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Abstract—A list decoding scheme for universal polar codes is
presented. Our scheme applies to the universal polar codes first
introduced by Şaşoğlu and Wang, and generalized to processes
with memory by the authors. These codes are based on the
concatenation of different polar transforms: a sequence of “slow”
transforms and Arıkan’s original “fast” transform. List decoding
of polar codes has been previously presented in the context of the
fast transform. However, the slow transform is markedly different
and requires new techniques and data structures. We show that
list decoding is possible with space complexity O(L · N) and time
complexity O(L ·N log N), where N is the overall blocklength and
L is the list size.

I. INTRODUCTION

Polar codes, introduced by Arıkan [1], are a rich a

family of codes. They have been extended to many settings,

e.g., [2]–[14]. Specifically, in [10], a universal polar coding

construction was presented. It applies to a setting where the

channel is unknown to the encoder, but the decoder has full

channel knowledge, obtained, e.g., by channel estimation

(see also [9] for another approach). In [15], the construction

of [10] was generalized to apply to a large class of channels

and sources with memory. List decoding is a technique to

improve upon the successive-cancellation (SC) decoding error

of polar codes. Its implementation in [16] applies to Arıkan’s

seminal polar codes [1] (see also [17]), but does not trivially

extend to the universal construction. In this paper, we present

such an extension.

The universal polar codes of [10], [15] are based on

concatenating recursive transforms of two types. One of

which, called the fast transform, is Arıkan’s transform [1]; the

other, called the slow transform, is different. A key step in this

concatenation is joining multiple copies of a slow transform

such that their outputs are fed into multiple fast transforms.

Both transforms above can be described using layers.

Specifically, the layer keeps track of the recursion depth.

Let xN−1
0

denote the transform input and uN−1
0

its output.

Consider first the fast transform [1]. Here, decoding is per-

formed via successive-cancellation, in which symbols are de-

coded successively. Namely, we decode symbol ui after having

decoded the previous symbols ui−1
0

and under the assumption

that our previous decoding decisions ûi−1
0

are correct. The slow

transform can also be decoded using successive-cancellation.

A crucial property of SC decoding of the fast transform is that

in decoding symbol ui, typically only a small number of layers

are involved. In stark contrast, as we will later see, in SC de-

coding of the slow transform, typically all layers are involved.

Successive-Cancellation List (SCL) decoding is a general-

ization of SC decoding, in which multiple “decoding paths”

are considered in parallel. That is, instead of making a hard

decision on the value of ûi at stage i, we allow for multiple

hypotheses. We keep the list of hypotheses manageable by

pruning it and keeping the L most-likely paths. In a fast

transform of blocklength N this can be accomplished in space

O(L · N) and time O(L · N log N). The crucial property high-

lighted in the previous paragraph is what enables this for the

fast transform. The crucial property does not hold for the slow

transform. Thus, different techniques are needed to accomplish

SCL decoding with the same space and time complexity for the

universal concatenated transform. We indeed accomplish this,

by exploiting a certain cyclic property of the slow transform.

We leverage this property through a dedicated data-structure,

termed the cyclic exponential array.

Due to length constraints, we focus on the slow transform

and only outline the entire construction. Proofs and numerical

results are omitted. A full paper with all the details is in

preparation.

II. THE SLOW TRANSFORM

The slow transform introduced in [10] was streamlined and

generalized to settings with memory in [15]. We now describe

the slow transform of [15]. Unlike [15], We use zero-based

indexing, as it is more amenable to implementation.

The slow transform is one-to-one and onto. It transforms a

vector of N bits into another vector of N bits. The transform

is recursively defined. The initial step is an identity mapping

of length N0 = 2L0 + M0. Parameters L0 and M0 are selected

according to the memory properties of the setting and the

desired rate, see [15]. Every step of the recursion doubles the

transform length. After n steps it transforms vectors of length

N = 2nN0.

Borrowing terminology from [16], we describe a slow trans-

form of recursion depth n using layers, phases, and branches

as follows. A slow transform of size N = 2nN0 — i.e., of

recursion depth n — has n+ 1 layers, from 0 to n. Layer 0 is

associated with the transform input xN−1
0

; layer n is associated

with the transform output uN−1
0

. Each layer of the transform

is divided into branches, each comprising a contiguous set

of indices called phases. The number of branches in layer λ

is 2n−λ; each branch comprises 2λN0 phases. The mapping

between index i in layer λ and its phase ϕ and branch β is

i = 〈ϕ, β〉λ , ϕ + β · 2λN0, 0 ≤ ϕ < 2λN0, 0 ≤ β < 2n−λ.

When the layer λ is obvious from the context, we omit it and

simply write i = 〈ϕ, β〉.

We divide the phases within a branch β of any layer λ to

several sets. As in [15], we assume that M0 is even, and define

Lλ = 2λ(L0 + 1) − 1, Mλ = 2λ(M0 − 2) + 2. (1)
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In other words, Lλ = 2Lλ−1+1 and Mλ = 2(Mλ−1−1). Observe

that 2Lλ+Mλ = 2λN0 , Nλ, the number of phases in a branch

of layer λ. The lateral set, [lat(λ)], consists of 2Lλ phases. The

medial set, [med(λ)], consists of the remaining Mλ phases.

These sets are further subdivided. The mapping of phases to

sets in any branch of layer λ is given by:

[lat1(λ)] , {ϕ | 0 ≤ ϕ ≤ Lλ − 1}, (2a)

[med−(λ)] , {ϕ | ϕ = Lλ + 2k, 0 ≤ k < Mλ/2}, (2b)

[med+(λ)] , {ϕ | ϕ = Lλ + 2k + 1, 0 ≤ k < Mλ/2}, (2c)

[lat2(λ)] , {ϕ | Lλ + Mλ ≤ ϕ ≤ Nλ − 1}, (2d)

[lat(λ)] , [lat1(λ)] ∪ [lat2(λ)], (2e)

[med(λ)] , [med−(n)] ∪ [med+(n)]. (2f)

Observe that the first Lλ phases of a branch are lateral, the

next Mλ phases are medial and alternate between [med−(λ)]

and [med+(λ)], and the final Lλ indices are again lateral.

Let xN−1
0

be the input and uN−1
0

the output of a slow

transform of recursion depth n. Denote index i = 〈ϕ, β〉λ of the

vector corresponding to layer λ by u
(λ)

i
= u
(λ)

〈ϕ,β〉
. In particular,

u
(0)

i
= xi and u

(n)

i
= ui. We also denote

ψ =

⌊ ϕ
2

⌋
, ψ′ =

⌊
ϕ − 1

2

⌋
.

Then, the slow transform recursion for λ ≥ 1 is given by

ϕ∈[lat(λ)]⇒u
(λ)

〈ϕ,β〉
=




u
(λ−1)

〈ψ,2β〉
, ϕ even,

u
(λ−1)

〈ψ,2β+1〉
, ϕ odd,

(3)

ϕ∈[med(λ)]⇒u
(λ)

〈ϕ,β〉
=




u
(λ−1)

〈ψ′+1,2β〉
+ u
(λ−1)

〈ψ′,2β+1〉
, ϕ odd,

u
(λ−1)

〈ψ′,2β+1〉
,
ϕ even,

ψ′ ∈[med−(λ − 1)],

u
(λ−1)

〈ψ′+1,2β〉
,
ϕ even,

ψ′ ∈[med+(λ − 1)].

(4)

Observe from (1), (2b), and (2c) that since λ ≥ 1, ϕ ∈ [med(λ)]

is even if and only if ϕ ∈ [med+(λ)]. When λ ≥ 2, we have

ψ′ ∈ [med−(λ − 1)] ⇐⇒ ψ′ is odd,

ψ′ ∈ [med+(λ − 1)] ⇐⇒ ψ′ is even.

By (3) and (4), branch β of layer λ is formed from branches

2β and 2β + 1 of layer λ − 1. From (1) and (2), all lateral

phases of branches 2β, 2β + 1 of layer λ − 1 are transformed

into lateral phases of branch β of layer λ. Additionally, medial

phases 〈Lλ−1, 2β〉λ−1 and 〈Lλ−1+Mλ−1−1, 2β+1〉λ−1 become

lateral phases of layer λ.

The operation in (4) consists of minus and plus transforms:

a minus transform for odd medial ϕ, and a plus transform

for even medial ϕ. Equation (4) reveals a cardinal difference

between the slow transform and Arıkan’s fast transform. In

the fast case, the minus transform operates on the same phase

of two consecutive branches. In the slow case, the minus

transform operates on consecutive phases of two consecutive

branches.

III. SUCCESSIVE-CANCELLATION FOR THE SLOW

TRANSFORM

The original decoding algorithm of polar codes is

successive-cancellation. More generally, SC is also employed

for encoding [8]. Better coding results can be obtained using

SCL decoding. However, we first discuss SC decoding.

The universal scheme [10], [15] employs a joint transform

consisting of slow and fast transforms. The joint transform

is recursive as well, and hence conveniently described via

hyperlayers, hyperbranches, and hyperphases — to be detailed

in the full paper. SC can be used for encoding and decoding

this joint transform. Due to length constraints, we focus our

discussion on SC for the slow transform — a cardinal building

block. We remark that the slow transform, used exclusively, is

not sufficient for coding as it polarizes too slowly. Our full

paper will provide details on the joint transform.

SC is used in a probabilistic setting. Denote random vari-

ables using capital letters. For channel coding, XN−1
0

is the

channel input and YN−1
0

is the corresponding output. Their

joint probability is governed by a hidden Markov state chain

(see [15] for full details of the model): P(Xi,Yi, Si |Si−1), where

Si is the state at time i. The states belong to a finite set S. We

also denote X = {0, 1}.

Algorithm 1 is a general high-level description of SC for

the above setting. For each of the N phases, we first compute

p(u, s, s′; û
ϕ−1

0
, yN−1

0 ) (5)

,P

(
Uϕ = u, S−1 = s, SN−1 = s′; U

ϕ−1

0
= û

ϕ−1

0
,Y N−1

0 = y
N−1
0

)
,

where UN−1
0

is the transform of XN−1
0

. Every phase ϕ is either

used to carry information bits (such a phase is called a data

phase) or not. In [1], non-data phases were called ‘frozen.’

More generally [8], these are shaping phases. Either way, for

non-data phases uϕ is determined via a mapping1
Fϕ(u

ϕ−1

0
).

In [8], this mapping utilizes common randomness between

encoder and decoder. When ϕ is a data phase, we determine ûϕ
using a maximum aposteriori criterion. That is, we compute

p(u; û
ϕ−1

0
, yN−1

0 ) ,
∑

s,s′∈S

p(u, s, s′; û
ϕ−1

0
, yN−1

0 ), (6)

and select ûϕ = arg maxu∈X p(u; û
ϕ−1

0
, yN−1

0
).

Algorithm 1: A high-level description of SC

Input: received y
N−1
0

(or empty vector for encoding)

Output: transformed codeword ûN−1
0

1 for ϕ = 0, 1, . . . , N − 1 do

2 compute p(u, s, s′; û
ϕ−1

0
, yN−1

0
) for u ∈ X; s, s′ ∈ S

3 if ϕ is a frozen (shaping) phase then

4 set ûϕ ← Fϕ(û
ϕ−1

0
)

5 else

6 set ûϕ ← arg maxu∈X p(u; û
ϕ−1

0
, yN−1

0
)

7 return ûN−1
0

1Note that the Cyclic Redundancy Check (CRC) variant [16] of polar codes
places CRC bits in certain phases. Under our definition, these are also shaping
phases. The same comment applies for the dynamically frozen bits of [18].



A. A first implementation of Algorithm 1

Our first implementation mirrors Algorithms 1 – 4 of [16],

modified and generalized to the slow transform and to settings

with memory. Thus, we first employ straightforward data

structures: arrays. Later, when considering list decoding, we

will show that the space complexity can be reduced using

enhanced data structures.

To implement Algorithm 1, we need a way to compute

p(u, s, s′; û
ϕ−1

0
, yN−1

0
). This is accomplished using the recursive

description (3) and (4). The intermediate calculations required

for computing p(u, s, s′; û
ϕ−1

0
, yN−1

0
) are common between dif-

ferent phases ϕ. We store some of the intermediate calculations

for time complexity reduction.

Our implementation utilizes two main data structures: one

for keeping track of intermediate bit decisions and the other for

storing intermediate probabilities. Specifically, for each layer

0 ≤ λ ≤ n we define a bit-decision array Bλ of size N =

2λN0 · 2
n−λ. The array starts out uninitialized, and when the

algorithm concludes it holds bit decisions:

Bλ[〈ϕ, β〉] = û
(λ)

〈ϕ,β〉
.

We further define, for each layer λ, a probabilities array Pλ
of size N × |X| × |S| × |S|. When the algorithm concludes,

Pλ[〈ϕ, β〉][u, s, s
′] = p

(λ)

〈ϕ,β〉
(u, s, s′),

where we define p
(λ)

〈ϕ,β〉
(u, s, s′) in (7). For brevity, we denote

Λ = 2λN0, S̃ = SβΛ−1, S̃′ = S(β+1)Λ−1, vϕ = u
(λ)

〈ϕ,β〉
, v̂ϕ = û

(λ)

〈ϕ,β〉
,

and ỹϕ = y〈ϕ,β〉λ . Capital versions of vϕ and ỹϕ denote random

variables. Then,

p
(λ)

〈ϕ,β〉
(u, s, s′) (7)

= P

(
Vϕ = u, S̃ = s, S̃′ = s′; V

ϕ−1

0
= v̂

ϕ−1

0
, ỸΛ−1

0 = ỹ
Λ−1
0

)
.

Observe that when λ = 0 then Vϕ = Xϕ , the channel input, and

Λ = N0. Thus, p
(0)

〈ϕ,β〉
involves a sub-vector of the output YN−1

0

of size N0. Due to the Markov property, we can compute p
(0)

〈ϕ,β〉

directly from the joint distribution P(Xi,Yi, Si |Si−1). Observe

that when λ = n, p
(n)

〈ϕ,β〉
(u, s, s′) = p(u, s, s′; û

ϕ−1

0
, yN−1

0
).

Our implementation is given in Algorithm 2. Its main loop

(lines 7 – 15) iterates over all phases of the single branch of the

last layer n. For each last-layer phase it recursively calculates

relevant probabilities of the probabilities array (line 8), decides

on the value of the last-layer phase (lines 9 – 12), and finally

propagates this value throughout the transform (lines 13 – 15).

An additional array in our implementation is the tracker

Tλ[i], i ∈ {0, 1}. For each layer 0 ≤ λ < n, each of its two

elements is either empty or holds a phase-branch pair (ϕ̄, β̄).

A resetTracker function sets all of its elements over all

layers to empty. Whenever Bλ[〈ϕ, β〉] is updated, the tracker

is also updated. As will soon become apparent, no more than

two phase-branch pairs (ϕ̄, β̄) are updated per layer λ in an

iteration of the main loop of Algorithm 2. Thus, Tλ[i] = (ϕ̄, β̄)

means that in the previous iteration of the main loop, phase ϕ̄

of branch β̄ in layer λ was updated.

We will soon see that recursive probability calculation needs

to know which phases and branches were updated in every

layer in the previous iteration of the main loop of Algorithm 2.

This is accomplished via the tracker array. Specifically, before

propagating bit decisions throughout the transform, we reset

the tracker (line 14 in Algorithm 2).

Algorithm 2: First implementation of SC decoder

Input: received y
N−1
0

(empty vector for encoding)

Output: transformed codeword ûN−1
0

1 for β = 0, 1, . . . , 2n − 1 do // Initialization

2 for u ∈ X, s ∈ S, s′ ∈ S do
3 set ϕ← 0 // Other phases updated later

4 P0[〈ϕ, β〉][u, s, s
′] ← p

(0)

〈ϕ,β〉
(u, s, s′)

5 resetTracker()
6 set β← 0 // The only branch of layer n
7 for ϕ = 0, 1, . . . , N − 1 do // Main loop

8 recursivelyCalcP(n, ϕ, β)
9 if ϕ is a frozen (shaping) phase then

10 set ûϕ ← Fϕ(û
ϕ−1

0
)

11 else

12 set ûϕ ← arg maxu∈X p(u; û
ϕ−1

0
, yN−1

0
)

13 set Bn[〈ϕ, β〉] ← ûϕ
14 resetTracker()
15 recursivelyUpdateB(n, ϕ, β)

16 return ûN−1
0

Algorithm 3, invoked with recursivelyCalcP(λ, ϕ, β),

computes p
(λ)

〈ϕ,β〉
(u, s, s′) for all u ∈ X and s, s′ ∈ S. It does

this by utilizing the relationships in equations (3) and (4) and

the Markov property. However, it must first ensure that the

relevant indices in Pλ−1 had been computed. The branches

and phases in layer λ − 1 for which Pλ−1 is updated depend

on λ, ϕ, and β. There are three cases.

1) When λ = 0 (line 6), we update the base probabilities

if needed. Efficient implementation, especially when

list decoding is involved, requires another algorithm,

updateBaseProbs, see our full paper.

2) If λ > 0 and ϕ = 0 (line 9), no bit decisions had been

propagated, and we recurse to the previous layer.

3) Otherwise, we use the tracker array Tλ−1 (line 16). Note

that this calls upon a ‘next phase’ ϕ̄ + 1 in a branch.

This ‘next phase’ may exceed the size of the branch.

This happens when all phases in a branch had their bit

decisions propagated to. Thus (lines 1–4) we set to zero

p
(λ−1)

〈ϕ̄,β̄〉
(u, σ, σ′) for all u , Bλ−1[〈ϕ̄, β̄〉], and σ, σ′ ∈ S.

Finally, in lines 17–20, recursivelyCalcP(λ, ϕ, β)

computes p
(λ)

〈ϕ,β〉
(·, ·, ·). The computation depends on the

type of phase ϕ: lateral or medial, and uses equations (3)

and (4), respectively. It also relies on the Markov property

and the adaptation of minus and plus transforms to this

case, see [19], [20]. Details of lateralProbHelper and

medialProbHelper will appear in our full paper.

Algorithm 4 resolves equations (3) and (4) recursively:

it is invoked after Bλ[〈ϕ, β〉] had been set, and propagates

this throughout the transform. The recursive computation

is performed from layer λ to layer λ − 1, the opposite

direction to that of equations (3) and (4). When λ = 0,

recursivelyUpdateB(λ, ϕ, β) cannot propagate to a pre-

vious layer, so it simply returns. Otherwise, its operation

depends on the type of phase ϕ.



Algorithm 3: recursivelyCalcP(λ, ϕ, β)

Input: λ = layer, β = branch in layer, ϕ = phase in branch

1 if ϕ = 2λN0 then // after last phase in branch

2 for u ∈ X do
// Set probability zero to u different

than last decision

3 if u , Bλ[〈ϕ − 1, β〉] then
4 for s, s′ ∈ S do Pλ[〈ϕ − 1, β〉][u, s, s′] ← 0

5 return

6 if λ = 0 then
7 if ϕ > 0 then updateBaseProbs(ϕ, β)
8 return // Stopping condition

9 if ϕ = 0 then
10 recursivelyCalcP(λ − 1, ϕ, 2β)
11 recursivelyCalcP(λ − 1, ϕ, 2β + 1)

12 else // ϕ > 0
13 for i ∈ {0, 1} do
14 if Tλ−1[i] is not empty then

15 (ϕ̄, β̄) ← Tλ−1[i]
// Prepare next phase in branch

16 recursivelyCalcP(λ − 1, ϕ̄ + 1, β̄)

// Compute Pλ[〈ϕ, β〉][u, s, s
′] for all u, s, s′

17 if ϕ ∈ [lat(λ)] then
18 lateralProbHelper(λ, ϕ, β) // use (3)

19 else if ϕ ∈ [med(λ)] then
20 medialProbHelper(λ, ϕ, β) // use (4)

21 return

1) ϕ ∈ [lat(λ)] (lines 3–8). By (3), a lateral phase of

layer λ passes-through directly to a single phase of layer

λ − 1. Thus, only a single phase-branch pair of Bλ−1 is

updated, and the algorithm recurses to layer λ−1. After

every update of the bit-decision array we also update the

tracker. In this case, Tλ−1 has only one non-empty entry.

2) ϕ ∈ [med−(λ)] (line 1). Medial phases come in minus

and plus pairs, in this order. Both members of the pair

are required to resolve (4) for λ−1. Since this is the first

member of the pair, we must wait. Nothing is updated,

so return without recursing.

3) ϕ ∈ [med+(λ)] (lines 9–21). We now have the left-hand

side of (4) for two consecutive phases, a minus and a

plus pair (for ϕ − 1 odd and ϕ even), and can resolve

for the right-hand side, namely layer λ − 1. Two phase-

branch pairs of Bλ−1 are updated, and entered into the

tracker Tλ−1. The algorithm recurses for these two pairs.

Algorithm 4 highlights an important observation on the slow

transform. Recall from (1), (2), and (4) that consecutive medial

phases of layer λ are formed from two medial phases of

layer λ − 1. One of these phases is in [med−(λ − 1)] and

the other is in [med+(λ − 1)]. Thus, when the algorithm is

invoked for phase ϕ ∈ [med+(λ)] it recursively invokes the

algorithm twice, once for a phase in [med−(λ − 1)] and once

for a phase in [med+(λ−1)]. Hence, when Algorithm 2 invokes

recursivelyUpdateB(n, ϕ, 0) for ϕ ∈ [med+(n)], two

entries of the bit-decision array will be updated for every layer

0 ≤ λ ≤ n − 1. This is in stark contrast to the fast transform

(which typically updates the bit-decision array for only a few

layers), and the reason that the list decoder implementation

of [16] does not carry through.

Algorithm 4: recursivelyUpdateB(λ, ϕ, β)

Input: λ = layer, β = branch in layer, ϕ = phase in branch

1 if λ = 0 or ϕ ∈ [med−(λ)] then
2 return // Only medial plus or lateral

phases are propagated

3 if ϕ ∈ [lat(λ)] then
4 set ψ ← ⌊ϕ/2⌋

5 set β̄← 2β + (ϕ mod 2) // See (3)

6 Bλ−1[〈ψ, β̄〉] ← Bλ[〈ϕ, β〉]

7 Tλ−1[0] ← (ψ, β̄)

8 recursivelyUpdateB(λ − 1, ψ, β̄)

9 else // See (4)
10 set ψ′ ← ⌊(ϕ − 1)/2⌋
11 if ϕ ∈ [med+(λ)] then
12 if ψ′ ∈ [med−(λ − 1)] then
13 Bλ−1[〈ψ

′
+ 1, 2β〉] ← Bλ[〈ϕ, β〉] + Bλ[〈ϕ − 1, β〉]

14 Bλ−1[〈ψ
′, 2β + 1〉] ← Bλ[〈ϕ, β〉]

15 else
16 Bλ−1[〈ψ

′, 2β + 1〉] ← Bλ[〈ϕ, β〉] + Bλ[〈ϕ − 1, β〉]
17 Bλ−1[〈ψ

′
+ 1, 2β〉] ← Bλ[〈ϕ, β〉]

18 Tλ−1[0] ← (ψ
′, 2β + 1)

19 Tλ−1[1] ← (ψ
′
+ 1, 2β)

20 recursivelyUpdateB(λ − 1, ψ′, 2β + 1)
21 recursivelyUpdateB(λ − 1, ψ′ + 1, 2β)

The following lemma will be crucial for the list decoder’s

bookkeeping. To this end, we first define a branc.

Definition 1 (branc). A branc contains two consecutive

branches. The branc of branch β is numbered ⌊β/2⌋. In other

words, branches β and β + 1 are in the same branc if their

bit-expansions are equal up to the least significant bit.2

For example, there are eight brancs for layer λ = 4: branc

0 = 〈000〉2 contains branches 0 = 〈0000〉2 and 1 = 〈0001〉2,

branc 1 contains branches 2 and 3, etc.

We order brancs in bit-reversed cyclic order. Thus, for λ =

4, brancs are ordered: 0 = 〈000〉2, 4 = 〈100〉2, 2 = 〈010〉2,

6 = 〈110〉2, 1 = 〈001〉2, 5 = 〈101〉2, 3 = 〈011〉2, 7 = 〈111〉2.

Since the order is cyclic, the next branc after 7 is 0.

We say that a branc of Bλ is updated if Bλ is updated for

at least one of the branches β in the branc. Namely, Bλ[ϕ, β]

is updated for some phase ϕ and branch β in the branc. A

similar definition holds for Pλ.

Lemma 1. For each layer λ, the brancs of Bλ are updated in

bit-reversed cyclic order during the entire run of Algorithm 2.

Corollary 2. For each layer λ, the brancs of Pλ are updated

in bit-reversed cyclic order during the entire run of the main

loop of Algorithm 2, save for the first iteration, ϕ = 0.

The following theorem reduces the space complexity.

Theorem 3. Algorithms 2 to 4 can be implemented with per-

layer bit-decision arrays and probabilities arrays indexed only

by branch.

I.e., the bit-decision array can be indexed as Bλ[β] and

the probabilities array as Pλ[β](u, s, s′). Their entries will

refer to the last updated phase in the relevant layer and

2A ‘branc’ is a ‘branch’ whose “least significant letter,” ‘h’, is dropped.



branch. Note that this entails changing the interface of

recursivelyUpdateB to also pass the bit-decision of the

previous phase. Namely, lines 13, 16, 20, 21 of Algorithm 4

must be changed.

IV. LIST DECODING AND THE CYCLIC EXPONENTIAL

ARRAY

List decoding uses a number, L, of decoding paths. A path

up to phase ϕ is split at the decision point (the bit decision

for phase ϕ in the last layer n, when ϕ is a data phase). Thus,

the number of paths is doubled at every split. If this number

exceeds L, we prune the list and keep the L most likely paths.

The paths differ in their bit decisions in several places, and

consequently the arrays Bλ and Pλ differ for different paths.

The essence of an efficient implementation of list decoding is

to share portions of these arrays among paths. Namely, if a

portion of an array is the same for two paths, we store it in

memory once. Conversely, array portions that are to be written

to by a path at the current phase must not be shared.

The universal transform is formed by concatenating a se-

quence of slow transforms and a final fast transform. A key

building block in list decoding for the universal transform is

the cyclic exponential array (CEA). This is a data structure

that enables sharing array portions efficiently. We focus on the

slow transform, due to space limitations.

Recall from Theorem 3 that the arrays Bλ and Pλ may

be indexed by branch only. Further note from Lemma 1 and

Corollary 2 that these arrays are updated in a cyclic order.

The CEA data structure holds generic objects:

• For Bλ it holds pairs of bit decisions, one pair for each

branc.

• For Pλ it holds pairs of ‘probability datums,’ one pair

for each branc. A probability datum holds |X| · |S|2

probabilities, indexed by u, s, and s′.

A CEA contains 2λ objects for some λ. The CEA supports two

operations: read(i) and write(i). The operation read(i) re-

turns the object stored at position i of the CEA. The operation

write(i) stores an object at position i of the CEA. The first

write must be called with index i = 0. For subsequent calls,

if the previous call of write was with index i, the current

call must be with either index i or i+1, modulo the CEA size

2λ. Bit-reversal is performed by the caller.

Internally, a CEA of size 2λ holds the following variables:

• lastIndexWrittenTo: the last index written to by

write.

• lastWrittenValue: the object last written by

write.

• Arrays currentCycleArrayτ , 0 ≤ τ < λ. Array

currentCycleArrayτ holds 2τ objects; its indexing

is zero-based.

• previousCycleArray: holds 2λ objects; its indexing

is zero-based.

When lastIndexWrittenTo = i,

• lastWrittenValue holds the object written to by the

latest write, write(i).

• For j > i, previousCycleArray[ j] holds the object

written to by the latest write( j).

• For j < i, the object written to by the latest write( j)

is in currentCycleArrayτ[k], where τ and k are

computed as follows. Let i = 〈iλ−1iλ−2 · · · i0〉2 and j =

〈 jλ−1 jλ−2 · · · j0〉2 be the binary bit expansions of i and j

respectively, with i0 ( j0) the least significant bit of i ( j).

Then, τ is the largest integer such that iτ = 1 and jτ = 0,

and k = 〈 jτ jτ−1 · · · j0〉2.

Example 1. Let λ = 4 and lastIndexWrittenTo = 11 =

〈1011〉2. Then, for 0 ≤ j ≤ 15, the location that read( j) will

access is the cell numbered j in the following:

currentCycleArray3 ≡
[
0 1 2 3 4 5 6 7

]
,

currentCycleArray2 ≡
[
N/A N/A N/A N/A

]
,

currentCycleArray1 ≡
[
8 9

]
,

currentCycleArray0 ≡
[
10

]
,

lastWrittenValue ≡ 11,

previousCycleArray ≡
[
N/A · · · N/A 12 13 14 15

]
.

The only legal write operations are write(11) and

write(12): write(11) changes lastWrittenValue

only; write(12) first copies into currentCycleArray2

objects from lastWrittenValue and

currentCycleArrayτ , τ = 0, 1. Then, it changes

lastWrittenValue and lastIndexWrittenTo.

Crucially, the two largest arrays, previousCycleArray

and currentCycleArray3 are unchanged.

The following theorem details which internal variables of a

CEA are changed during a write operation. This is crucial

with respect to list decoding. Namely, it details which variables

can be shared among paths after a split, and which cannot. To

this end, the binary bit expansions of i and j respectively are

i = 〈iλ−1iλ−2 · · · i0〉2 and j = 〈 jλ−1 jλ−2 · · · j0〉2.

Theorem 4. Let lastIndexWrittenTo = i and con-

sider write( j) for j = (i + 1) mod 2λ. Apart from

lastWrittenValue and lastIndexWrittenTo, a sin-

gle array is changed:

• If j = 0, only previousCycleArray is changed.

• Otherwise, let τ be the largest integer such that jτ =

1 and iτ = 0. Then, only currentCycleArrayτ is

changed.

Corollary 5. Let i, j, and τ be as in Theorem 4, and let 2λ

be the CEA size. Then the time complexity of write(j) is

O(2λ) if j = 0 and O(2τ) otherwise. Thus, a sequence of 2λ

write operations spanning all indices j takes time O(λ · 2λ).

The number of layers n + 1 in a slow transform of block-

length N = 2nN0 is O(log N). Thus,

Corollary 6. SCL for a slow transform of length N can

be accomplished with space complexity O(L · N) and time

complexity O(L · N log2 N).

One might infer from Corollary 6 that the overall time

complexity of SCL decoding of a universal transform of block-

length N is O(L·N log2 N). This would happen in a straightfor-

ward implementation. However, the universal transform has a

parallel structure, in which multiple identical slow transforms

are decoded in lockstep. This allows for significant savings in



time complexity, by having the CEA objects be pointers to

arrays whose length is the number of slow transform copies.

Copying an object is simply copying a pointer, and a single

copy operation suffices for all parallel slow transforms. Hence,

the bookkeeping associated with all parallel slow transforms

is not a function of the number of parallel transforms, only the

blocklength of a single slow transform. Thus, it is possible to

show the following.

Theorem 7. SCL for a universal transform of blocklength N

can be accomplished with space complexity O(L ·N) and time

complexity O(L · N log N).
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