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Quantized Corrupted Sensing with Random
Dithering

Zhongxing Sun, Wei Cui, and Yulong Liu

Abstract—Corrupted sensing concerns the problem of recov-
ering a high-dimensional structured signal from a collection
of measurements that are contaminated by unknown struc-
tured corruption and unstructured noise. In the case of linear
measurements, the recovery performance of different convex
programming procedures (e.g., generalized Lasso and its vari-
ants) is well established in the literature. However, in practical
applications of digital signal processing, the quantization process
is inevitable, which often leads to non-linear measurements. This
paper is devoted to studying corrupted sensing under quantized
measurements. Specifically, we demonstrate that, with the aid of
uniform dithering, both constrained and unconstrained Lassos
are able to recover signal and corruption from the quantized
samples when the measurement matrix is sub-Gaussian. Our
theoretical results reveal the role of quantization resolution in
the recovery performance of Lassos. Numerical experiments are
provided to confirm our theoretical results.

Index Terms—Corrupted sensing, compressed sensing, signal
separation, signal demixing, quantization, dithering, Lasso, struc-
tured signal, corruption.

I. INTRODUCTION

Corrupted sensing is concerned with the problem of recon-
structing a high-dimensional structured signal from a relatively
small number of corrupted measurements 1

y = Φx? +
√
mv? + n, (1)

where Φ ∈ Rm×n is the measurement matrix, x? ∈ Rn
and v? ∈ Rm denote the unknown structured signal and
corruption respectively, and n ∈ Rm is some potential additive
measurement noise. The goal is to recover x? and v? from
given knowledge of y and Φ. When v? might contain some
useful information, this model (1) can be interpreted as the
signal separation (or demixing) problem. In particular, in the
absence of corruption (v? = 0), this model (1) reduces to the
standard compressed sensing problem.

This problem has found abundant applications in signal pro-
cessing and machine learning, such as source separation [2],
face recognition [3], subspace clustering [4], sensor network
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1In this paper, we assume that Φ is a sub-Gaussian sensing matrix

with isotropic rows, the factor
√
m in (1) makes the columns of Φ and√

mIm have the same scale, which helps our theoretical results to be more
interpretable.

analysis [5], latent variable modeling [6], principle component
analysis [7], and so on. The performance guarantees of this
problem have also been extensively investigated under dif-
ferent settings in the literature, important examples include
sparse signal recovery from sparse corruption [8]–[17], low-
rank matrix recovery from sparse corruption [6], [7], [18]–
[22], and structured signal recovery from structured corruption
[23]–[29].

Although this problem is ill-posed in general, tractable
recovery is achievable when both signal and corruption ex-
hibit some low-complexity structures. Let f(·) and g(·) be
some suitable norms which promote structures of signal and
corruption, respectively (e.g., the `1-norm promotes sparsity
for vectors and the nuclear norm promotes low-rankness for
matrices). When prior information of both signal f(x?) and
corruption g(v?) is known beforehand, a natural method to
recover x? and v? is the generalized constrained Lasso:

min
x,v
‖y −Φx−

√
mv‖2, s.t. f(x) ≤ f(x?)

g(v) ≤ g(v?).
(2)

When there is no prior knowledge available, it is practical
to use the generalized unconstrained Lasso, which solves the
following penalized recovery procedure:

min
x,v

1

2
‖y −Φx−

√
mv‖22 + λ1 · f(x) + λ2 · g(v), (3)

where λ1, λ2 > 0 are some regularization parameters. The
theoretical analyses of the above two recovery procedures
under linear measurements (1) are well established in the
literature, see e.g., [23]–[27], [29] and references therein.

However, in the era of digital signal processing, the mea-
surements y are inevitably quantized into bitstreams for the
purpose of data storage and processing. So we actually obey
the following non-linear observation model

y = Q(Φx? +
√
mv? + n), (4)

where Q(·) stands for some quantization scheme. A funda-
mental problem then to ask is:

Is it still possible to disentangle signal and corruption from
the non-linear measurements? If possible, how to recover the
structured signal from the quantized samples with provable
performance guarantees?

It is now well-known that the generalized constrained Lasso
developed in linear compressed sensing (without corruption
v in (2)) also works well in the non-linear case [30]. One
might naturally employ the generalized Lassos ((2) and (3))
to reconstruct signal and corruption from quantized corrupted
measurements (4). However, direct application of (2) and (3)
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to measurements (4) seems to yield unsatisfactory results.
To see this, we present a numerical example to show that
the generalized constrained Lasso (2) is unable to faithfully
reconstruct x? from the quantized corrupted measurements
(4). Fig. 1 displays the empirical results of recovering sparse
signals from non-linear measurements (4) under Gaussian
measurements. In the corruption-free cases (v? = 0), the
recovery errors observe a desired decay as the measurements
increase, which is consistent with the theoretical prediction in
[30]. Nevertheless, when the corruption appears (v? 6= 0), the
recovery errors are relatively large and keep almost unchanged
as the measurements increase, which indicates that the pres-
ence of unknown corruption v? makes the recovery problem
more challenging.
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(a) Saprse signal recovery from sparse corruption

Fig. 1: Log-log error curves when use the generalized con-
strained Lasso (2) to recover signal and corruption from
quantized corrupted sensing measurements (4) with different
non-linear functions Q(·). The black dashed line illustrates the
O( 1√

m
) error decay which is predicted in the literature (see

e.g., [30]). Both signal and corruption are assumed to be sparse
vectors. More details about this experiment can be found in
Section IV-A.

To overcome the above difficulty, we consider a specific but
more tractable quantization scheme, namely dithered quantiza-
tion. Dithered quantization is a technique in which a random
dithering signal is added to the input before quantization.
This approach is commonly used in practice because suit-
ably chosen dithering signal can result in favorable statistical
properties of the quantization error and hence more pleasing
reproduction see, e.g., [31]–[35]. In this quantization scheme,
the observation process becomes

y = QU (ȳ + τ ) = QU
(
Φx? +

√
mv? + n+ τ

)
, (5)

where ȳ = Φx? +
√
mv? + n, QU (x) := ∆(b x∆c + 1

2 ) is
the uniform scalar quantizer with resolution ∆ > 0, and τi ∼
Unif(−∆

2 ,
∆
2 ] is the uniform dithering signal. The objective is

to disentangle signal and corruption from Φ and the quantized
samples {yi}mi=1.

A. Model Assumptions and Contributions

In this paper, we demonstrate that, by adding uniformly dis-
tributed dithering before quantization, one is able to eliminate
the influence of corruption v? and to recover original struc-
tured signal x? from the quantized corrupted sub-Gaussian
measurements (5) via the generalized Lassos ((2) and (3)). To
present our results more precisely, we require the following
model assumptions:
• Sub-Gaussian measurements: the rows ΦT

i of measure-
ment matrix Φ are independent, centered, isotropic sub-
Gaussian vectors with ‖Φi‖ψ2

≤ K;
• Bounded noise: the entries of unstructured noise n are

bounded with |ni| ≤ ε.
Under the above model assumptions, the contribution of this
paper is twofold:
• First, we show that the constrained Lasso (2) can disen-

tangle signal and corruption from the dithered quantized
measurements (5) and the quantization plays a similar
role to independent unstructured noise. Specifically, our
analysis shows that if the number of measurements

m ≥ c ·K4[ω2(Tf (x?) ∩ Sn−1) + ω2(Tg(v?) ∩ Sm−1)],

then, with high probability, the solution to the constrained
Lasso (2) satisfies√
‖x̂− x?‖22 + ‖v̂ − v?‖22 ≤

CK(∆ + ε) · ω(Tf (x?) ∩ Sn−1) + ω(Tg(v?) ∩ Sm−1)√
m

,

where Tf (x?) (or Tg(v?)) is the tangent cone induced
by f (or g) at the true signal x? (or corruption v?),
ω
(
Tf (x?) ∩ Sn−1

)
(or ω

(
Tg(v?) ∩ Sm−1

)
) is the spher-

ical Gaussian width of this cone, which will be defined
in Section II.

• Second, we analyze the unconstrained Lasso (3) which
requires neither prior information of signal f(x?) nor
that of corruption g(v?) and seems more practical in ap-
plications. Our theoretical results indicate that, for some
appropriate λ1 and λ2, if the number of measurements

m ≥ c ·K4
[
η2 (κλ1 · ∂f(x?)) + η2 (κλ2 · ∂g(v?))

+ (κλ1αf )2 + (κλ2αg)
2
]
,

then, with high probability, the solution to the uncon-
strained Lasso (3) satisfies√

‖x̂− x?‖22 + ‖v̂ − v?‖22 ≤ C ·
λ1αf + λ2αg

m
.

Here, ∂f(x?) (or ∂g(v?)) is the subdifferential of f (or g)
at the true signal x? (or corruption v?), η2 (κλ1 · ∂f(x?))
(or η2 (κλ2 · ∂g(v?))) denotes the Gaussian squared dis-
tance to a scaled subdifferential, also defined in Section
II, αf and αg are the compatibility constants with respect
to f and g respectively, and κ is an absolute constant.
Moreover, our theoretical results also illustrate how to
select regularization parameters in the unconstrained re-
covery procedure and shed some lights on the relationship
between two approaches.
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B. Related Works

To the best of our knowledge, this non-linear corrupted
sensing model (5) seems novel in the literature. However, as
a special case in which v? = 0, the non-linear compressed
sensing problem have been intensively studied during the past
decade. These works might be roughly classified into three
categories: one-bit compressed sensing (CS), multi-bit CS, and
general non-linear sensing model.

One-bit CS problem was first introduced by Boufounos and
Baraniuk [36] in studying the recovery of sparse signals from
single-bit measurements in the noiseless case. Since the norm
information is absorbed in the sign function, it is standard to
assume that ‖x‖2 = 1 in the one-bit CS model. In an original
work [37], Jacques et al. demonstrated that O(s log n) one-bit
measurements are sufficient to recover an s-sparse vector via

min
x∈Rn

‖x‖0 s.t. y = sign(Φx), ‖x‖2 = 1. (6)

Note that the above sparsity constraint and norm constraint
are non-convex, this program might be computationally in-
tractable. Plan and Vershynin [38] addressed this problem
by proposing a tractable algorithm (linear programming) to
reconstruct the signal from noiseless one-bit measurements.
They have showed that O(s log2(n/s)) Gaussian measure-
ments are sufficient to accurately recover any s-sparse signal.
This result was also the first uniform recovery result for one-bit
CS problem. In a subsequent paper [39], Plan and Vershynin
considered noisy one-bit measurements and obtained both non-
uniform and uniform stable recovery results by solving the
following convex program

max
x∈Rn

〈y,Φx〉 s.t. x ∈ T . (7)

The analyses of above works only apply to i.i.d. Gaussian
measurement. As for the non-Gaussian measurements, Ai et al.
[40] showed that the non-uniform recovery results in [39] can
be generalized to sub-Gaussian case by imposing an additional
assumption on the signal that it is not extremely sparse. On the
other hand, the results mentioned so far all assumed that the
signal has unit norm. In order to estimate the norm of signal,
dithered quantization y = sign(Φx?+τ ) has been exploited in
the context of one-bit compressed sensing. In [41], Knudson et
al. showed that one can recover the signal norm from dithered
one-bit measurements with Gaussian matrix Φ and randomly
chosen or deterministic dithering τ . In [42], Baraniuk et al.
considered Gaussian measurements and Gaussian dithering
and demonstrated a exponential decay of reconstruction error
by choosing adaptive dithering τi in a linear program. In the
setting of sub-Gaussian or even heavy-tailed measurements,
Dirksen and Mendelson [34], [43] showed that, by adding
uniformly distributed dithering signal before quantization, it is
possible to accurately reconstruct high-dimensional structured
signals from a small number of noisy one-bit measurements.

Multi-bit CS concerns the problem of recovering high-
dimensional signals from multi-bit quantized measurements.
The most studied multi-bit CS model involves the uniform
scalar quantizer QU (x) = ∆(b x∆c + 1

2 ). Traditional com-
pressed sensing theory solves this problem by treating the
quantization error as additive noise, thus the reconstruction

error hits a certain floor due to the resolution ∆ of the
quantizer. However, one may wish to be able to further reduce
the reconstruction error by taking more measurements. In a
series of works by Jacques and his collaborators [33], [44]–
[46], this has been proven practical by introducing dithering
signal before quantization. For example, Xu and Jacques
[33] considered dithered memoryless scalar quantization y =
QU (Φx? + τ ) and used a reconstruction method called
projected back projection (PBP) for recovery, i.e.

x̂ = PT

(
1

m
ΦTy

)
. (8)

With benefit from uniform dithering, they established both
non-uniform and uniform recovery results for any measure-
ment matrix satisfying RIP (Restricted Isometry Property). In a
more related work [35], Thrampoulidis and Rawat considered
the uniform dithered quantization measurements. Their results
showed that, under sub-Gaussian assumption, the solution to
constrained Lasso (2) satisfies (with high probability)

‖x̂− x?‖2 ≤ C∆ ·
ω
(
Tf (x?) ∩ Sn−1

)
√
m

(9)

provided that m ≥ c1 ·ω2
(
Tf (x?) ∩ Sn−1

)
+c2. The analysis

in [35] also illustrated that the constrained Lasso applies to
one-bit dithered measurements with only a logarithmic rate
loss.

The general non-linear sensing model only assumes that Q
is an unknown non-linear map. In this scenario, measurements
can be approached with the semi-parametric single index
model yi = fi(〈Φi,x

?〉) [47], [48]. In a seminal paper [30],
Plan and Vershynin considered the general non-linear model
and showed that, under Gaussian measurements, the non-linear
quantization process can still be treated as linear measure-
ments, and the solution to constrained Lasso (2) satisfies (with
high probability)

‖x̂− µf
x?

‖x?‖2
‖2 ≤ C ·

ω(Tf (x?) ∩ Sn−1)σf + ηf√
m

(10)

provided that m ≥ c·ω2(Tf (x?)∩Sn−1). The notations µf , σf ,
and ηf are some parameters used to characterize the non-
linear function f . Motivated by [30], Thrampoulidis et al. [49]
demonstrated that the performance of the unconstrained Lasso
with non-linear measurements is asymptotically the same as
that with linear measurements. Later, Plan et al. [50] proved
that, for Gaussian Φ, approximately linear f , and bounded,
star-shaped set T , one can estimate the direction of signal x?

from the PBP method. A recent work [28] has also shown
that the recovery from general non-linear measurements is
robust to structured corruption which might be regarded as
the saturation or overload error. The above results are quite
general, however, they can only estimate the direction of x?,
and the analyses are built on the argument that the signal to
be quantized (Φx?) obeys zero mean Gaussian distribution.
Thus they cannot trivially apply to the quantized corrupted
measurements since v? is not mean-zero and its distribution
remains unknown, which might provide a potential explanation
for the different numerical phenomena in Fig.1.
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C. Organization

The remainder of the paper is organized as follows. In
Section II, we review some preliminaries which are highly
relevant to our theoretical analysis. Section III is devoted to
presenting our main results and related discussions. We carry
out a series of numerical experiments to verify our theoretical
results in Section IV. We conclude the paper in Section V. All
proofs are included in the Appendixes.

II. PRELIMINARIES

In this section, we introduce some notations and facts that
will be used in our analysis. Throughout the paper, Sn−1 and
Bn2 denote the unit sphere and unit ball in Rn under the `2
norm, respectively. The notations C,C ′, c1, c2, etc., stand for
absolute constants which may differ from line to line.

A. Convex Geometry

1) Dual norm and compatibility constant: Let Bnf := {u ∈
Rn : f(u) ≤ 1} denote the unit ball in Rn under the norm f .
The dual norm of f is defined as:

f∗(x) = sup
u∈Bnf

〈u,x〉 .

The compatibility constant between f and the `2 norm is
defined as:

αf := sup
u6=0

f(u)/‖u‖2.

2) Subdifferential: The subdifferential of a convex function
f at x is the collection of vectors

∂f(x) = {u ∈ Rn : f(x+d)−f(x) ≥ 〈u,d〉 for all d ∈ Rn}.

For any t ≥ 0, we denote the scaled subdifferential as t ·
∂f(x) = {t · u : u ∈ ∂f(x)}.

3) Tangent cone: The tangent cone of a convex function f
at x is the set of descent directions of f at x

Tf (x) = {u ∈ Rn : f(x+ t · u) ≤ f(x) for some t > 0 }.

B. Geometric Measures

The Gaussian width and the Gaussian complexity of a set
T ⊂ Rn are, respectively, defined as

ω(T ) := E sup
x∈T
〈g,x〉, where g ∼ N (0, In),

and

γ(T ) := E sup
x∈T
|〈g,x〉|, where g ∼ N (0, In).

These two geometric quantities are closely related [51]:

(ω(T ) + ‖y‖2) /3 ≤ γ(T ) ≤ 2(ω(T ) + ‖y‖2) ∀ y ∈ T .
(11)

Another frequently used geometric quantity Gaussian squared
distance η2(T ) of a subset T ⊂ Rn is defined as

η2(T ) := E inf
x∈T
‖g − x‖22, where g ∼ N (0, In).

C. High-Dimensional Probability

A random variable X is called a sub-Gaussian random
variable if the sub-Gaussian norm

‖X‖ψ2
= inf{t > 0 : E exp(X2/t2) ≤ 2}

is finite. A random vector x in Rn is sub-Gaussian random
vector if all of its one-dimensional marginals are sub-Gaussian
random variables. The sub-Gaussian norm of x is defined as

‖x‖ψ2
:= sup

y∈Sn−1

∥∥ 〈x,y〉∥∥
ψ2
.

A random vector x in Rn is isotropic if E(xxT ) = In.

D. Some Useful Facts

In the analysis of our results, we will require some fun-
damental facts. The first one is an extended matrix deviation
inequality, which allow us to establish a tight lower bound for
the restricted singular value of our extended sensing matrix
[Φ,
√
mIm].

Fact 1 (Extended Matrix Deviation Inequality). [27, Theorem
1] Let Φ be an m × n matrix whose rows ΦT

i are inde-
pendent centered isotropic sub-Gaussian vectors with K =
maxi ‖Φi‖ψ2

, and T be a bounded subset of Rn×Rm. Then
for any t ≥ 0, the event

sup
(a,b)∈T

∣∣∣∣‖Φa+
√
mb‖2 −

√
m ·

√
‖a‖22 + ‖b‖22

∣∣∣∣
≤ CK2[γ(T ) + t · rad(T )]

holds with probability at least 1−exp(−t2), where rad(T ) :=
supx∈T ‖x‖2 denotes the radius of T .

The second one is the Talagrand’s Majorizing Measure
Theorem which provides a convenient way to dominate a sub-
Gaussian process.

Fact 2 (Talagrand’s Majorizing Measure Theorem). [52,
Theorem 2.1.1] or [51, Theorem 4.1] Let (Xu)u∈T be a
random process indexed by points in a bounded set T ⊂ Rn.
Assume that the process has sub-Gaussian increments, that is,
there exists M ≥ 0 such that

‖Xu −Xv‖ψ2 ≤M‖u− v‖2 for every u,v ∈ T .

Then for any t ≥ 0, the event

sup
u,v∈T

∣∣Xu −Xv∣∣ ≤ CM [ω(T ) + t · diam(T )]

holds with probability at least 1 − exp(−t2), where
diam(T ) := supx,y∈T ‖x− y‖2 denotes the diameter of T .

III. MAIN RESULTS

This section is devoted to presenting performance guar-
antees of both constrained and unconstrained Lassos ((2)
and (3)) for recovering signal and corruption from dithered
quantized measurements (5). In Section III-A, we establish the
performance guarantee for the constrained Lasso. Section III-B
presents the theoretical analysis of the unconstrained Lasso.
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A. Recovery via the Constrained Lasso

We start with analyzing the constrained Lasso (2). Let (x̂, v̂)
be the solution to the constrained Lasso (2). It is not hard to
check that the error vector (x̂ − x?, v̂ − v?) belongs to the
cone

C1 := {(a, b) ∈ Rn × Rm : a ∈ Tf (x?) and b ∈ Tg(v?)}.

Then we have the following result.

Theorem 1 (Constrained Lasso). Consider the dithered quan-
tized measurement model (5) in which the independent mean-
zero additive noise n satisfies ‖n‖∞ ≤ ε. Let ∆ > 0 be the
quantization resolution and K = maxi ‖Φi‖ψ2

. If the number
of measurements

m ≥ c ·K4 · γ2(C1 ∩ Sn+m−1), (12)

then the solution to the constrained Lasso (2) satisfies√
‖x̂− x?‖22 + ‖v̂ − v?‖22 ≤ CK(∆ + ε) · γ(C1 ∩ Sn+m−1)√

m

with probability at least 1− 2 exp{−γ2(C1 ∩ Sn+m−1)}.

Remark 1 (The role of quantization). As shown in Theorem
1, the parameters ∆ and ε play the same role in the error
bound. Thus we can conclude that, under dithered quantization
scheme, the effect of quantization equals to independent
additive noise. In the extreme case where the resolution of
quantizer ∆→ 0, the measurements in (5) approach the linear
situation y = Φx?+

√
mv?+n, and as expected, Theorem 1

is consistent with the corrupted sensing theory [24, Theorem
1], [27, Theorem 2].

Remark 2 (Bound γ(C1∩Sn+m−1)). To make use of Theorem
1, we need to bound the Gaussian complexity γ(C1∩Sn+m−1)
in terms of some familiar parameters. Recall that [27, Lemma
1]:

γ(C1 ∩ Sn+m−1) ≤
2
[
ω(Tf (x?) ∩ Sn−1) + ω(Tg(v?) ∩ Sm−1) + 1

]
. (13)

The upper bounds of the Gaussian widths on the right side
have been intensively studied in the literature (see e.g., [24],
[53]).

Remark 3 (Distribution of dithering signal). The dithering sig-
nal is essential for the validity of our theorem. As illustrated in
the proof (see Lemma 1 in Appendix A), uniformly distributed
dithering ensures that the quantization error is mean-zero and
independent of the input signal. It is of great interest to explore
other dithering distribution when the mean-zero independent
property still holds. This question is well-studied in the context
of dithered quantizers, see e.g. [32].

Remark 4 (Related works). Observe that if we denote Υ =
[Φ,
√
mIm] and s? = [(x?)T , (v?)T ]T , then the corrupted

sensing model (1) can be reformulated as the standard com-
pressed sensing model y = Υs? + n. Under this observation
model, Xu and Jacques [33] studied the effect of dithering
in the uniform quantization scheme and demonstrated that
the PBP method can be employed for the recovery of s?

provided that the measurement matrix satisfies RIP. Note

that Fact 1 implies that 1√
m

Υ satisfies the RIP with high
probability, then PBP can be naturally applied to our problem
settings. However, this current paper considers totally different
recovery procedures (constrained and unconstrained Lassos)
and establishes corresponding error bounds which depend on
quantization resolution, noise level, the number of measure-
ments, and structures of signal and corruption. Moreover, as
illustrated in Section IV-D, the constrained Lasso shows a
much better recovery performance than PBP.

In the corruption-free and noise-free case, i.e., v? =
0, ε = 0, Theorem 1 states that the reconstruction error
‖x̂ − x?‖2 ≤ CK∆ · γ(Tf (x?)∩Sn−1)√

m
provided that m ≥

c ·K4 ·γ2(Tf (x?)∩Sn−1). Applying the relationship between
Gaussian complexity and Gaussian width (11), this result
reduces to (9). Thus Theorem 1 generalizes the result in
[35, Theorem 3.1] to a more challenging scenario in which
the observations might be contaminated by both structured
corruption and random noise.

1) Examples: Here, we consider two typical structured
signal recovery problems: sparse signal recovery from sparse
corruption and low-rank matrix recovery from sparse corrup-
tion. To apply Theorem 1 in these two cases, it suffices to
bound the corresponding Gaussian widths of specific structures
in (13). These results are well-established in the literature and
summarized in Table I.

TABLE I: Closed form upper bounds for ω2(Tf (x?)∩Sn−1).
The results are due to [24], [53].

Structures f(·) Closed form upper bounds
s-sparse n-dimensional
vector ‖ · ‖1 2s log(n

s
) + 3

2
s

ρ-rank d× d matrix ‖ · ‖∗ 3ρ(2d− ρ)

a) Sparse signal recovery from sparse corruption: In this
case, assume that the signal x? ∈ Rn is s-sparse and that the
corruption v? ∈ Rm is k-sparse. We use the `1-norm, namely
f(·) = g(·) = ‖ · ‖1, to promote the structures of both signal
and corruption. Thus we have

ω2(Tf (x?) ∩ Sn−1) ≤ 2s log
(n
s

)
+

3

2
s,

and

ω2(Tg(v?) ∩ Sm−1) ≤ 2k log
(m
k

)
+

3

2
k.

Combining the upper bound (13) and Theorem 1 yields the
following corollary.

Corollary 1. Suppose that the signal x? ∈ Rn is an s-sparse
vector and that the corruption v? ∈ Rm is a k-sparse vector.
Under the assumptions of Theorem 1, we have that, if the
number of measurements

m ≥ c ·K4
(
s log

(n
s

)
+ k log

(m
k

))
,

then, with high probability,√
‖x̂− x?‖22 + ‖v̂ − v?‖22

≤ CK(∆ + ε) ·
√
s log(n/s) +

√
k log(m/k)√

m
.
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b) Low-rank matrix recovery from sparse corruption:
We then consider the case in which x? = vec(X?) ∈ Rn,
where X? ∈ Rd×d is a square matrix with rank ρ and d2 = n,
and the corruption v? is a p-sparse vector. We use the nuclear
norm and the `1-norm to promote the structures of signal and
corruption respectively, namely, f(·) = ‖·‖∗ and g(·) = ‖·‖1.
In this case, we have

ω2(Tf (x?) ∩ Sn−1) ≤ 3ρ(2d− ρ),

and

ω2(Tg(v?) ∩ Sm−1) ≤ 2p log

(
m

p

)
+

3

2
p.

Then by the upper bound (13) and Theorem 1, we have the
following corollary.

Corollary 2. Suppose that the signal X? ∈ Rd×d is a ρ-rank
matrix with d2 = n and that the corruption v? ∈ Rm is a p-
sparse vector. Under the assumptions of Theorem 1, we have
that, if the number of measurements

m ≥ c ·K4

(
ρd+ p log

(
m

p

))
,

then, with high probability,√
‖X̂ −X?‖2F + ‖v̂ − v?‖22

≤ CK(∆ + ε) ·
√
ρd+

√
p log(m/p)√
m

.

B. Recovery via Unconstrained Lasso

In this subsection, we study the recovery performance of
unconstrained Lasso. Due to presence of quantization error,
measurement noise and random dithering, we require the
regularization parameters λ1, λ2 to satisfy the following
condition.

Condition 1. Let z = QU (ȳ+τ )− ȳ−τ be the quantization
error. The regularization parameters satisfy:

λ1 ≥ 2f∗
(
ΦT (z + n+ τ )

)
and λ2 ≥ 2

√
mg∗(z + n+ τ ).

This condition is a natural extension of [54, Theorem
11.1], where only the regularization parameter for signal λ1

is considered with f(·) = ‖ · ‖1.
Let (x̂, v̂) be the solution to the unconstrained Lasso (3).

Similarly, we define the following convex cone in which the
error vector (x̂− x?, v̂ − v?) lives:

C2 := {(a, b) ∈ Rn × Rm : λ1 〈a,u〉+ λ2 〈b, s〉

≤ 1

2
[λ1f(a) + λ2g(b)]

for any u ∈ ∂f(x?) and s ∈ ∂g(v?)} .

Then we have the following result.

Theorem 2 (Unconstrained Lasso). Consider the dithered
quantized measurement model (5) in which the independent
mean-zero additive noise n satisfies ‖n‖∞ ≤ ε. Let ∆ > 0 be
the quantization resolution and K = maxi ‖Φi‖ψ2

. Suppose

that the regularization parameters λ1, λ2 satisfy Condition 1.
If the number of measurements

m ≥ c ·K4 · γ2(C2 ∩ Sn+m−1), (14)

then the solution to unconstrained Lasso (3) satisfies√
‖x̂− x?‖22 + ‖v̂ − v?‖22 ≤ C ·

λ1αf + λ2αg
m

with probability at least 1− exp{−γ2(C2 ∩ Sn+m−1)}.

Remark 5 (Identify the ranges of λ1 and λ2). Since Theorem
2 depends on Condition 1, it is necessary to identify the
ranges of regularization parameters λ1 and λ2 in our model.
From Step 3 of the proof of Theorem 1, we know that
the quantization error zi ∼ Unif(−∆/2,∆/2] are i.i.d. and
also independent of Φ and n. Then it follows Lemma 2 in
Appendix A that (by setting ω = z+n+τ , T = Bnf ×0, t =
γ(Bnf )/rBf ), the event

f∗
(
ΦT (z + n+ τ )

)
= sup
u∈Bnf

〈Φu, z + n+ τ 〉

≤ CK(∆ + ε)
√
mγ(Bnf )

holds with probability at least 1−exp{−γ2(Bnf )/r2
Bf
}, where

Bnf = {u ∈ Rn : f(u) ≤ 1} and rBf = sup{‖u‖2 : u ∈ Bnf }.
Then we can choose that

λ1 ≥ 2CK(∆ + ε)
√
mγ(Bnf ), (15)

which ensure the first part of Condition 1 holds with high
probability. On the other hand, Lemma 2 also implies (by
setting ω = z + n+ τ , T = 0× Bmg , t = γ(Bmg )/rBg ), the
event

√
mg∗(z + n+ τ ) = sup

u∈Bmg

〈√
mu, z + n+ τ

〉
≤ CK(∆ + ε)

√
mγ(Bmg )

holds with probability at least 1−exp{−γ2(Bmg )/r2
Bg
}, where

Bmg = {u ∈ Rm : g(u) ≤ 1} and rBg = sup{‖u‖2 : u ∈
Bmg }. Then we can choose that

λ2 ≥ 2CK(∆ + ε)
√
mγ(Bmg ), (16)

which ensure the second part of Condition 1 holds with high
probability.

Remark 6 (On the error decay of unconstrained Lasso). Since
the Gaussian complexities γ(Bnf ) and γ(Bmg ) are usually much
smaller than the ambient dimensions of signal and corruption,
inequations (15) and (16) imply that we should choose the
parameters λ1 and λ2 at least of order O(

√
m). On the other

hand, Theorem 2 illustrates that we should choose λ1 and λ2

as small as possible in order to achieve the possibly smallest
recovery error. Thus we can achieve an error decay O( 1√

m
)

by setting λ1 and λ2 to their lower bounds in (15) and (16)
respectively.
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Remark 7 (Bound γ(C2 ∩ Sn+m−1)). To bound the Gaussian
complexity γ(C2 ∩ Sn+m−1) in terms of familiar parameters,
we make use of the following result [27, Lemma 3]2:

γ(C2 ∩ Sn+m−1) ≤

2
[√

η2 (κλ1 · ∂f(x?)) + η2 (κλ2 · ∂g(v?))

+
κλ1αf + κλ2αg

2
+ 1

]
, (17)

where κ > 0 is a positive constant. The upper bounds of the
Gaussian squared distances to a scaled subdifferential on the
right side have also been studied in the literature (see e.g., [55,
Appendix H]).
Remark 8 (The influence of quantization and noise). The
effects of ∆ and ε on the reconstruction error and sample
complexity are connected by the regularization parameters
λ1, λ2. It follows from (15) and (16) that large quantization
step ∆ and noise level ε will lead to large λ1, λ2, and
hence result in large recovery error in Theorem 2. On the
other hand, observe that the definition of C2 depends on the
regularization parameters through the ratio λ2/λ1, so is the
sample complexity γ2(C2 ∩ Sn+m−1). If we set λ1 and λ2

to their lower bounds in (15) and (16) respectively, then the
sample complexity is independent of ∆ and ε. To summarize,
Theorem 2 states that, similar to the constrained case, large
quantization step and noise level will result in large recovery
error of the unconstrained Lasso, but have litter influence
on the number of measurements that required for a robust
recovery provided that λ1 and λ2 are properly selected.
Remark 9 (Related works). In the context of non-linear
compressed sensing, Thrampoulidis et al. [49] considered the
unconstrained Lasso (without corruption v in (3)) for recovery.
They obtained asymptotically precise reconstruction error and
demonstrated that the performance of the unconstrained Lasso
with non-linear measurements is asymptotically the same as
that with linear measurements. To the best of our knowledge,
the guarantees in Theorem 2 provide the first non-asymptotic
theoretical results for the unconstrained Lasso (3) under non-
linear sensing model.

1) Examples: To illustrate Theorem 2, we also consider
two typical structured signal recovery problems: sparse signal
recovery from sparse corruption and low-rank matrix recovery
from sparse corruption. To apply Theorem 2, it suffices to
bound the Gaussian squared distances in (17) and to choose
parameters λ1, λ2 for specific structures of signal and corrup-
tion. Related upper bounds for the Gaussian squared distances
are summarized in Table II.

TABLE II: Closed form upper bounds for η2 (λ · ∂f(x?)). The
results are due to [55, Appendix H].

Structures f(·) Closed form upper bounds
s-sparse n-dimensional
vector ‖ · ‖1 (λ2 + 3)s for λ ≥

√
2 log n

s

ρ-rank d× d matrix ‖ · ‖∗ λ2ρ+ 2d(ρ+ 1) for λ ≥ 2
√
d

2The original lemma is slightly different from our upper bound (17) , where
we have replaced λ1 and λ2 by κλ1 and κλ2 respectively due to the scale-
invariance of C2.

a) Sparse signal recovery from sparse corruption: Con-
sider the case in which the signal x? ∈ Rn is s-sparse and the
corruption v? ∈ Rm is k-sparse. We have the compatibility
constants αf =

√
s and αg =

√
k. Note that [56, Exercise

7.5.9]

γ(Bnf ) = γ(Bn1 ) ≤ c
√

log n,

and

γ(Bmg ) = γ(Bm1 ) ≤ c
√

logm.

Then, (15) and (16) suggest that we should pick

λ1 ≥ C1K(∆ + ε)
√
m log n,

and

λ2 ≥ C1K(∆ + ε)
√
m logm.

To properly use the upper bounds in Table II, we choose
the positive constant κ in (17) as κ = 2/(C1K(∆ + ε)

√
m).

Clearly, we have κλ1 ≥
√

2 log n
s and κλ2 ≥

√
2 log m

k , and
hence

η2 (κλ1 · ∂‖x?‖1) ≤
(
κ2λ2

1 + 3
)
s,

and

η2 (κλ2 · ∂‖v?‖1) ≤
(
κ2λ2

2 + 3
)
k.

Substituting the above upper bounds into (17), we obtain that

γ2(C2∩Sn+m−1) ≤ C ′κ2·(λ2
1s+ λ2

2k) = C ′′· λ2
1s+ λ2

2k

K2(∆ + ε)2m
.

Thus we have following corollary.

Corollary 3. Suppose that the signal x? ∈ Rn is an s-
sparse vector and that the corruption v? ∈ Rm is a k-
sparse vector. Let the regularization parameters satisfy λ1 ≥
C ′K(∆ + ε)

√
m log n and λ2 ≥ C ′′K(∆ + ε)

√
m logm.

Under the assumptions of Theorem 2, we have that, if the
number of measurements

m ≥ c ·K
(
λ1

√
s+ λ2

√
k
)
/
(
∆ + ε

)
,

then, with high probability,√
‖x̂− x?‖22 + ‖v̂ − v?‖22 ≤ C ·

λ1
√
s+ λ2

√
k

m
.

b) Low-rank matrix recovery from sparse corruption:
Consider the case in which x? = vec(X?) ∈ Rn, whereX? ∈
Rd×d is a matrix with rank ρ and d2 = n, and v? is a p-
sparse vector, then we obtain that the compatibility constants
αf =

√
ρ and αg =

√
p. Note that [56, Exercise 10.4.3]

γ(Bnf ) = γ(Bn∗ ) ≤ 2
√
d,

and

γ(Bmg ) = γ(Bm1 ) ≤ c
√

logm.

It then follows from (15) and (16) that we should choose

λ1 ≥ C2K(∆ + ε)
√
md,
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Fig. 2: Log-log error curves for the constrained Lasso under Gaussian or Bernoulli measurements. The black dashed line
illustrates the O( 1√

m
) error decay which is predicted by Theorem 1.

and

λ2 ≥ C2K(∆ + ε)
√
m logm.

Similarly, to apply the bounds in Table II conveniently, we
pick κ = 2/(C2K(∆ + ε)

√
m). Then we have κλ1 ≥ 2

√
d

and κλ2 ≥
√

2 log m
p , and hence

η2 (κλ1 · ∂‖x?‖∗) ≤ κ2λ2
1ρ+ 2d(ρ+ 1),

and

η2 (κλ2 · ∂‖v?‖1) ≤
(
κ2λ2

2 + 3
)
p.

It follows from the upper bound (17) that

γ2(C2∩Sn+m−1) ≤ C ′κ2·(λ2
1ρ+ λ2

2p) = C ′′· λ2
1ρ+ λ2

2p

K2(∆ + ε)2m
.

Combining the above bound with Theorem 2 yields the
following corollary.

Corollary 4. Suppose that the signal X? ∈ Rd×d is a ρ-
rank matrix with d2 = n and that the corruption v? ∈ Rm
is a p-sparse vector. Let the regularization parameters satisfy
λ1 ≥ C ′K(∆ + ε)

√
md and λ2 ≥ C ′′K(∆ + ε)

√
m logm.

Under the assumptions of Theorem 2, we have that, if the
number of measurements

m ≥ c ·K
(
λ1
√
ρ+ λ2

√
p
)
/
(
∆ + ε

)
,

then, with high probability,√
‖X̂ −X?‖2F + ‖v̂ − v?‖22 ≤ C ·

λ1
√
ρ+ λ2

√
p

m
.

Remark 10 (Relationship between constrained and uncon-
strained Lassos). The above two examples have demonstrated
that, by setting λ1, λ2 to their lower bounds in the uncon-
strained Lasso, one can approximately achieve the perfor-
mance of the constrained Lasso. This should not be surprising
since the theory of Lagrange multipliers [57, Section 28]
asserts that the constrained and unconstrained procedures are
essentially equivalent if one has chosen the regularization
parameters λ1, λ2 correctly.

IV. NUMERICAL SIMULATIONS

In this section, we present a series of numerical experiments
to verify our theoretical results. In all simulations, we draw the
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Fig. 3: Log-log error curves for the unconstrained Lasso under Gaussian or Bernoulli measurements. We choose λ1 = (∆ +
ε)
√
m log n, λ2 = (∆ + ε)

√
m logm for sparse signal recovery from sparse corruption, and λ1 = 2(∆ + ε)

√
md, λ2 =

(∆ + ε)
√
m logm for low-rank matrix recovery from sparse corruption. The black dashed line illustrates the O( 1√

m
) error

decay which is predicted by Theorem 2.

sensing matrices with standard normal entries for the Gaus-
sian measurements, and symmetric Bernoulli entries for sub-
Gaussian measurements. We solve the convex optimization
problems by using the CVX Matlab package [58], [59].

A. Experiment Settings in Figure 1

In this experiment, we intend to numerically show that
direct application of generalized constrained Lasso (2) to quan-
tized corrupted measurements (4) (without dithering) cannot
faithfully recover both signal and corruption. We consider 3
kinds of nonlinearities: smooth hyperbolic tangent function,
uniform quantization with resolution ∆ = 0.3, and single bit
measurement. The signal x? ∈ Rn is an s-sparse vector, the
corruption v? ∈ Rm is a k-sparse vector or v? = 0. We
normalize signal and corruption ‖x?‖2 = ‖v?‖2 = 1 and
generate the standard Gaussian Φ to satisfy the unit-norm and
Gaussian assumptions in [30]. We let s = k = 5 and the signal
dimension n = 128. For each measurement, we carry out the
constrained Lasso for 100 times.

B. Recovery Performance of Constrained Lasso

1) Sparse signal recovery from sparse corruption: In this
experiment, we consider the case in which both signal and
corruption are sparse and the noise level ε = 0. The signal
x? ∈ Rn is an s-sparse random vector whose supports are
selected randomly, and nonzero entries are sampled i.i.d. from
the standard Gaussian distribution. The corruption v? ∈ Rm is
a k-sparse random vector which is drawn in the same way as
x?. We fix the quantization resolution ∆ = 0.1 and the signal
dimension n = 256, and vary the number of measurements m
between 100 and 500. For each pair of (s, k), we run the
experiment for 100 realizations. Figs. 2a and 2d show the
average error curves for each pair of (s, k), the reconstruction
error curves are consistent with the theoretical results under
both Gaussian and Bernoulli measurements.

2) Low-rank matrix recovery from sparse corruption:
We then investigate the recovery error when the signals are
low-rank matrices. The noise level is set to ε = 0. Let
X? = U1U

T
2 be a ρ-rank matrix, where U1 and U2 are
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Fig. 4: Log-log error comparison between the constrained Lasso and the PBP method under Gaussian or Bernoulli measurements.
The black dashed line illustrates the O( 1√

m
) and O(∆) error scalings which are predicted in Theorem 1.

independent d × ρ matrices with orthonormal columns. The
corruption signal v? ∈ Rm is a p-sparse random vector. We
set the quantization resolution ∆ = 0.1 and d = 16, and vary
number of measurements m between 250 and 1250. We repeat
the experiment 100 times for each pair of (ρ, p). As shown in
Figs. 2b and 2e, the predicted O( 1√

m
) error scaling appears

when the number of measurements m exceeds a certain level.
3) Robustness to noise: In this experiment, we explore

the empirical behavior of the recovery error under noisy
measurements. We use almost the same experiment settings as
the sparse signal recovery from sparse corruption case except
that we add the truncated Gaussian noise. We first generate
a standard Gaussian vector z and then scale z such that
‖z‖∞ = ε = [0.05, 0.1, 0.15]. The sparsity level of signal
and corruption is set to be s = k = 5. Figs. 2c and 2f plot
the average error curves for 100 experiments. As shown in the
figures, the recovery error is robust to the unstructured additive
noise.

C. Recovery Performance of Unconstrained Lasso

Similarly, we carry out a series of experiments to investigate
recovery error of the unconstrained Lasso. The simulation
settings are nearly the same as the constrained case except

that we use the unconstrained Lasso (3) to reconstruct signal
and corruption. The regularization parameters are set to their
lower bounds in Corollaries 3 and 4. As shown in Fig. 3, the
recovery error curves behave as predicted by the theoretical
results under both Gaussian and Bernoulli measurements.

D. Performance Comparisons with the Other Approach

Finally, we compare the performance of the unconstrained
Lasso (2) with PBP [33] for the recovery of signal and
corruption from uniform dithered quantized measurements. In
Figs. 4a, 4b, 4d, and 4e, we study the error dependence on
the number of measurements m under the similar experiment
settings as in the previous subsections. For the PBP method,
we solve (x̂, v̂) = PT

(
1
mΥTy

)
, where Υ = [Φ,

√
mIm]. In

the sparse signal recovery from sparse corruption case, T is set
to T = {(x,v) ∈ Rn×Rm : ‖x‖1 ≤ ‖x?‖1, ‖v‖1 ≤ ‖v?‖1}.
In the low-rank matrix recovery from sparse corruption case,
T is set to T = {(X,v) ∈ Rd×d × Rm : ‖X‖∗ ≤
‖X?‖∗, ‖v‖1 ≤ ‖v?‖1}. Figs. 4a, 4b, 4d, and 4e plot the
recover error curves of the constrained Lasso and PBP under
Gaussian and Bernoulli measurements. In both sparse signal
and low-rank matrix recovery examples, the constrained Lasso
significantly outperforms the PBP approach.
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In Figs. 4c and 4f, we investigate the error dependence
on quantization resolution ∆. We consider the sparse signal
recovery from sparse corruption case with the noise level
ε = 0. We fix the number of measurements m = 500 and
vary the quantization resolution ∆ between 0.05 and 3.05. As
illustrated in Figs. 4c and 4f, the PBP observes an error floor
at small values of ∆, which is the error achieved by PBP
in the unquantized measurements [33]. On the contrary, the
constrained Lasso enjoys a continuous error scaling O(∆) as
predicted in Theorem 1.

V. CONCLUSION

In this paper, we have investigated the problem of re-
covering a structured signal from quantized corrupted mea-
surements. Under the dithered quantization framework, we
have theoretically demonstrated that both constrained and
unconstrained Lassos can faithfully reconstruct signal and
corruption with almost the same number of measurements as
that in the linear case. We also illustrate how to choose reg-
ularization parameters for the unconstrained Lasso. Concrete
examples and numerical simulations are provided to verify our
theoretical results. For the future direction, it is interesting to
explore the robust recovery of signal and corruption from other
non-linear quantization schemes such as one-bit measurements
and general non-linear sensing model.

APPENDIX A
PROOFS OF MAIN RESULTS

Before proving our main results, we require the following
two useful lemmas.

Lemma 1 (Quantization error of dithered quantizers). [32,
Theorem 1] Let QU (x) = ∆(b x∆c + 1

2 ) be the uniform
quantizer. Suppose that {Wi}i∈Z is a dithering signal which
is independent of the input process {Xi}i∈Z and is i.i.d.. The
condition E

(
ejuWi

)
|u= 2πl

∆
= 0 for all l 6= 0 is necessary and

sufficient for the following properties:
• Xj is independent of the quantization error zi =
QU (Xi +Wi)− (Xi +Wi) for all i and j.

• The quantization error zi are i.i.d. uniform random
variables on (−∆

2 ,
∆
2 ].

Lemma 2. Let Φ ∈ Rm×n be a matrix whose rows are
independent centered isotropic sub-Gaussian vectors with
K = maxi ‖Φi‖ψ2

. Let ω ∈ Rm be a random bounded vector
whose entries are mean-zero i.i.d. variables with ‖ω‖∞ ≤ ζ,
and T be a bounded subset of Rn × Rm. Suppose that ω is
also independent of Φ. Then for any t > 0, the event

sup
(a,b)∈T

〈
Φa+

√
mb,ω

〉
≤ CKζ

√
m
[
γ(T ) + t · rad(T )

]
holds with probability at least 1− exp(−t2).

Proof. See Appendix B.

A. Proof of Theorem 1

Proof. For clarity, the proof is divided into three steps.

Step 1: Problem reduction. Since (x̂, v̂) is the solution to
the procedure (2), we have

‖y −Φx̂−
√
mv̂‖2 ≤ ‖y −Φx? −

√
mv?‖2. (18)

Define the quantization error

z := QU (ȳ + τ )− (ȳ + τ )

= QU (Φx? +
√
mv? + n+ τ )− (Φx? +

√
mv? + n)− τ .

Let h = x̂−x? and e = v̂−v?. Then (18) can be reformulated
as

‖Φh+
√
me− z − n− τ‖2 ≤ ‖z + n+ τ‖2. (19)

Squaring both sides of (19) yields∥∥Φh+
√
me
∥∥2

2
≤ 2

〈
Φh+

√
me, z + n+ τ

〉
. (20)

Step 2: Lower Bound on ‖Φh+
√
me‖2. Note that the

error vector (h, e) lies in the tangent cone C1, which implies
1√

‖h‖22+‖e‖22
·(h, e) ∈ C1∩Sn+m−1. It then follows from Fact

1 (let T = C1 ∩ Sn+m−1 and choose t = γ(C1 ∩ Sn+m−1))
that the event

‖Φh+
√
me‖2

=
√
‖h‖22 + ‖e‖22 ·

∥∥∥∥∥ Φh√
‖h‖22 + ‖e‖22

+

√
me√

‖h‖22 + ‖e‖22

∥∥∥∥∥
2

≥
√
‖h‖22 + ‖e‖22 · (

√
m− CK2γ(C1 ∩ Sn+m−1))

≥
√
m

2

√
‖h‖22 + ‖e‖22

holds with probability at least 1− exp{−γ2(C1 ∩ Sn+m−1)}.
The last inequality is due to (12).

Step 3: Upper Bound on 〈Φh+
√
me, z + n+ τ 〉. Note

that τi ∼ Unif(−∆/2,∆/2], and

E
(
ejuτi

)
=

∫ ∆/2

−∆/2

1

∆
ejuxdx =

sin(u∆/2)

u∆/2
,

hence E
(
ejuτi

)
|u= 2πl

∆
= 0 for all l 6= 0. By the definition of z

and Lemma 1, zi = QU (ȳi+τi)− (ȳi+τi) are i.i.d. uniform
variable on (−∆/2,∆/2], and z is also independent of ȳ and
hence is independent of Φ and n. Then it follows Lemma 2
that (by setting ω = z + n + τ , T = C1 ∩ Sn+m−1, t =
γ(C1 ∩ Sn+m−1)) the event〈

Φh+
√
me, z + n+ τ

〉
=
√
‖h‖22 + ‖e‖22

〈
Φh+

√
me√

‖h‖22 + ‖e‖22
, z + n+ τ

〉
≤ CK(∆ + ε)

√
m
√
‖h‖22 + ‖e‖22 · γ(C1 ∩ Sn+m−1)

holds with probability at least 1− exp{−γ2(C1 ∩ Sn+m−1)}.
The last inequality holds because ‖ω‖∞ ≤ ∆/2 + ε+ ∆/2.

Substituting the bounds of Steps 2 and 3 into (20) and
taking union bound, we have that, with probability at least
1− 2 exp{−γ2(C1 ∩ Sn+m−1)},
m

4
(‖h‖22 + ‖e‖22)

≤ CK(∆ + ε)
√
m
√
‖h‖22 + ‖e‖22 · γ(C1 ∩ Sn+m−1).

Rearranging completes the proof of Theorem 1.
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B. Proof of Theorem 2

Proof. The proof of Theorem 2 is similar to that of Theorem
1 except for some modifications in the first step. Since (x̂, v̂)
is the solution to the penalized procedure (3), we have

1

2
‖y −Φx̂−

√
mv̂‖22 + λ1f(x̂) + λ2g(v̂)

≤ 1

2
‖y −Φx? −

√
mv?‖22 + λ1f(x?) + λ2g(x?). (21)

Define the quantization error z and error vectors h, e as in
the proof of Theorem 1. Then (21) can be reformulated as

1

2

∥∥Φh+
√
me
∥∥2

2
≤
〈
Φh+

√
me, z + n+ τ

〉
+ λ1

(
f(x?)− f(x? + h)

)
+ λ2

(
g(v?)− g(v? + e)

)
. (22)

Note that the left side of (22) is always nonnegative, then we
have

λ1f(x? + h) + λ2g(v? + e)

≤ λ1f(x?) + λ2g(v?) +
〈
Φh+

√
me, z + n+ τ

〉
≤ λ1f(x?) + λ2g(v?) + f∗

(
ΦT (z + n+ τ )

)
· f(h)

+
√
mg∗(z + n+ τ ) · g(e)

≤ λ1f(x?) + λ2g(v?) +
λ1

2
· f(h) +

λ2

2
· g(e),

where f∗(·) and g∗(·) denote the dual norm of f(·) and
g(·), respectively. The second inequality is due to Hölder’s
inequality. The last inequality follows from Condition 1. This
further indicates that the error vector (h, e) ∈ C2. Similar to
Step 2 in the proof of Theorem 1, we have that the event

‖Φh+
√
me‖2 ≥

√
m

2

√
‖h‖22 + ‖e‖22 (23)

holds with probability at least 1− exp{−γ2(C2 ∩ Sn+m−1)}.
Note that the right side of (22) can be upper bounded〈

Φh+
√
me, z + n+ τ

〉
+ λ1

(
f(x?)− f(x? + h)

)
+ λ2

(
g(v?)− g(v? + e)

)
≤ f∗

(
ΦT (z + n+ τ )

)
· f(h) +

√
mg∗(z + n+ τ )

· g(e) + λ1 · f(h) + λ2 · g(e)

≤ λ1

2
· f(h) +

λ2

2
· g(e) + λ1 · f(h) + λ2 · g(e)

≤ 3

2
· (λ1αf‖h‖2 + λ2αg‖e‖2)

≤ 3

2
· (λ1αf + λ2αg) ·

√
‖h‖22 + ‖e‖22, (24)

where αf and αg are compatibility constants. Here the first
inequality is due to Hölder’s inequality and the triangle in-
equality; the second inequality follows from Condition 1; the
last inequality comes from the Cauchy-Schwarz inequality and
the fact that

√
a2 + b2 ≤ a+ b for all a, b ≥ 0.

Then, combining (22), (23), and (24) yields the event

m

8
(‖h‖22 + ‖e‖22) ≤ 3

2
· (λ1αf + λ2αg) ·

√
‖h‖22 + ‖e‖22

holds with probability at least 1− exp{−γ2(C2 ∩ Sn+m−1)}.
Rearranging completes the proof of Theorem 2.

APPENDIX B
PROOF OF LEMMA 2

Note first that ωi are bounded i.i.d. variables, by [56,
Exercise 2.5.8, Lemma 3.4.2], ω is a sub-Gaussian random
vector with

‖ω‖ψ2 ≤ C1ζ, ‖ω‖2 ≤
√
mζ.

Define the random process Xa,b := 〈Φa+
√
mb,ω〉,

which has sub-Gaussian increments:

‖Xa,b −Xa′,b′‖ψ2 =
∥∥〈Φ(a− a′),ω〉+

√
m 〈ω, b− b′〉

∥∥
ψ2

≤ ‖〈Φ(a− a′),ω〉‖ψ2
+
√
m ‖〈ω, b− b′〉‖ψ2

≤ ‖ω‖2 · ‖Φ(a− a′)‖ψ2 +
√
m‖b− b′‖2 · ‖ω‖ψ2

≤ C2K‖ω‖2 · ‖a− a′‖2 + C1ζ
√
m · ‖b− b′‖2

≤ C2Kζ
√
m · ‖a− a′‖2 + C1ζ

√
m · ‖b− b′‖2

≤ C3Kζ
√
m ·

√
‖a− a′‖22 + ‖b− b′‖22

for any (a, b), (a′, b′) ∈ T . The second inequality follows
from the definition of sub-Gaussian norm of random vector
and the third inequality is due to the fact that 〈Φi,a− a′〉
are i.i.d. sub-Gaussian variables with ‖ 〈Φi,a− a′〉 ‖ψ2

≤
K‖a−a′‖2 and hence ‖Φ(a−a′)‖ψ2

≤ CK‖a−a′‖2. The
last inequality holds because C3K ≥ C1 for some suitable
absolute constant C3.

Define T̃ = T ∪ {(0,0)}, it then follows from Talagrand’s
Majorizing Measure Theorem (Fact 2) that the event

sup
(a,b)∈T

Xa,b ≤ sup
(a,b)∈T

|Xa,b| = sup
(a,b)∈T̃

|Xa,b|

= sup
(a,b)∈T̃

|Xa,b −X0,0| ≤ sup
(a,b),(a′,b′)∈T̃

|Xa,b −Xa′,b′ |

≤ C3Kζ
√
m
[
ω(T̃ ) + t · diam(T̃ )

]
≤ C4Kζ

√
m
[
γ(T ) + t · rad(T )

]
holds with probability at least 1−exp(−t2). The last inequality
holds because ω(T̃ ) ≤ γ(T̃ ) = γ(T ) and diam(T̃ ) =
supx,y∈T̃ ‖x− y‖2 ≤ 2 rad(T̃ ) = 2 rad(T ).
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