℓWℓ,

(41)

ℓ = 0, 1, 2, ... .

It is assumed that Q̃0W̃0 in (41) is chosen such that the set{
QW :

∑
xQ(x)f(x) ≤ α, F

t

1(QW, Q̃0W̃0) < +∞
}

is non-

empty, so that F
t(ρ, Q0W0, Q̃0W̃0) = E

t

c (ρ, Q̃0W̃0, α) <

+∞. By the definition of F
t(ρ,QW, Q̃W̃ ) according to

(24), this procedure results in a monotonically non-increasing

sequence E
t

0(ρ, Q̃ℓW̃ℓ, α), ℓ = 0, 1, 2, ... . The main result of

this section is stated in the following theorem.

Theorem 3: Let
{
QℓWℓ

}+∞

ℓ=0
be a sequence of iterative

solutions produced by (41). Then

E
t

0(ρ, Q̃ℓW̃ℓ, α)
ℓ→∞

ց min
Q̃, W̃ :

Dt(Q̃W̃, Q̃
0
W̃

0
)<∞

E
t

0(ρ, Q̃W̃ , α),

(42)

where E
t

0(ρ, Q̃W̃ , α) is defined in (39) and D
t(· , ·) in (8).



To prove Theorem 3, we use a lemma, similar to Lemma 4:

Lemma 6: Let Q̂Ŵ be such, that
∑

x Q̂(x)f(x) ≤ α and

F
t

1(Q̂Ŵ , Q̃0W̃0) < +∞. Then

F
t
(ρ, Q0W0, Q̃0W̃0) ≤ F

t
(ρ, Q̂Ŵ , Q̂Ŵ )

+ (1− ρ)
[
F

t

1(Q̂Ŵ , Q̃0W̃0) − F
t

1(Q̂Ŵ , Q̃1W̃1)
]
. (43)

Proof: Analogous to Lemma 4. �

Proof of Theorem 3: The RHS of (42) can be rewritten in

terms of F
t
(ρ,QW, Q̃W̃ ) as:

min
Q̃, W̃ :

Dt(Q̃W̃, Q̃
0
W̃

0
)<∞

E
t

0(ρ, Q̃W̃ , α) = min
Q,W :

EQ[f(X)] ≤ α

Dt(QW, Q̃
0
W̃

0
)<∞

F
t(ρ,QW,QW ).

(44)

Suppose (44) is finite and Q̂Ŵ achieves the minimum on the

RHS. Then we can use Lemma 6 with Q̂Ŵ . The rest of the

proof is the same as for Theorem 2. �

VI. CONVERGENCE FOR FIXED R AND η

In this section we show convergence of an iterative mini-

mization at a fixed slope η in the direction of α, i.e., for a

given R. Let us define

F
t(η,QW, Q̃W̃ ,R) , max

{
F

t

1(QW, Q̃W̃ ), F 2(QW,R)
}

+ η EQ[f(X)], (45)

where F
t

1(QW, Q̃W̃ ) and F 2(QW,R) are as defined in (10)

and (11), respectively.

E
t

0(η, Q̃W̃ , R) , min
Q,W

F
t
(η,QW, Q̃W̃ ,R). (46)

Here E
t

0(η, Q̃W̃ , R) plays a role of “E0” of a supporting line

in the variable α of the function E(α) = E
t

c (Q̃W̃ , R, α),
defined in (13), as shown by the following lemma.

Lemma 7: For any η ≥ 0 it holds that

E
t

c (Q̃W̃ , R, α) ≥ E
t

0(η, Q̃W̃ , R) − ηα, (47)

and there exists α ≥ minx f(x) which satisfies (47) with

equality.

Proof: Similar to Lemma 2. �

An iterative minimization procedure at a fixed slope η is

defined as follows.

QℓWℓ ∈ argmin
Q,W

F
t
(η, QW, Q̃ℓW̃ℓ, R),

Q̃ℓ+1W̃ℓ+1 = QℓWℓ,
(48)

ℓ = 0, 1, 2, ... .

It is assumed that the set
{
QW : F

t

1(QW, Q̃0W̃0) < +∞
}

is non-empty, which guarantees F
t
(η, Q0W0, Q̃0W̃0, R) =

E
t

0(η, Q̃0W̃0, R) < +∞. The iterative procedure results in

a monotonically non-increasing sequence E
t

0(η, Q̃ℓW̃ℓ, R),

ℓ = 0, 1, 2, ... , as can be seen from (45), (46). The se-

quence converges to the global minimum in the set
{
Q̃W̃ :

D
t
(Q̃W̃ , Q̃0W̃0) < +∞

}
, as stated in the following theo-

rem.

Theorem 4: Let
{
QℓWℓ

}+∞

ℓ=0
be a sequence of iterative

solutions produced by (48). Then

E
t

0(η, Q̃ℓW̃ℓ, R)
ℓ→∞

ց min
Q̃, W̃ :

Dt(Q̃W̃, Q̃
0
W̃

0
)<∞

E
t

0(η, Q̃W̃ , R),

(49)

where E
t

0(η, Q̃W̃ , R) is defined in (46) and D
t
(· , ·) in (8).

To prove this theorem, we use a lemma, which is similar to

Lemma 1:

Lemma 8: Let Q̂Ŵ be such that F
t

1(Q̂Ŵ , Q̃0W̃0) < +∞.

Then

F
t
(η, Q0W0, Q̃0W̃0, R) ≤ F

t
(η, Q̂Ŵ , Q̂Ŵ , R)

+
∣∣F t

1(Q̂Ŵ , Q̃0W̃0)− F
t

1(Q̂Ŵ , Q̃1W̃1)
∣∣+. (50)

Proof: Similar to Lemma 1. �

Proof of Theorem 4: The RHS of (49) can be rewritten in

terms of F
t
(η,QW, Q̃W̃ ,R) as:

min
Q̃, W̃ :

Dt(Q̃W̃, Q̃
0
W̃

0
)<∞

E
t

0(η, Q̃W̃ , R) = min
Q,W :

Dt(QW, Q̃
0
W̃

0
)<∞

F
t
(η,QW,QW,R).

(51)

Suppose (51) is finite, and let Q̂Ŵ achieve the minimum on

the RHS. Then we can use Lemma 8 with Q̂Ŵ . The rest of

the proof is the same as for Theorem 1. �

REFERENCES

[1] G. Dueck and J. Körner, “Reliability Function of a Discrete Memoryless
Channel at Rates above Capacity,” IEEE Trans. on Information Theory,
vol. 25, no. 1, pp. 82–85, Jan 1979.

[2] S. Arimoto, “Computation of Random Coding Exponent Functions,”
IEEE Trans. on Information Theory, vol. 22, no. 6, pp. 665–671, Nov
1976.

[3] S. Arimoto, “On the Converse to the Coding Theorem for Discrete
Memoryless Channels,” IEEE Trans. on Information Theory, vol. 19,
no. 3, pp. 357–359, May 1973.

[4] Y. Oohama and Y. Jitsumatsu, “A New Iterative Algorithm for Computing
the Correct Decoding Probability Exponent of Discrete Memoryless
Channels,” IEEE Trans. on Information Theory (Early Access), Oct 2019.

[5] Y. Oohama and Y. Jitsumatsu, “A New Iterative Algorithm for Computing
the Optimal Exponent of Correct Decoding for Discrete Memoryless
Channels,” in IEEE International Symposium on Information Theory

(ISIT), Hong Kong, China, Jun 2015.
[6] R. G. Gallager, “Information Theory and Reliable Communication,” John

Wiley & Sons, 1968.
[7] S. Tridenski and R. Zamir, “Channel Input Adaptation via Natural Type

Selection,” IEEE Trans. on Information Theory, vol. 66, no. 4, pp. 2078–
2090, Apr 2020.

[8] S. Tridenski and R. Zamir, “Exponential Source/Channel Duality,” in
IEEE International Symposium on Information Theory (ISIT), Aachen,
Germany, Jun 2017.
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