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Abstract—Data deduplication saves storage space by identi-
fying and removing repeats in the data stream. Compared with
traditional compression methods, data deduplication schemes are
more computationally efficient and are thus widely used in large
scale storage systems. In this paper, we provide an information-
theoretic analysis of the performance of deduplication algorithms
on data streams in which repeats are not exact. We introduce a
source model in which probabilistic substitutions are considered.
More precisely, each symbol in a repeated string is substituted
with a given edit probability. Deduplication algorithms in both
the fixed-length scheme and the variable-length scheme are
studied. The fixed-length deduplication algorithm is shown to
be unsuitable for the proposed source model as it does not take
into account the edit probability. Two modifications are proposed
and shown to have performances within a constant factor of
optimal for a specific class of source models with the knowledge of
model parameters. We also study the conventional variable-length
deduplication algorithm and show that as source entropy becomes
smaller, the size of the compressed string vanishes relative to the
length of the uncompressed string, leading to high compression
ratios.

I. INTRODUCTION

The task of reducing data storage costs is gaining increasing

attention due to the explosive growth of the amount of digital

data, especially redundant data [3], [10], [18]. Data dedupli-

cation is a data reduction approach that eliminates duplicate

data at the file or subfile level. Compared with traditional data

compression approaches, data deduplication is more efficient

when dealing with large-scale data. It has been widely used

in mass data storage systems, e.g., LBFS (low-bandwidth

network file system) [12] and Venti [14]. In this paper, we

aim to study the performance of data deduplication algorithms

from an information-theoretic point of view when repeated

data segments are not necessarily exact copies.

A typical data deduplication system uses a chunking scheme

to parse the data stream into multiple data ‘chunks’. Chunks

are entered into the dictionary at the first occurrences, and

duplicates are replaced by pointers to the dictionary. The

chunks can be of equal length (fixed-length chunking) or of

lengths that are content-defined (variable-length chunking) [8].

The fixed-length scheme has low complexity but suffers from

the boundary-shift problem: if insertions or deletions occur

in a part of the data stream, then all subsequent chunks are
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changed because the boundaries are shifted. In the variable-

length scheme, chunk breakpoints are determined using pre-

defined patterns and therefore edits will not affect subsequent

chunks and repeated data segments can still be identified.

An information-theoretic analysis of deduplication algo-

rithms was first performed by Niesen [13]. Niesen’s work in-

troduced a source model, formalized deduplication algorithms

in both fixed-length and variable-length schemes, including

(conventional) fixed-length deduplication (FLD) and variable-

length deduplication (VLD), and analyzed their performance.

We adopt a similar strategy in this paper. The source model

introduced by Niesen produces data strings that are composed

of blocks, with each block being an exact copy of one of the

source symbols, where the source symbols are pre-selected

strings. It is often the case, however, that the copies of a block

of data that is repeated many times are approximate, rather

than exact. This may occur, for example, due to edits to the

data, or in the case of genomic data1, due to mutations. Thus,

in our source model, we add probabilistic substitutions to

each block, resulting in data streams composed of approximate

copies of the source symbols.

We then analyze data deduplication algorithms over source

models with probabilistic edits. For the fixed-length scheme,

three algorithms: a generalization of FLD [13] named modified

fixed-length deduplication (mFLD), a variant of mFLD named

adaptive fixed-length deduplication (AFLD), and the edit-

distance deduplication (EDD), are presented and analyzed.

Due to the boundary-shift problem, algorithms in the fixed-

length scheme are studied over the source model where all

source symbols have the same length. We show that for

mFLD, if the chunk length is not properly chosen, the average

length of the compressed strings is greater than source entropy

by an arbitrarily large multiplicative factor for small enough

edit probability. Meanwhile, AFLD and EDD take source

model parameters into account and are shown to have perfor-

mances within a constant factor of optimal. For the variable-

length scheme, we consider the general scenario where source

symbols are of random lengths. We show that VLD can

achieve large compression ratios relative to the length of the

uncompressed strings.

A large number of works have studied data deduplication;

see [22] for a comprehensive survey. However, the problem is

not well-studied from an information-theoretic point of view.

This is important because information-theoretic analysis would

enable comparing the performance of deduplication algorithms

with theoretical limits, under appropriate probabilistic models,

and guide the development of more efficient, possibly optimal,

1Repeats are common in genomic data. For example, a majority of the
human genome consists of interspersed and tandem repeated sequences [6].
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algorithms. In addition to the seminal work by Niesen [13], the

work [19] also analyzed deduplication from an information-

theoretical point of view but with a source model that is incom-

patible with the current analysis. The problem of deduplication

under edit errors was also considered in [1]. While [1] focuses

on performing deduplication on two files, one being an edited

version of the other by insertions and deletions, we consider

a single data stream with substitution errors.

The rest of the paper is organized as follows. Notation and

preliminaries are given in the next section. In Section III, we

introduce the information source model and bound its entropy.

In Section IV, we formally state the deduplication algorithms.

In Section V, we summarize the main results of this paper.

Bounds on the performances of algorithms in the fixed- and

the variable-length schemes are derived in Section VI and VII,

respectively. We close the paper with concluding remarks and

open problems in Section VIII.

II. PRELIMINARIES

We consider the binary alphabet {0, 1}, denoted Σ. The set

of all finite strings over Σ (including the unique empty string)

is denoted Σ∗. A j-(sub)string is a (sub)string of length j. For

a non-negative integer m, let Σm be the set of all strings of

length m over Σ. For strings u,v ∈ Σ∗, the concatenation of

u and v is denoted uv, and the concatenation of i copies of

u is denoted u
i. We denote the substring of length ℓ starting

from the j-th symbol of u by uj,ℓ, which is also referred to

as the j-th ℓ-substring of u. The length of u is denoted |u|.
The cardinality of a set S is also denoted |S|. For a set T of

strings, u is said to be a substring of T if u is a substring of

one or more strings in T .

In this paper, all logarithms are to the base 2. For 0 ≤ p ≤ 1,

H(p) denotes the binary entropy function: p log
(

1
p

)

+ (1 −

p) log
(

1
1−p

)

. For 0 ≤ p, q ≤ 1, H(p, q) denotes the cross

entropy function: p log
(

1
q

)

+ (1− p) log
(

1
1−q

)

. For an event

E , we use Ē to denote its complement and use IE to denote

the indicator variable for E , which takes value 1 when E is

true, and 0 otherwise.

The following inequalities are used frequently: for x ∈
(0, 1) and a positive integer n,

1

2
min(1, nx) ≤ 1− (1− x)n ≤ min(1, nx). (1)

A binary string is k-runlength-limited (k-RLL) [9] if it does

not contain k consecutive zeros, i.e., all runs of zeros in the

string are of lengths less than k. We denote the set of binary k-

RLL strings by Rk and denote the set of binary k-RLL strings

of length n by Rn
k . The following lemma provides bounds on

the size of Rn
k .

Lemma 1. Let k be a positive integer. The number of binary

k-RLL strings of length n, |Rn
k |, satisfies

(2−
1

2k−2
)n ≤ |Rn

k | ≤ 2(2−
1

2k
)n.

Lemma 1 is proved by induction in Appendix A. By

Lemma 1, we bound the number of binary k-RLL strings of

lengths at most 2k in the following corollary.

Corollary 1. The number of binary k-RLL strings of lengths

at most 2k satisfies

2k
∑

n=0

|Rn
k | ≥

2k
∑

n=0

(

2−
1

2k−2

)n

≥ 22
k−2.

III. SOURCE MODEL

The source model studied in this paper extends the one

described in [13] by allowing probabilistic substitutions. The

output data stream s is a concatenation of approximate

copies of source symbols. The A source symbols, denoted

X1,X2, . . . ,XA, are iid binary strings generated in the follow-

ing way. Fix a length distribution Pl over positive integers

with mean L. For each 1 ≤ a ≤ A, we draw La from Pl

and draw Xa uniformly from ΣLa . It is important to note that,

as a result of sampling with replacement, the source symbols

are distributed uniformly and independently. The probability

that (X1, . . . ,XA) = (x1, . . . ,xA) given the lengths La is
∏A

a=1
1

2La
, for any set of strings (xa) where xa has length

La. So the same sequence can be drawn multiple times as

source symbols. The draws are treated as separate symbols,

but with the same content. We use X to denote the source

symbol alphabet, i.e., X = {X1,X2, . . . ,XA}. The alphabet is

thus a multiset. To simplify some of the derivations, we adopt

the same assumption as [13] that Pl is concentrated around its

mean, specifically, Pl(
L
2 ≤ l ≤ 2L) = 1.

After generating the source symbols X1,X2, . . . ,XA, we

generate an iid sequence of length B, denoted Y1, . . . , YB ,

where each Yb is an approximate copy of a randomly chosen

source symbol. Specifically, for each 1 ≤ b ≤ B, we first pick

Jb uniformly at random from {1, 2, . . . , A}. Next, we generate

Yb by flipping each bit of XJb
independently with probability

δ, as a way of simulating edits and other changes to the data in

a simple manner. The bit flipping process is referred to as a δ-

edit. As an example, if XJb
= 000000, then a possible outcome

of the δ-edit could be 001001, which has probability δ2(1−δ)4.

The data stream s will be a concatenation of Y1, Y2, . . . , YB ,

i.e., s = Y1Y2 · · ·YB . The approximate copies Y1, Y2, . . . , YB

are referred to as source blocks. The real number δ is referred

to as the edit probability. The entropy of this source is denoted

H(s). Note that given s, the boundaries between source blocks

are not known to us.

In this paper, we study the asymptotic regime in which

B,A,L → ∞ while the edit probability δ remains a constant

less than 1
2 . We consider the situation where A,L are functions

of B with A ≤ B1−k2 for some 0 < k2 < 1 and L = Θ
(

Bk1
)

for some k1 > 0. We allow A to grow large because it

is reasonable to assume that as the dataset gets larger, the

number of unique blocks is also higher. This necessitates L
to also grow large. The assumption A ≤ B1−k2 ensures that,

on average, every source symbol has repeats. The polynomial

relationship between L and B ensures that B is much smaller

than 2Θ(L). So only a small fraction of all possible strings of

length Θ(L) can appear as source symbols, or edited versions

of the source symbols, in the datastream. This is compatible

with our intuition that only a small number of all possible

strings are valid data, e.g., an image, or a piece of text or
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code. Furthermore, the polynomial relationship between B and

L appears to agree with results from experiments in [18] (also

referred to in [13]) suggesting that the reasonable range for L
is from a few KB to a few MB (≈ 104 to 107 bits) and for B
is on the order of 105 to 109. Nevertheless, other asymptotic

regimes may also be appropriate but are left to future work

for simplicity.

The following lemma provides asymptotic bounds on H(s).
Under our assumptions, H(s) is shown to be dominated by

the term H(δ)BL, i.e., the main component of the entropy is

the uncertainty arising from the random substitutions.

Lemma 2. As B → ∞, the entropy of the source model with

edit probability δ satisfies

H(δ)BL ≤ H(s) ≤ H(δ)BL+B logA+A(2L+ 1).

Proof: For the lower bound,

H(s) ≥ H(s|XJ1 , . . . ,XJB ) =

B
∑

b=1

H(Yb|XJb
) = H(δ)BL.

For the upper bound,

H(s) ≤H(s|XJ1 , . . . ,XJB ) +H(XJ1 , . . . ,XJB |X ) +H(X )

≤H(δ)BL +B logA+A(2L+ 1),

where H(X ) ≤ A(2L+1) follows from the fact that for each

Xa, there are at most 22L+1 different possibilities since we

assume La ≤ 2L.

A deduplication algorithm is said to (asymptotically)

achieve a constant factor of optimal if there exists a constant

c (independent of δ) such that E[L(s)] ≤ cH(s), for all

0 < δ < 1
2 and all sufficiently large B, where L(s) is the

length of the encoding produced by the algorithm. Given our

assumptions on A,B,L, and the result from Lemma 2, the

entropy H(s) is dominated by the term H(δ)E[|s|]. If δ is

close to 1
2 , H(s) is close to the length of the uncompressed

sequence (s is close to an iid Bernoulli(1/2) process), while

if δ is close to 0, there is large gap between the two. Hence,

to determine whether an algorithm achieves a constant factor

of optimal, the case of small δ is especially important, which

is also the case where compression is more beneficial.

We also define the compression ratio R = E[|s|]
E[L(s)] . Note

that if there exists a constant c1 independent of δ such that

R ≤ c1, then the algorithm uses more bits than the entropy by

an arbitrarily large multiplicative factor as δ goes to 0. While

if R → ∞ as δ → 0, then the algorithm can achieve arbitrarily

large compression ratios as entropy decreases. Finally, if there

exists a constant c2 such that R ≥ c2
H(δ) for all valid δ, then

the algorithm achieves a constant factor of optimal.

We discuss some strategies that we use in the rest of the

paper for computing E[L(s)]. We say XJb
is the ancestor of

Yb and Yb is a descendant of XJb
. For each a, we use Y (a)

to denote the set {1 ≤ b ≤ B : Jb = a} and use Y1/2(a) to

denote the set {1 ≤ b ≤ ⌈B/2⌉ : Jb = a}. In other words,

Y (a) is the set of source block indexes of the descendants

of Xa and Y1/2(a) is the set of source block indexes of the

descendants of Xa among the first half of source blocks.

Note that E[|Y (a)|] = B/A and E[|Y1/2(a)|] = B/(2A).
We use Eu to denote the event that |Y (a)| ≤ 3B

2A for all 1 ≤

a ≤ A, and use El to denote the event that
∣

∣Y1/2(a)
∣

∣ ≥ B
4A

for all 1 ≤ a ≤ A. Since |Y (a)| =
∑B

b=1 IJb=a, where all

summands are iid with expected value 1
A , by the Chernoff

bound [11] and the union bound,

Pr(Eu) ≥ 1−Ae−
B

10A , Pr(El) ≥ 1−Ae−
B

16A . (2)

Given our assumption that A ≤ B1−k2 , asymptotically
B

16A− logA goes to infinity. So the probability of Eu goes to 1

(also true for El). In the performance analysis of deduplication

algorithms, we generally only need to consider the case in

which El or Eu holds. Specifically, we use the following

inequalities as bounds on E[L(s)]:

E[L(s)] ≤ E[L(s)|Eu] + E[L(s)|Ēu] · Pr(Ēu),

E[L(s)] ≥ E[L(s)|El] · Pr(El) = E[L(s)|El] ·
(

1− Pr(Ēl)
)

.

To find E[L(s)], we generally compute the terms E[L(s)|Eu],
E[L(s)|El] and show that the terms E[L(s)|Ēu] · Pr(Ēu) and

E[L(s)|El] ·Pr(Ēl) are asymptotically negligible, using trivial

bounds on L(s).

IV. DEDUPLICATION SCHEMES

In this section, we formally state the deduplication al-

gorithms, which can be regarded as mathematical abstrac-

tions of real-world deduplication systems. All algorithms

are dictionary-based and composed of two stages: chunking

and encoding. In particular, the conventional fixed-length

deduplication (FLD) and variable-length deduplication (VLD)

algorithms were formalized in [13] and are restated here.

In FLD, the chunk length ℓ is fixed. Source string s is

parsed into segments of length ℓ, i.e., s = z1z2 · · · zC+1,

where |z1| = |z2| = · · · = |zC | = ℓ, C = ⌊|s|/ℓ⌋. The

substrings {zc}
C+1
c=1 are collected as deduplication chunks. The

encoding process starts with encoding the length of s by a

prefix-free code for positive integers, such as the Elias gamma

code [2], to ensure that the whole scheme is prefix-free. The

chunks are then encoded sequentially. Starting with c = 1,

if chunk zc appears for the first time, i.e., zc 6= zi for all

i < c, then it is encoded as the bit 1 followed by zc itself and

is entered into the dictionary. Otherwise, when there already

exists an entry in the dictionary storing the same string as zc,

it will be encoded as the bit 0 followed by a pointer to that

entry. The pointer is an index of the dictionary entries and

thus can be encoded by at most log
∣

∣T c−1
∣

∣ + 1 bits, where

T c−1 denotes the dictionary just after zc−1 is processed. The

number of bits FLD takes to encode s is denoted LF (s). It was

shown in [13] that FLD is ineffective when source symbols

have different lengths. So in this paper, we study FLD (as

well as its variations, mFLD and AFLD, described below)

only for sources in which all source symbols have the same

length. We note that such sources are not realistic except for

some scenarios such as deduplication in virtual machine disk

images [5]. However, the analysis of FLD and its variants is

helpful for the study of VLD, described next, as it reveals

important insights about the effect of chunk lengths on the

performance.

Example 1. For s = 01101101 and ℓ = 2, the chunks gen-

erated by fixed-length chunking are z1 = 01, z2 = 10, z3 =
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11, z4 = 01. The encoding of length |s| = 8 by Elias gamma

coding is 0001000. Chunks z1, z2 and z3 are new chunks

and thus are encoded as 101, 110, 111, respectively. Chunk z4

is a duplicate of z1. When z4 is processed, the dictionary

contains three strings 01, 10 and 11. So z3 is encoded as

000, where the first 0 indicates that the chunk is repeated and

the following 00 represents the first entry of the dictionary.

Concatenating all components, the final encoding of s is

0001000101110111000. Note that after encoding terminates,

the dictionary is the ordered set {01, 10, 11}, which appear in

the encoded string as the set of chunks preceded by indicator

bits with value 1.

In VLD, a string of length M (we assume 0M ) is chosen as

the marker string. The source string s is parsed into chunks

that end with the marker string. Specifically, the source string s

is parsed as s = z1 · · ·zC , where each zc (except for perhaps

the last one) contains a single appearance of 0M at the end. We

again use z1, . . . , zC to represent the chunks. After splitting s

into the chunks {zc}
C
c=1, the same dictionary encoding process

as in FLD is conducted. The number of bits variable-length

deduplication takes to encode s is denoted LV L(s).

Example 2. Consider the same string s = 01101101 as

Example 1. VLD, with marker length M = 1, parses s as

chunks 0, 110, 110, 1. The length of s is still encoded by

0001000. Chunks 0, 110, 1 are new and are encoded with

10, 1110, 11, respectively. The second occurrence of 110 is

encoded by a 0 followed by the pointer 1. The final encoding

of s is thus 00010001011100111.

The modified fixed-length deduplication (mFLD) has the

same encoding process as FLD but with a two-stage chunking

process. In mFLD, first, the source string s is parsed into

segments of length D, and then, each segment is parsed into

chunks of length ℓ, where ℓ ≤ D. Specifically, the source

string s is parsed as

s = x1x2 · · ·xK+1, |x1| = |x2| = · · · = |xK | = D,

where K = ⌊|s|/D⌋ and

xk = z
1
kz

2
k · · ·z

N+1
k ,

∣

∣z
1
k

∣

∣ =
∣

∣z
2
k

∣

∣ = · · · =
∣

∣z
N
k

∣

∣ = ℓ,

with 1 ≤ k ≤ K , N = ⌊D/ℓ⌋ (xK+1 is parsed in the same

way). The number of bits mFLD takes to encode s is denoted

LmF (s).

Note that mFLD is a generalization of FLD since with D =
ℓ, mFLD is equivalent to FLD with the same chunk length ℓ.
For FLD to perform well, the source symbols must all have

the same length L and the chunk length ℓ must also be chosen

equal to L to maintain synchronization between the chunks and

symbols. The generalization to mFLD allows us to maintain

synchronization by setting D = L and frees us to choose

values other than the symbol length for the chunk length ℓ.
This flexibility enables us to study the effect of chunk length,

which as we will see, will provide important intuitions for

more practical algorithms such as VLD. We will focus on

analyzing the performance of mFLD and report that of FLD

as a corollary.

The adaptive fixed-length deduplication (AFLD) is a spe-

cialization of mFLD with source model parameters taken into

account. Given A,B,L, δ, AFLD is the version of mFLD

with chunk length specified as ℓ =
⌈

log(B/A)
H(γ,δ)

⌉

(ℓ = D if

D <
⌈

log(B/A)
H(γ,δ)

⌉

) for some γ ∈ (δ, 1/2). AFLD thus contains

two parameters D and γ. Note that in practice, source model

parameters can be estimated from data. We will show later

that AFLD is an optimized version of mFLD. The distinction

in names is made to emphasize the optimality and also for the

convenience of referring to this version of the algorithm. The

number of bits AFLD takes to encode s is denoted LAF (s).
Edit-distance deduplication (EDD) extends FLD by encod-

ing chunks relative to previously observed similar chunks, if

any. EDD takes the source model parameters into account

and is only defined for source models with edit probability

δ < 1/4. EDD has two parameters, chunk length ℓ and

mismatch ratio β, where δ < β ≤ 1/4. The chunking scheme

is the same as in FLD, i.e., parsing the source string s into

chunks of length ℓ, denoted z1, z2, . . . , zC+1. The encoding

starts with a prefix-free code representing the length of the

source string. Next, each chunk zc is encoded as the bit 1

followed by itself if no chunk has appeared before whose

Hamming distance from zc is at most 2βℓ. Otherwise, let c′ be

the smallest index such that the Hamming distance between

zc′ and zc is ≤ 2βℓ. Chunk zc will be encoded as the bit

0 followed by a pointer to the dictionary entry where zc′ is

stored, along with the bits describing the mismatches between

zc and zc′ . The mismatches are the indexes of positions in

which zc′ and zc differ. Since we restrict the number of

mismatches to be no more than 2βℓ, the mismatches can be

encoded in at most log
(

∑⌊2βℓ⌋
i=0

(

ℓ
i

)

)

+ 1 ≤ H(2β)ℓ + 1 bits.

The number of bits EDD uses to store s is denoted by LED(s).
Encoding differences between similar chunks is usually used

as a post-deduplication process, which spends extra com-

putation to eliminate redundancy among distinct but similar

chunks [16], [17], [20], [21]. In this paper, we study EDD

as a simple abstraction of this type of algorithms and only

consider the fixed-length chunking scheme. An edit-distance

based variable-length algorithm may potentially lead to better

performance and be more practically important. We leave it

to future consideration due to the technical challenges in the

analysis, primarily arising from the facts that chunk boundaries

may shift because of edits and that deriving the statistics of

the number of detected copies within a certain distance does

not appear readily tractable.

V. RESULTS

In this section, we summarize the main results of the paper.

Detailed analysis and proofs of these results will be provided

in the following corresponding sections.

A. Modified fixed-length deduplication and its variants

We first present results for mFLD and its variants AFLD and

FLD. Fixed-length deduplication has been shown in [13] to not

perform well when source symbols have variable lengths. So

for algorithms in the fixed-length scheme, we assume Pl is
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degenerate and let the first-stage parsing length be equal to

the source symbol length.

The mFLD algorithm allows us to set the chunk length ℓ.
The effect of this length is investigated in Theorems 6, 7,

and 8. For simplicity of presentation, we give detailed analysis

about the theorems in Section VI and provide corollaries here

as summaries.

Corollary 2. Consider the source model in which source

symbols all have length L. For mFLD with D = L, if the

chunk length ℓ = o(logB) ∪ ω(logB), the compression ratio
E[|s|]

E[LmF (s)] is upper bounded by a universal constant for any

edit probability δ > 0.

Corollary 2 follows directly from Theorems 6 and 7. It

characterizes the performance of mFLD when the chunk length

ℓ is chosen too small or too large. With the chunk length

improperly chosen, the average length of the compressed

strings is always at least a constant factor of the original length,

regardless of the edit probability δ. This is not desirable for

small δ since, as δ goes to 0, the entropy gets smaller and the

ratio
E[LmF (s)]

H(s) grows unboundedly. It can be seen later from

the proofs of Theorems 6 and 7 that when the chunk length

is chosen too small, the dictionary becomes so large that the

pointers become of similar lengths to the chunks. On the other

hand, when the chunk length is chosen too large, repeats can

not be identified and deduplication thus fails. It is therefore

important to pick a suitable chunk length when implementing

deduplication algorithms in practice.

If we pick ℓ = L, mFLD becomes FLD with chunk length

equal to source symbol length, which was shown in [13] to be

asymptotically optimal on sources with fixed symbol length

and no edits. However, in the case when edit probability δ is

nonzero, since we assume L = Θ
(

Bk1
)

, Corollary 2 implies

that the compression ratio of FLD is bounded and the gap

between FLD and entropy can be arbitrarily large, as stated in

the next corollary.

Corollary 3. Consider the source model in which source

symbols all have length L. For FLD, with chunk length L, the

compression ratio
E[|s|]

E[LF (s)] is upper bounded by a universal

constant for any edit probability δ > 0.

AFLD has its chunk length chosen adapted to source

parameters and is shown in Theorem 8 to be nearly optimal.

The following corollary is a summary of Theorem 8.

Corollary 4. For any edit probability δ ∈ (0, 1
2 ) and any

a > 1, there exists δ < γ < 1
2 such that

E[LAF (s)]

H(s)
≤

a(1 + k1)

k2
(1 + o(1)).

With k1, k2 being fixed constants, the preceding corollary

states that AFLD achieves a constant factor of optimal for

any edit probability δ. Thus, to achieve high compression

ratio, deduplication algorithm parameters, especially the chunk

length, should be chosen based on the data. In practice,

it can thus be beneficial to first obtain an estimate of the

parameters of the data and then apply deduplication with

algorithm parameters properly chosen. A fixed chunk length

is unlikely to be universally effective for all datasets.

B. Edit-distance deduplication

The edit-distance deduplication is studied in Theorem 9 and

shown to achieve performance a constant factor of optimal.

Theorem 9. Consider the source model in which source

symbols have the same length L and the edit probability is

δ < 1
4 . The performance of edit-distance deduplication with

chunk length ℓ = L and mismatch ratio β satisfies

1 ≤
E[LED(s)]

H(s)
≤

H(2β)

H(δ)
(1 + o(1)), as B → ∞,

for any δ < β ≤ 1
4 .

Note that for any δ < 1
4 , we can always find β larger than

but close enough to δ such that
H(2β)
H(δ) is upper bounded by a

constant value. With such choices of β, the preceding theorem

states that E[LED(s)] is at most a constant factor of H(s).

As an example, let β = min
(

3δ
2 , 14

)

. The ratio
H(2β)
H(δ) is upper

bounded by

H(2β)

H(δ)
≤

H(min(3δ, 1/2))

H(δ)
≤ 3,

where the last inequality follows from the fact that
H(3p)
H(p) ≤ 3

for all p ≤ 1
3 and H(16 ) ≤ 1

2 . Hence, EDD also achieves

a constant factor of optimal, as formalized in the following

corollary.

Corollary 5. Consider the source model in which source

symbols have the same length L and edit probability δ < 1
4 .

There exists a mismatch ratio β such that the performance of

EDD with chunk length ℓ = L satisfies

E[LED(s)]

H(s)
≤

H(3δ)

H(δ)
(1 + o(1)) ≤ 3(1 + o(1)).

We note however that EDD is more complex than AFLD as

it identifies chunks that are within a certain Hamming distance.

C. Variable-length deduplication

Similar to the algorithms in the fixed-length scheme, the

performance of VLD depends on the chunk length. In VLD,

the chunk length is controlled by the length M of the marker

(the expected chunk length is approximately 2M ). The effect

of M on the performance is studied in Theorems 14, 15, 17

and 18, in Section VII.

As a summary of Theorems 14, 15, and 17, we first present

the following corollary, showing that an inappropriate choice

of M leads to poor performance.

Corollary 6. Consider the source model with edit probability

δ and variable-length deduplication with marker length M . If

2M = o(logB)∪ω(logB), the compression ratio
E[|s|]

E[LV L(s)] is

upper bounded by a universal constant for any edit probability

δ > 0.

We also show that a well-chosen marker length M can lead

to arbitrarily large compression ratios as edit probability δ
approaches 0.
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Theorem 18. Consider the source model with edit probability

δ < 1
2 . For any γ ∈ (δ, 1/2), the performance of variable-

length deduplication with marker length M such that 2M =
Θ(log(B/A)) satisfies

E[LV L(s)] ≤
(

12e−cM (cM + 1)+4H(γ, δ)
(1 + k1)

k2
cM

)

BL(1 + o(1)),

(21)

as B → ∞, where cM = log(B/A)
H(γ,δ)2M+1 .

We perform the following analysis for minimizing the upper

bound given by Theorem 18. For any given c > 0, there exists

an integer value for M such that c ≤ cM ≤ 2c. For this M ,

(21) is upper bounded by
(

12e−c(c+ 1) + 8H(γ, δ)
(1 + k1)

k2
c

)

BL(1 + o(1)),

since e−c(c+1) is decreasing in c when c > 0. We can always

find γ such that H(γ, δ) ≤ 2H(δ). Such γ gives

E[LV L(s)]

≤

(

12e−c(c+ 1) + 16H(δ)
(1 + k1)

k2
c

)

BL(1 + o(1)). (3)

Let h = 4H(δ) (1+k1)
3k2

. Upper bounding the above expres-

sion is equivalent to upper bounding the function f(c) =
e−c(c + 1) + hc, c ∈ (0,+∞). If h < e−1, then f(c)
has a local minimum at c = −W−1(−h), where W−1 is

the lower branch of the Lambert W function. If h ≥ e−1,

then f(c) is monotonically increasing in (0,+∞). Therefore,

c = −W−1(−min
(

e−1, h
)

) provides an upper bound on f(c).
As an example, for A = L = B

1/2 (i.e., k1 = k2 = 1
2 ),

Figure 1 shows the upper bound given by (3) with c =
−W−1(−min

(

e−1, h
)

), as well as H(δ), as δ ranges from

10−5 to 10−1.

Note that h ≤ e−1 holds for small enough δ. When this

holds, the upper bound (3) can be rewritten as

E[LV L(s)]

≤

(

12e−c(c+ 1) + 16H(δ)
(1 + k1)

k2
c

)

BL(1 + o(1))

≤ 12e−c
(

c2 + c+ 1
)

BL(1 + o(1)),

where c = −W−1(−4H(δ)(1 + k1)/(3k2)). Hence the upper

bound on the normalized expected compressed length ap-

proaches 0 as δ approaches 0. This means that as the entropy

becomes smaller, the compression ratio grows if the length

of the marker is chosen appropriately. In particular, it can be

seen that the proper length of the marker depends on δ, which

represents the degree of variability between the copies.

Large compression ratios when entropy is small is desirable

and variable-length deduplication achieves this. However, it

can be shown and also observed in Figure 1 that the upper

bound of the ratio E[LV L(s)]/H(s) given by Theorem 18

increases as δ decreases. Therefore, despite the large com-

pression ratios, the gap to entropy may become large for small

δ. Determining whether this is indeed the case or the bound

provided here is loose is left to future work.

10-5 10-4 10-3 10-2 10-1
10-4

10-3

10-2

10-1

100

101

Figure 1. Upper bound on
E[LV L(s)]

BL
and H(δ) vs the edit probability δ

with A = L = B1/2, as δ ranges from 10−5 to 10−1.

VI. DEDUPLICATION IN THE FIXED-LENGTH SCHEME

In this section, we study the performances of the dedupli-

cation algorithms in the fixed-length scheme. It is pointed out

by [13] that when all source symbols have the same length and

there are no edits, FLD with knowledge of the symbol length

can parse data strings in a way that chunk boundaries align

with source block boundaries (by setting the chunk length

equal to source block length) and achieve asymptotically

optimal performance under mild conditions. However, when

symbols have different lengths, the loss of synchronization

leads to poor performance. For instance, [13] considered

the scenario in which there are A = 2 source symbols,

with the source symbol length distribution Pl assigning equal

probability to L and L+1 (here L is an independent parameter

rather than the expected value of Pl) and with B = 3L source

blocks. FLD with chunk length ℓ = L was shown to satisfy
E[LF (s)]
H(s) ≥ Ω(B). In the case where copies are not exact, the

question of interest is then whether fixed-length deduplication

can still perform well when chunk boundaries align with repeat

boundaries. To answer this question, we need to ensure that

the two groups of boundaries are aligned. So we consider only

source models where source symbols all have the same length

L (Pl is degenerate).

We first study in detail the performance of mFLD and then

specialize the results to FLD. The first-stage parsing length of

mFLD (including AFLD) and the chunk length of EDD are

both assumed to be equal to L.

We present a lemma that will be used frequently. For

positive integers m, ℓ and δ ∈
(

0, 12
)

, define

Sδ(ℓ,m) =
ℓ
∑

t=0

(

ℓ

t

)

min
(

1,mδt(1− δ)ℓ−t
)

.

Lemma 3. Let r be a string drawn uniformly at random from

Σℓ. Let r1, r2, . . . , rm be m iid descendants of r by δ-edit and

let r[m] = {r1, r2, . . . , rm}. For any w ∈ Σℓ, let w ∈ r[m]
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denote the event that w = ri for some i. Then

1

2

Sδ(ℓ,m)

2ℓ
≤ Pr

(

w ∈ r[m]

)

≤
Sδ(ℓ,m)

2ℓ
, (4)

and thus the expected number of unique strings in r[m] is

bounded between 1
2Sδ(ℓ,m) and Sδ(ℓ,m).

Furthermore, Sδ(ℓ,m) takes the following values for differ-

ent values of ℓ and m:

• If ℓ ≥ logm
H(δ) , then

Sδ(ℓ,m) ≥
1

4
m. (5)

In particular if ℓ ≥ logm
log( 1

1−δ )
, then

Sδ(ℓ,m) = m. (6)

• If ℓ ≤ logm
H( 1

2 ,δ)
, then

Sδ(ℓ,m) ≥ 2ℓ−1. (7)

In particular if ℓ ≤ logm
log( 1

δ )
, then

Sδ(ℓ,m) = 2ℓ.

• For any δ < δ′ < 1
2 ,

Sδ(ℓ,m) ≤ 2ℓH(δ′) +m2−ℓD(δ′||δ). (8)

In particular if ℓ = logm
H(δ′,δ) , then

Sδ(ℓ,m) ≤ 2ℓH(δ′) +m2−ℓD(δ′||δ) = 2ℓH(δ′)+1. (9)

• For any values of ℓ and m,

Sδ(ℓ,m) ≤ min
(

2ℓ,m
)

. (10)

The proof of Lemma 3 is presented in Appendix B.

A. Modified and adaptive fixed-length deduplication

We show that, even with knowledge of the source symbol

length, if the chunk length is not properly chosen, mFLD

encodes s with a constant number of bits per symbol regardless

of δ. Therefore, the ratio
E[LmF (s)]

H(s) can be arbitrarily large for

small δ. Meanwhile for AFLD, with the adaptive chunk length

ℓ =
⌈

log(B/A)
H(γ,δ)

⌉

, the ratio
E[LAF (s)]

H(s) is shown to be upper

bounded by a constant for all δ and for γ properly chosen.

Consider the two-stage parsing of s with D = L. The

length-D segments after the first-stage parsing are exactly

the source blocks Y1, Y2, . . . , YB . Let C = ⌊L/ℓ⌋ and r =
L − Cℓ. Each Yb, 1 ≤ b ≤ B, is then parsed into chunks

Zb
1, Z

b
2, . . . , Z

b
C+1 with

∣

∣Zb
c

∣

∣ = ℓ for all c ≤ C and
∣

∣Zb
C+1

∣

∣ =
r (see Figure 2). If we also divide each source symbol Xa into

substrings of length ℓ as Xa = Ua
1U

a
2 · · ·Ua

C+1, then for all

1 ≤ c ≤ C +1, {Zb
c}b∈Y (a) are iid δ-edit descendants of Ua

c .

Before performing a detailed evaluation of the algorithm,

let us first provide a rough analysis for a special case, which

will provide some insights into the general problem. Suppose

the alphabet X only has a single symbol X of length L, whose

ℓ-prefix is denoted by U1. We consider encoding only the set

Z1
1 , Z

2
1 , . . . , Z

B
1 , where each Zb

1 is a descendant of U1 by

δ-edit. The expected size of the dictionary, i.e., the number

Y1

...

Yb

YB

...

Z
1
1 Z

1
2 · · · Z

1
C Z

1
C+1

Z
b
1 Z

b
2 · · · Z

b
C Z

b
C+1

Z
B
1 Z

B
2 · · · Z

B
C Z

B
C+1

ℓ r

Figure 2. Modified fixed-length chunking with segment length D = L and
chunk length ℓ.

of distinct ℓ-strings in {Z1
1 , Z

2
1 , . . . , Z

B
1 }, by Lemma 3 is

approximately

S := Sδ(ℓ, B) =

ℓ
∑

t=0

min

((

ℓ

t

)

,

(

ℓ

t

)

Bδt(1− δ)ℓ−t

)

. (11)

We can interpret (11) as follows. At a given distance t from

U1, there are
(

ℓ
t

)

sequences of length ℓ. Further, if we generate

B sequences, the expected number of sequences at distance t
is
(

ℓ
t

)

Bδt(1−δ)ℓ−t. The number of sequences in the dictionary

at distance t is then approximated by the minimum of the two

terms. (This analysis of S is helpful whenever Sδ(·, ·) appears

in the sequel as well.)

We would like S to be small enough that logS ≪ ℓ (so that

pointers to the dictionary have much smaller lengths than the

sequences being encoded) and S ≪ B (so that each sequence

in the dictionary is repeated many times).2 As t ranges from

0 to ℓ in the sum in (11), the term
(

ℓ
t

)

attain its maximum

at t ≃ ℓ/2 while the second term inside the min attains its

maximum at t ≃ ℓδ. We investigate which term determines

the behavior of the sum. Let ℓ = logB
H(γ,δ) for a constant 0 ≤

γ ≤ 1. Note that since δ < 1
2 , H(γ, δ) and ℓ are increasing

and decreasing functions of γ, respectively. With this choice,

Bδt(1 − δ)ℓ−t ≥ 1 for t ≤ ℓγ and Bδt(1 − δ)ℓ−t ≤ 1 for

t ≥ ℓγ.

• If γ < δ, then Bδδℓ(1− δ)
(1−δ)ℓ

< 1, and S ≥
∑ℓ

t=⌈γℓ⌉

(

ℓ
t

)

Bδt(1 − δ)ℓ−t ≥ B(1 − 2−ℓD(γ||δ)). In this

case, almost all Zb
1 are distinct and thus not compressible.

• If γ = δ, then ℓ = logB
H(δ) , and S ≥ B

4 by (5). In this

case, a constant fraction of Zb
1 are distinct and thus not

compressible.

• If γ ≥ 1/2, then ℓ ≤ logB
H( 1

2 ,δ)
, and S ≥ 2ℓ−1 by (7). In

this case, due to the fact that ℓ is chosen too small, the

dictionary is so large that pointers to the dictionary are

as long as the chunks and there is no compression gain.

• If δ < γ < 1/2, then by (9),

S ≤ 2ℓH(γ)+1.

Hence, pointers have an approximate length of ℓH(γ) and

are smaller than ℓ by a factor of 1
H(γ) . Furthermore, each

sequence is repeated approximately 2ℓD(γ||δ) times since

2Note that the size of the dictionary, and hence the length of the pointers,
vary as the encoding progresses; we ignore this fact for now and approximate
pointer lengths based on the final size of the dictionary.



8

B = 2ℓH(γ,δ). The number of bits required to encode the

dictionary is 2ℓ2ℓH(γ), which is negligible compared to

Bℓ, the length of the uncoded sequences since γ 6= δ.

Hence, we can encode {Z1
1 , . . . , Z

B
1 } using essentially

BℓH(γ) bits, achieving a compression ratio of 1
H(γ) .

This analysis highlights that ℓ should be chosen appropriately

to avoid a large dictionary or a situation in which there

are no repetitions in the sequence. If these conditions are

satisfied, then we can successfully deduplicate the data, as

shown rigorously in Theorem 8 for AFLD.

Now we return to the general setting. It can be seen from the

description of mFLD that the compressed string is composed

of two parts: the bits used to encode the chunks at their first

occurrences and the bits used to encode repeated chunks by

pointers to the dictionary. For both parts, our first step is to

compute the expected size of the dictionary, i.e., the number of

distinct chunks, for which we present Lemma 4 and Lemma 5.

Lemma 4. Suppose K strings of length n are chosen indepen-

dently and uniformly from Σn. Assume each string produces

at least m1 and at most m2 descendants by δ-edits. For any

string w with |w| = n, let Gw denote the event that w equals

one or more descendants. Then

1

2
min

(

1,
1

2
K

Sδ(n,m1)

2n

)

≤ Pr(Gw) ≤

min

(

1,K
Sδ(n,m2)

2n

)

.

The proof of Lemma 4 is presented in Appendix C. This

lemma considers the probability of observing a string w

when multiple random strings produce δ-edit descendants

simultaneously. This setting models exactly our source string

generation process where the A source symbols correspond to

K random strings, and the source blocks correspond to the

δ-edit descendants. In particular, Eu being true corresponds to

m2 = 3B
2A and El being true corresponds to m1 = B

4A .

Let T 1
F (s) denote the dictionary after all chunks of s are

processed, i.e., T 1
F (s) contains all distinct strings in {Zb

c}b,c.

Let T
1/2
F (s) denote the dictionary immediately after all chunks

in the first half of s, i.e., Y1Y2 · · ·Y⌈B/2⌉, are processed. We

apply Lemma 4 to find bounds on the sizes of T 1
F (s) and

T
1/2
F (s) in the following lemma.

Lemma 5. Consider the two-stage fixed-length chunking pro-

cess with first-stage parsing length D = L and chunk length

ℓ. The dictionary sizes T 1
F (s) and T

1/2
F (s) satisfy

E
[∣

∣T 1
F (s)

∣

∣|Eu
]

≤ min

(

2ℓ, ACSδ

(

ℓ,
3B

2A

))

+B,

E

[∣

∣

∣
T

1/2
F (s)

∣

∣

∣
|El

]

≥
1

2
min

(

2ℓ,
1

2
ACSδ

(

ℓ,
B

4A

))

. (12)

The proof of Lemma 5 is presented in Appendix C.

Next, we show using Lemma 5 that if ℓ is chosen too small

relative to the scale of the system, then mFLD spends a con-

stant number of bits per symbol. The proof strategy is as fol-

lows: with ℓ small enough, the term min
(

2ℓ, 1
2ACSδ

(

ℓ, B
4A

))

in (12) equals 1, which makes E

[∣

∣

∣T
1/2
F (s)

∣

∣

∣|El

]

greater than

2ℓ−1. Therefore, when encoding duplicated chunks using

pointers, each pointer takes approximately ℓ bits and there

is no compression gain.

Theorem 6. Consider the source model in which source

symbols have the same length L. For mFLD with first-stage

parsing length D = L and chunk length ℓ, if ℓ2ℓ = O(AL)

or ℓ ≤ log(B/A)−2

H( 1
2 ,δ)

, then

E[LmF (s)] ≥
1

12
BL(1 + o(1)), as B → ∞,

where the o(1) term is independent of δ.

Proof: We first claim, to be proved later, that if ℓ2ℓ =
O(AL) or ℓ ≤ log(B/A)−2

H( 1
2 ,δ)

, then

E

[∣

∣

∣T
1/2
F (s)

∣

∣

∣|El

]

≥ 2ℓ−1. (13)

It follows from Markov’s inequality that

Pr

(

2ℓ −
∣

∣

∣T
1/2
F (s)

∣

∣

∣ ≥
3

4
· 2ℓ|El

)

≤
1
2 · 2ℓ

3
4 · 2ℓ

=
2

3
,

which is equivalent to

Pr

(

∣

∣

∣T
1/2
F (s)

∣

∣

∣ ≥
2ℓ

4
|El

)

≥
1

3
. (14)

Next, we consider the second half of s, Y⌈B/2⌉+1 · · ·YB . There

are ⌊B/2⌋C chunks of length ℓ, and encoding each of them

takes at least either ℓ or log
∣

∣

∣
T

1/2
F (s)

∣

∣

∣
bits plus an additional bit

indicating whether the chunk is stored in full or represented

by a pointer. So in total, we need at least

(

min
(

ℓ, log
∣

∣

∣T
1/2
F (s)

∣

∣

∣

)

+ 1
)

·

⌊

B

2

⌋

C

bits. It follows that for B sufficiently large,

E[LmF (s)|El] ≥ E

[

(

min
(

ℓ, log
∣

∣

∣T
1/2
F (s)

∣

∣

∣

)

+ 1
)

·

⌊

B

2

⌋

C|El

]

≥
1

3

(

min

(

ℓ, log
2ℓ

4

)

+ 1

)

·

⌊

B

2

⌋

C

≥
BL

12
(1 + o(1)),

where the second inequality follows from (14).

Finally, since (2) gives that Pr(El) = 1 + o(1), we get

E[LmF (s)] ≥ E[LmF (s)|El] Pr(El) ≥
BL

12
(1 + o(1)).

It remains to prove the claim: E
[∣

∣

∣
T

1/2
F (s)

∣

∣

∣
|El

]

≥ 2ℓ−1 when

ℓ2ℓ = O(AL) or ℓ ≤ log(B/A)−2

H( 1
2 ,δ)

. Consider the case when

ℓ2ℓ = O(AL). For sufficiently large B (and thus A and L),
B
4A ≥ 4ℓ2ℓ

AL . Therefore, by Lemma 5,

E

[∣

∣

∣
T

1/2
F (s)

∣

∣

∣
|El

]

≥
1

2
min

(

2ℓ,
1

2
ACSδ

(

ℓ,
B

4A

))

≥
1

2
min

(

2ℓ,
1

2
ACSδ

(

ℓ,
4ℓ2ℓ

AL

))

,
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where the last inequality follows from the fact that Sδ(ℓ,m)
is non-decreasing in m. By (6), if m(1 − δ)ℓ ≤ 1, then

Sδ(ℓ,m) = m. Since asymptotically 4ℓ2ℓ

AL (1 − δ)ℓ ≤ 1,

E

[∣

∣

∣T
1/2
F (s)

∣

∣

∣|El

]

≥ 2ℓ−1min

(

1,
4ℓC

2L

)

≥ 2ℓ−1,

where the last step follows from the fact that C ≥ L
2ℓ .

When ℓ ≤ log(B/A)−2

H( 1
2 ,δ)

, again by Lemma 5,

E

[∣

∣

∣T
1/2
F (s)

∣

∣

∣|El

]

≥
1

2
min

(

2ℓ,
1

2
ACSδ

(

ℓ,
B

4A

))

≥ 2ℓ−1min

(

1,
AC

4

)

≥ 2ℓ−1,

where the second inequality follows from (7) that when ℓ ≤
logm
H( 1

2 ,δ)
, Sδ(ℓ,m) ≥ 2ℓ−1.

The preceding theorem shows that when ℓ is chosen too

small, the size of the dictionary will be of order 2ℓ. Specifi-

cally, if ℓ2ℓ = O(AL), the number of distinct ℓ-substrings in

the source alphabet is already of order 2ℓ. If ℓ ≤ log(B/A)−2

H( 1
2 ,δ)

,

then the δ-edits are able to produce almost all ℓ-strings instead

of only producing strings that are on the δℓ Hamming sphere.

In the next theorem, we show that if ℓ is chosen too large,

then mFLD again spends a constant number of bits per symbol.

The proof strategy is to show that if ℓ is chosen too large, then

almost every chunk is distinct, thus making the source string

incompressible.

Theorem 7. Consider the source model in which source

symbols have the same length L. For mFLD with first-stage

parsing length D = L and chunk ℓ, if ℓ ≥ log(B/A)−2
H(δ) , then

E[LmF (s)] ≥
1

128
BL(1 + o(1)), as B → ∞,

where the o(1) term is independent of δ.

Proof: When ℓ ≤ log(B/A)−2

H( 1
2 ,δ)

,

E

[∣

∣

∣T
1/2
F (s)

∣

∣

∣|El

]

≥
1

2
min

(

2ℓ,
1

2
ACSδ

(

ℓ,
B

4A

))

≥ 2ℓ−1min

(

1,
1

2
AC ·

1

4
·

B

4A2ℓ

)

= 2ℓ−1min

(

1,
BC

32 · 2ℓ

)

,

where the first inequality follows from Lemma 5 and the

second from (5).

In the case where 1 ≤ BC
32·2ℓ

and hence E

[∣

∣

∣T
1/2
F (s)

∣

∣

∣|El

]

≥

2ℓ−1, the proof follows from the discussion that follows (13).

So it remains to consider the case when BC
32·2ℓ

≤ 1, i.e.,

E

[∣

∣

∣T
1/2
F (s)

∣

∣

∣|El

]

≥ 2ℓ−1 ·
BC

32 · 2ℓ
=

BC

64
.

Since it takes ℓ + 1 bits to store distinct chunks in the

dictionary,

E[LmF (s)|El] ≥ (ℓ + 1)E
[∣

∣

∣T
1/2
F (s)

∣

∣

∣|El

]

= ℓ
B⌊L/ℓ⌋

64

≥
1

64
Bmax(ℓ, L− ℓ) ≥

1

128
BL.

The desired result thus follows again from E[LmF (s)] ≥
E[LmF (s)|El] Pr(El) and the fact that Pr(El) = 1 + o(1).

In the Results section, Theorems 6 and 7 imply Corollary 2,

which shows that choosing ℓ in o(logB) or ω(logB) results

in poor performance, and Corollary 3, which shows that FLD

cannot compress the sequences effectively.

Next, we show that with the adapted chunk length, AFLD

can achieve performance within a constant factor of optimal.

Theorem 8. Consider the source model in which source

symbols have the same length L. The performance of AFLD

with D = L and ℓ =
⌈

log(B/A)
H(γ,δ)

⌉

satisfies

1 ≤
E[LAF (s)]

H(s)
≤

1 + k1
k2

·
H(γ, δ)

H(δ)
· (1 + o(1)),

as B → ∞, for any γ ∈ (δ, 12 ).

Proof: We first note that the length of s can be encoded

in at most 2 log(|s|) + 3 bits with Elias gamma coding.

The number of bits used to encode chunks at their first

occurrences is upper bounded by
∣

∣T 1
F (s)

∣

∣(ℓ+1) since chunks

are all of lengths less than or equal to ℓ. Consider the upper

bound on E
[∣

∣T 1
F (s)

∣

∣|Eu
]

in Lemma 5. Note that by (8) and
B
A ≤ 2ℓH(γ,δ) with our choice of ℓ,

Sδ

(

ℓ,
3B

2A

)

≤ 2ℓH(γ) +
3B

2A
2−ℓD(γ||δ) ≤

5

2
· 2ℓH(γ).

It follows that

E
[∣

∣T 1
F (s)

∣

∣|Eu
]

(ℓ + 1)

≤

(

min

(

2ℓ, ACSδ

(

ℓ,
3B

2A

))

+B

)

(ℓ+ 1)

≤ min

(

2ℓ,
5AC

2
· 2ℓH(γ)

)

(ℓ+ 1) +B(ℓ+ 1)

≤
5AL

2ℓ
· 2ℓH(γ) · (ℓ+ 1) +B(ℓ+ 1)

=
5

2
AL

(

B

A

)H(γ)/H(γ,δ)(

1 + Θ

(

1

log(B/A)

))

+Θ(B logB)

= o(BL), (15)

where the last equality follows from
H(γ)
H(γ,δ) < 1 and thus

B
H(γ)

H(γ,δ)A1− H(γ)
H(γ,δ) = o(B).

Next, we derive an upper bound on the number of bits used

by pointers for encoding repeated chunks. There are (C+1)B
chunks and the number of bits needed for encoding one pointer

is at most log(BL) + 1. So in total, the number of bits we

need is at most

(C + 1)B(log(BL) + 1) ≤ (L+ ℓ)B
log(BL) + 1

ℓ

≤
BL

ℓ
log(BL)

(

1 +O

(

1

logB

))

≤ H(γ, δ)BL ·
log(BL)

log(B/A)
. (16)
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Combining (15), (16), and including the number of bits used

for encoding the length of s by Elias coding, we get

E[LAF (s)|Eu] ≤ H(γ, δ)BL ·
log(BL)

log(B/A)
+ o(BL)

≤ H(γ, δ)BL
1 + k1
k2

(1 + o(1)),

by noting that
log(BL)
log(B/A) ≤

1+k1

k2
(1 + o(1)).

On the complement of Eu, the number of bits needed for

storing the dictionary is at most 2BL since the lengths of

chunks in total is at most BL and there are at most BL chunks.

The number of bits for encoding repeated chunks by pointers

is at most BL(log(BL) + 1). It follows that

E
[

LAF (s)|Ēu
]

Pr
(

Ēu
)

≤ (2ABL+ 2 log(BL) + 3) log(BL)e−
B

10A = o(1).

The desired result thus follows from

E[LAF (s)]

= E[LAF (s)|Eu] Pr(Eu) + E
[

LAF (s)|Ēu
]

Pr
(

Ēu
)

,

and the fact that Pr(Eu) = 1 + o(1).
For any δ < 1

2 and a > 1, we can find γ in the range (δ, 1
2 )

such that H(γ, δ)/H(δ) ≤ a. It thus follows from Theorem 8

that adaptive fixed-length deduplication can compress the

sequence within a constant factor of the entropy, as stated

in Corollary 4 in the Results section.

B. Edit-distance deduplication

Next, we study the edit-distance deduplication algorithm.

EDD identifies positions in which the current chunk and

previously observed similar chunks differ. We show that with

chunk length being equal to source symbol length, EDD can

achieve a constant factor of optimal.

Theorem 9. Consider the source model in which source

symbols have the same length L and the edit probability is

δ < 1
4 . The performance of edit-distance deduplication with

chunk length ℓ = L and mismatch ratio β satisfies

1 ≤
E[LED(s)]

H(s)
≤

H(2β)

H(δ)
(1 + o(1)), as B → ∞,

for any δ < β ≤ 1
4 .

Proof: With ℓ = L, the B source blocks, Y1, . . . , YB ,

are parsed as chunks. We know that each Yb is a descendant

of one of the source symbols. Let Ed denote the event that

every source block Yb is within Hamming distance βL from

its ancestor. By the Chernoff bound, the probability that more

than βL symbols of a source symbol are flipped in a δ-edit is

at most 2−D(β||δ)L. We then apply the union bound and get

Pr(Ed) ≥ 1−B2−D(β||δ)L.

When Ed holds, the source blocks are covered by A Ham-

ming balls of radius βL. Therefore, with mismatch ratio β,

the dictionary is of size at most A, and takes A(L+1) bits to

store. The pointer length is thus upper bounded by logA+1.

The difference with the referenced chunk can be encoded in

at most H(2β)L+1 bits. Including the 2 log(BL)+3 bits for

encoding |s| at the beginning, we get

E[LED(s)|Ed] ≤ 2 log(BL) + 3 +A(L + 1)

+ (1 + logA+ 1 +H(2β)L+ 1)B

= H(2β)BL+ o(BL).

When the complement of Ed holds, we trivially upper bound

dictionary size by B. It follows that

E[LED(s)|Ēd] ≤ 2 log(BL) + 3 +B(L+ 1)

+ (1 + logB + 1 +H(2β)L+ 1)B

≤ 2BL.

Thus,

E[LED(s)] = Pr(Ed)E[LED(s)|Ed] + Pr(Ēd)E[LED(s)|Ēd]

≤ H(2β)BL(1 + o(1)) + 2B2L2−D(β||δ)L

= H(2β)BL(1 + o(1)),

where the term 2B2L2−D(β||δ)L is absorbed into the o(1) term

since D(β||δ) > 0.

The theorem is used in the Results section to establish

that EDD performs within a constant factor of entropy in

Corollary 5.

VII. DEDUPLICATION IN THE VARIABLE-LENGTH SCHEME

In this section, we study the variable-length deduplication

algorithm, which is more widely applicable than the algorithms

in the fixed-length scheme and does not require the source

symbol lengths to be the same or known. In the previous

section, we saw that for AFLD to achieve optimality, the chunk

length should be adapted to the source. Similarly for VLD, the

performance depends on chunk lengths which in turn depend

on the length of the marker M .

Before presenting the detailed analysis, we provide some

insights on how the marker length M affects the distribution

of chunk contents. In variable-length chunking, the chunks

(except perhaps the last one) end with the marker string 0M .

We write s = U10
MU20

M · · · 0MUN , where each Un, n < N ,

is either empty or of the form u1 for some M -RLL string

u. We can approximately treat s as a Bernoulli(1/2) process

for now. The lengths of strings Un are thus equivalent to

the stopping time in an infinite-length Bernoulli(1/2) process

untill the beginning of the first occurrence of 0M , which is of

expected length approximately 2M . The behavior of VLD with

marker length M is thus similar to that of mFLD with chunk

length 2M . When M is chosen so small that the number N of

chunks becomes much larger than the total number of strings

of lengths around 2M , the dictionary becomes exhaustive

and pointers have similar lengths to chunks. When M is

chosen too large, most of U1, . . . , UN are distinct and thus

not compressible. In the following, we study in detail how

E[LV L(s)] varies for different values of M .

Similar to the fixed-length schemes, the dictionary size is an

essential first-step in computing E[LV L(s)]. To determine the

expected dictionary size, we again start with the probability

of occurrences of chunks. However, now the chunks are of

different lengths and the occurrences are not restricted to
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a fixed set of positions. So we bound the probability of

occurrences of a chunk by the probability of occurrences

of certain substrings. Specifically, we consider strings of the

forms 10Mu10M or 0Mu10M (u ∈ RM ): Except the first and

the last chunks, the probability of occurrence of chunk u10M

is greater than the probability of occurrence of a substring

10Mu10M since the prefix 10M always marks an ending of

the previous chunk; similarly, the probability of occurrence

of chunk u10M is less than or equal to the probability of

occurrence of a substring 0Mu10M since any occurrences of

chunk u10M must follow a 0M which is the ending marker

of the previous chunk.

Let w ∈ Y B
1 denote the event that w appears as a substring

of Yb for some 1 ≤ b ≤ B and let w ∈ Y
B/2
1 denote the event

that w appears as a substring of Yb for some 1 ≤ b ≤ ⌈B/2⌉.3

We first present in Lemmas 10, 11 and 12 two lower bounds

on w ∈ Y
B/2
1 and an upper bound on w ∈ Y B

1 .

Lemma 10. Suppose K strings of length n are chosen

independently and uniformly from Σn. Assume each string

produces at least m1 and at most m2 descendants by δ-edits.

For any string w with |w| ≤ n, let Hw denote the event that

w appears as a substring of one or more descendants. Then,

1

2
min

(

1,
1

2

⌊

n

|w|

⌋

K
Sδ(|w|,m1)

2|w|

)

≤ Pr(Hw) ≤

min

(

1, (n− |w|+ 1)K
Sδ(|w|,m2)

2|w|

)

.

The proof of Lemma 10 is presented in Appendix D. Similar

to Lemma 4, the setting described in Lemma 10 matches the

model for the generation of source strings. This time, we allow

string w to be any substring of the descendants because chunks

can now be in any position of the source string. Note that

Lemma 10 is also a generalization of Lemma 4.

Next, we use Lemma 10 to bound the probability of w ∈

Y
B/2
1 and w ∈ Y B

1 .

Lemma 11. Consider the source model with edit probability

δ. For any string w ∈ Σ∗ with |w| ≤ 2L,

Pr(w ∈ Y B
1 |Eu) ≤ min

(

1, 2AL
Sδ

(

|w|, 3B
2A

)

2|w|

)

.

For any string w ∈ Σ∗ with |w| ≤
⌈

1
2L
⌉

,

Pr
(

w ∈ Y
B/2
1 |El

)

≥
1

2
min

(

1,
AL

8|w|

Sδ

(

|w|, B
4A

)

2|w|

)

. (17)

The proof of Lemma 11 is presented in Appendix D.

Although Lemma 11 holds for any string w, we will later

restrict w to be of the forms 10Mu10M or 0Mu10M .

Next, we consider another lower bound as an alternative

to (17) for the cases when w is of larger lengths. From the

proofs of Lemmas 10 and 11, the lower bound (17) is obtained

by only taking into account the possibilities of w appearing

3Here we only consider string/chunk occurrences inside source blocks and
leave the study of strings/chunks that occur across the boundaries of source
blocks for later.

in non-overlapping positions of each Yb. Lemma 12 considers

every possible substring of Yb to be equal to w and gets the

lower bound by the inclusion-exclusion principle and turns

out to be more accurate for w with large lengths. Note that

Lemma 12 directly considers w to be of the form 10Mu10M

and the bound is given in the form of a summation.

Lemma 12. Consider the source model with edit probability

δ < 1
2 . For any n such that

log(B/A)−2
H(δ) ≤ n+ 2M + 2 ≤ L

4 ,

∑

u∈Rn
M

Pr
(

10Mu10M ∈ Y
B/2
1 |El

)

≥

BL

27 · 22M+2
·

(

1−
1

2M−1

)n

−
3B2L2

2n+2M+2
.

The proof of Lemma 12 is presented in Appendix E.

After characterizing the probabilities of strings (and thus

chunks) occurring, we consider in Lemma 13 the number of

chunks. Let CM
V L(s) denote the number of chunks of length

over 2M−4 in Y⌈B/2⌉+1 · · ·YB for variable-length chunking

with marker length M . We show that when 2M = o(L), with

high probability, CM
V L(s) is of order |s|/2M .

Lemma 13. Consider the source string s = Y1Y2 . . . YB .

When 2M = o(L), for B,L sufficiently large,

Pr

(

CM
V L(s) ≥

1

4
·

⌊

B

2

⌋(

L

2M+8
− 1

))

≥
5

6
.

The proof of Lemma 13 is presented in Appendix F. It can

be seen from the proof that Lemma 13 can be extended to the

case when El holds since each source block Yb by itself is still

a Bernoulli(1/2) process. Therefore, the following corollary

holds.

Corollary 7. When 2M = o(L), for B,L sufficiently large,

Pr

(

CM
V L(s) ≥

1

4
·

⌊

B

2

⌋(

L

2M+8
− 1

)

|El

)

≥
5

6
.

Next, we use Lemmas 11, 12 and Corollary 7 to bound

E[LV L(s)] from below. As marker length M takes different

values, different lower bounds of E[LV L(s)] are presented in

Theorems 14, 15 and 17. Let T 1
V L(s) denote the dictionary

when all chunks in s are processed and let T
1/2
V L(s) denote

the dictionary immediately after chunks in Y1 · · ·Y⌈B/2⌉ are

processed.

We first show in Theorem 14 that similar to the fixed-length

schemes, small values for M lead to an oversized dictionary.

Theorem 14. Consider the source model with edit probability

δ and the variable-length deduplication algorithm with marker

length M . If 2M = o(logB), then

E[LV L(s)] ≥
1

3 · 216
BL(1 + o(1)), as B → ∞,

where the o(1) term is independent of δ.

Proof: We show that with high probability,

∣

∣

∣T
1/2
V L(s)

∣

∣

∣ is

of the order 22
M

. So encoding each chunk in Y⌈B/2⌉+1 · · ·YB

takes number of bits either equal to the chunk length or pointer

length 2M . We then show using Lemma 13 that the length of

the compressed string is a constant fraction of BL.
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If a string w of the form w = 10Mu10M , u ∈ RM , occurs

as a substring of some data block Yb, b ≤
⌈

B
2

⌉

, then u10M

must be contained in T
1/2
V L(s). For any w = 10Mu10M with

|u| ≤ 2M , by Lemma 11,

Pr
(

w ∈ Y
B/2
1 |El

)

≥
1

2
min

(

1,
AL

8|w|

Sδ

(

|w|, B
4A

)

2|w|

)

≥
1

2
min

(

1,
AL

8|w|

)

≥
1

2
, (18)

where the second inequality follows from |w| ≤ 2M + 2M +
2 = o(logB) and the property that Sδ(ℓ,m) = 2ℓ if mδℓ ≥ 1.

Denote the set of all M -RLL strings of lengths less than

2M by R≤2M

M . Let ζ =
∣

∣

∣

{

u ∈ R≤2M

M : 10Mu10M ∈ Y
B/2
1

}∣

∣

∣.

Then (18) gives E[ζ|El] ≥ |R≤2M

M |/2 and thus E[|R≤2M

M | −

ζ|El] ≤
|R≤2M

M |

2 . By Markov inequality, Pr(|R≤2M

M | − ζ ≥

3|R≤2M

M |/4) ≤ 2
3 and thus Pr(ζ > |R≤2M

M |/4) ≥ 1
3 . Noting

that |T
1/2
V L| ≥ ζ and |R≤2M

M | ≥ 22
M−2 by Corollary 1, we get

Pr
(∣

∣

∣T
1/2
V L(s)

∣

∣

∣ ≥ 22
M−4|El

)

≥
1

3
. (19)

For each chunk in Y⌈B/2⌉+1 · · ·YB of length at least 2M−4,

we need at least either 2M−4 or log
∣

∣

∣T
1/2
V L(s)

∣

∣

∣ bits. So by

Corollary 7 and inequality (19),

E[LV L(s)|El] ≥ E

[

min
(

2M−4, log
∣

∣

∣T
1/2
V L(s)

∣

∣

∣

)

· CM
VL(s)|El

]

≥

(

1−
2

3
−

1

6

)

min
(

2M−4, 2M − 4
)

·
1

4

⌊

B

2

⌋(

L

2M+8
− 1

)

≥
BL

3 · 216
(1 + o(1)).

The desired result follows from

E[LV L(s)] ≥ E[LV L(s)|El] Pr(El)

and Pr(El) = 1 + o(1).
We then show in Theorems 15 and 17 that an oversized

M leads to a large number of distinct chunks, each of which

needs to be encoded in full and thus compression becomes

ineffective. In particular, Theorem 15 covers the case when

2M is of larger order than logB but still much smaller than

the expected source symbol length L. Theorem 17 considers

the case when 2M = Ω(L), and therefore a large number

of chunks can be of lengths close to or even larger than the

expected source symbol length.

Theorem 15. Consider the source model with edit probability

δ and the variable-length deduplication algorithm with marker

length M . If 2M = ω(logB) ∩ o(L), then

E[LV L(s)] ≥
1

210e2
BL(1 + o(1)), as B → ∞,

where the o(1) term is independent of δ.

Proof: We show that if 2M is in ω(logB) and o(L), the

sum of the lengths of distinct chunks is a constant fraction of

|s|.

Each new chunk is encoded as a bit 1 followed by itself.

Given El, the expected number of bits needed for encoding

distinct chunks is greater than or equal to

E





∑

v∈T 1
V L(s)

(|v|+ 1)|El





=
∑

v∈Σ∗

Pr
(

v ∈ T 1
V L(s)|El

)

(|v|+ 1)

≥
∑

u∈RM

Pr
(

10Mu10M ∈ Y
B/2
1 |El

)

(|u|+M + 2).

(20)

As a lower bound, we consider M -RLL strings with lengths

in the range
[

2M ,
⌈

(

2ML
)1/2
⌉]

. Since asymptotically we have

2M ≥ log(B/A)−2
H(δ) , we apply Lemma 12 on (20) and get

⌈

(2ML)
1/2

⌉

∑

ℓ=2M

∑

u∈Rℓ
M

Pr
(

10Mu10M ∈ Y
B/2
1 |El

)

· (ℓ+M + 1)

≥

⌈

(2ML)
1/2

⌉

∑

ℓ=2M

(

BL

27 · 22M+2

(

1−
1

2M−1

)ℓ

−
3B2L2

2ℓ+2M+2

)

· (ℓ+M + 1)

≥

⌈

(2ML)
1/2

⌉

∑

ℓ=2M

(

BL

27 · 22M+2

(

1−
1

2M−1

)ℓ

ℓ

)

−
3B2L4

22M

≥
BL

27 · 22M+2
22(M−1)

(

2M − 1

2M−1
+ 1

)

e−2(1 + o(1))

−
3B2L4

22M

≥
BL

210e2
(1 + o(1))−

3B2L4

22M

=
BL

210e2
(1 + o(1)), as B → ∞,

where the second inequality follows from
(

2ML
)1/2

+M+1 ≤
L and the equality follows from 2M = ω(logB). The second

to last inequality follows from applying summation (43) in

Appendix G-B with a = 2M , b =
⌈

(

2ML
)1/2
⌉

, β = 2M−1

and noting that 1
2M−1

⌈

(

2ML
)1/2
⌉

= ω(1).

Thus,

E[LV L(s)|El] ≥ E





∑

v∈T 1
V L(s)

(|v|+ 1)|El





≥
BL

210e2
(1 + o(1)),

and the desired result follows from

E[LV L(s)] ≥ E[LV L(s)|El] Pr(El)

and Pr(El) = 1 + o(1).
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Next, we present a lemma that will be used in the proof of

Theorem 17.

Lemma 16. Consider the source string s = Y1Y2 · · ·YB ,

with each Yb being a descendant of source symbol XJb
. For

any integer h and any pairs of integers (b1, b2), (i1, i2), the

probability of Yb1 and Yb2 having identical substrings of length

h starting at positions i1 and i2, respectively, is

Pr
(

(Yb1)i1,h = (Yb2)i2,h

)

=
1

2h
,

if Jb1 6= Jb2 or i1 6= i2.

The proof of Lemma 16 is presented in Appendix F.

Theorem 17. Consider the source model with edit probability

δ and the variable-length deduplication algorithm with marker

length M . If 2M = Ω(L), then

E[LV L(s)] ≥
1

360
BL(1 + o(1)), as B → ∞,

where the o(1) term is independent of δ.

Proof: Let q = min
(

2M−5, L/2
)

. We find a set of distinct

M -RLL q-substrings of s that are encoded in full. In other

words, any two such q-substrings are contained in two distinct

chunks, or in two chunks that are duplicates, or in a single

chunk without overlapping with each other. The total length

of these q-substrings thus provides a lower bound on LV L(s).
Let L1, . . . , LA be given and assume El holds. We consider

the first ⌈B/(4A)⌉ descendants of each source symbol. Let

Ga denote the set of the first ⌈B/(4A)⌉ descendants of Xa.

Let Qa be the set containing all non-overlapping q-substrings

of Ga, i.e., Qa = {x1+(c−1)q,q : x ∈ Ga, 1 ≤ c ≤ ca},

where ca = ⌊La/q⌋ and let Q = ∪A
a=1Qa. For w ∈ Σq, let

w ∈ Q denote the event that one of the substrings in Q equals

w. Applying Lemma 4 on Q (with substring length equal to

descendant length) yields

Pr(w ∈ Q) ≥
1

2
min

(

1,
1

2

(

A
∑

a=1

ca

)

Sδ

(

q,
⌈

B
4A

⌉)

2q

)

=
1

4

⌈

B

4A

⌉∑A
a=1 ca
2q

,

where the equality follows from q = Ω(L) and the property

that Sδ(ℓ,m) = m if m(1− δ)ℓ ≤ 1. So the expected number

of distinct M -RLL strings in Q is at least

∑

w∈Rq
M

1

4

⌈

B

4A

⌉∑A
a=1 ca
2q

≥
1

4

(

2−
1

2M−2

)q⌈
B

4A

⌉∑A
a=1 ca
2q

≥
1

5
·

⌈

B

4A

⌉ A
∑

a=1

ca,

for all M > 5. Since the size of Q is
⌈

B
4A

⌉
∑A

a=1 ca, by

the Markov bound, with probability at least 1
9 , the number of

distinct M -RLL q-strings in Q is at least 1
10

⌈

B
4A

⌉
∑A

a=1 ca.

Let q′ = ⌈q/2⌉. Consider the q′-substrings of source blocks

Y1, . . . , YB , i.e., (Yb)i,q′ for all b ∈ [B], i ∈ [|Yb|]. Define

Ed to be the following event: for every two source blocks

Yb1 and Yb2 , the substring of Yb1 starting at position i1 is

different from the substring of Yb2 starting at position i2, i.e.,

(Yb1)i1,q′ 6= (Yb2)i2,q′ , as long as Jb1 6= Jb2 or i1 6= i2. Since

there are at most (2BL)2 pairs of such substrings, by the union

bound and Lemma 16, Ed holds with probability at least

1− (2BL)2/2q
′

.

When Ed holds, the distinct M -RLL q-substrings in Q are

then non-overlapping substrings of the dictionary and it takes

q-bits to encode each of them. To see this, we consider the first

time such q-strings appear in the source string. Let (Yb)j,q be

one of the M -RLL strings in Q. Given Ed, the only possible

substrings of s that equal (Yb)k,q are (Y1)k,q , . . . , (YB)k,q .

Let b′ be the smallest integer such that (Yb′)j,q = (Yb)j,q .

By the M -RLL property, (Yb′ )j,q must be fully contained in

a chunk. Moreover, this chunk must be a new chunk by the

minimality of b′ and is entered into the dictionary. Similarly,

every distinct M -RLL q-substring corresponds to a q-substring

in the dictionary. Since strings in Q do not overlap with each

other, the corresponding q-substrings in the dictionary also do

not overlap, and each takes q bits to store.

Combining the two arguments, with probability at least 1
9 −

(2BL)2

2q′
, there are 1

10

⌈

B
4A

⌉
∑A

a=1 ca distinct non-overlapping

RLL substrings of length q, and each needs q bits to be

encoded. It sums up to

q ·
1

10

⌈

B

4A

⌉ A
∑

a=1

ca ≥
B

40A

A
∑

a=1

(La − q)

bits. Therefore,

E[LV L(s)|El] ≥

(

1

9
−

(2BL)2

2q′

)

B

40A

A
∑

a=1

(L− q)

≥
BL

360
(1 + o(1)).

The desired result thus follows from (2).

The above three theorems are summarized in Corollary 6 in

the Results section to show that poorly choosing M prevents

efficient compression by VLD.

In the next theorem, we give our upper bound on

E[LV L(s)]. We consider the case when 2M is of order

Θ(logB) and show that variable-length deduplication achieves

high compression ratios.

Theorem 18. Consider the source model with edit probability

δ < 1
2 . For any γ ∈ (δ, 1/2), the performance of variable-

length deduplication with marker length M such that 2M =
Θ(log(B/A)) satisfies

E[LV L(s)] ≤
(

12e−cM (cM + 1)+4H(γ, δ)
(1 + k1)

k2
cM

)

BL(1 + o(1)),

(21)

as B → ∞, where cM = log(B/A)
H(γ,δ)2M+1 .

Proof: First, encoding the length |s| takes 2 log|s|+3 ≤
2 log(BL) + 5 bits. We study next the encoding of chunks.

We adopt the same strategy as [13]: dividing chunks into two

categories, interior chunks and boundary chunks. Consider
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all chunks whose first symbols are in Yb (see Figure 3).

Some chunks depend on the values of the neighboring source

blocks Yb−1 and Yb+1, i.e., it is possible to alter the chunk

by replacing Yb−1 or Yb+1 with other strings. We call these

the ‘boundary’ chunks of Yb. Other chunks are independent

of the values of the neighboring source blocks. We call

these the ‘interior’ chunks of Yb. Denote the set of interior

chunks in s by C◦(s). Note that we consider the first chunk

and the last chunk of the whole data stream as boundary

chunks. It is pointed out in [13] that the number of boundary

chunks is upper bounded by 3(B + 1) and the expected total

length of boundary chunks is upper bounded by B2M+2.4

Therefore, encoding unique boundary chunks takes at most

3(B + 1) +B2M+2 bits.

0
M

0
M

0
M

0
M

boundary interior boundary

Yb−1 Yb Yb+1

Figure 3. Occurrences of boundary chunks and interior chunks of Yb in
variable-length chunking.

We consider next encoding unique interior chunks. Clearly,

every interior chunk follows a 0M , i.e., the ending marker

of the previous chunk. Moreover, this 0M must also fully

lie in the same source block as the chunk since otherwise

this chunk is not an interior chunk. Therefore, the probability

of occurrence of an interior chunk u10M is at most the

probability of the occurrence of 0Mu10M as a source block

substring. It follows that

E





∑

w∈C◦(s)

(|w|+ 1)|Eu





≤(M + 1) +
∑

u∈RM

Pr
(

u10M ∈ C◦(s)|Eu
)

(|u|+M + 2)

≤(M + 1) +
∑

u∈RM

Pr
(

0Mu10M ∈ Y B
1 |Eu

)

(|u|+M + 2),

(22)

where the term M+1 accounts for the chunk 0M . We compute

the summation in (22). Fix γ ∈ (δ, 1/2) and let ℓγ = log(B/A)
H(γ,δ) .

• For all u such that
∣

∣0Mu10M
∣

∣ ≤ logB, we trivially

bound Pr
(

0Mu10M ∈ Y B
1 |Eu

)

from above by 1. It fol-

4Although in [13], the upper bounds are derived for source strings produced
by an edit-free source, the same upper bounds hold when edits exist since
every source block is still a Bernoulli(1/2) process by itself.

lows that

⌊logB⌋−2M−1
∑

ℓ=0

∑

u∈Rℓ
M

Pr
(

0Mu10M ∈ Y B
1 |Eu

)

(ℓ+M + 2)

≤

⌊logB⌋−2M−1
∑

ℓ=0

∑

u∈Rℓ
M

(ℓ+M + 2)

≤

⌊logB⌋−2M−1
∑

ℓ=0

2ℓ(ℓ+M + 2)

≤ (⌊logB⌋ −M + 1)2logB−2M

≤
B logB

22M
. (23)

• For u such that
∣

∣0Mu10M
∣

∣ ≥ ℓγ , we apply Lemma 11

and find

Pr
(

0Mu10M ∈ Y B
1 |Eu

)

≤ 2AL
Sδ

(∣

∣0Mu10M
∣

∣, 3B
2A

)

2|0Mu10M |

≤
3BL

2|0Mu10M |
.

It follows that

2L
∑

ℓ=⌈ℓγ⌉−2M−1

(ℓ+M + 2)
∑

u∈Rℓ
M

Pr
(

0Mu10M ∈ Y B
1 |Eu

)

≤

2L
∑

ℓ=⌈ℓγ⌉−2M−1

∑

u∈Rℓ
M

3BL

2ℓ+2M+1
(ℓ+M + 2)

≤

2L
∑

ℓ=⌈ℓγ⌉−2M−1

2

(

2−
1

2M

)ℓ
3BL

2ℓ+2M+1
(ℓ+M + 2)

=
3BL

22M





2L
∑

ℓ=⌈ℓγ⌉−2M−1

(

1−
1

2M+1

)ℓ

(M + 2)

+
2L
∑

ℓ=⌈ℓγ⌉−2M−1

(

1−
1

2M+1

)ℓ

ℓ





= (1 + o(1))
3BL

22M

(

2M+1 · e−
⌈ℓγ⌉−2M−1

2M+1

+ 22(M+1) · e−
⌈ℓγ⌉−2M−1

2M+1

(

⌈ℓγ⌉ − 2M − 1

2M+1
+ 1

))

= 12BL · e−
ℓγ

2M+1

(

ℓγ
2M+1

+ 1

)

(1 + o(1)), (24)

where the second equality follows by applying summa-

tions (42) and (43) in Appendix G with a = ⌈ℓγ⌉−2M−
1, b = 2L, β = 2M+1 and noting that 2L

2M+1 = ω(1).
• If logB ≤ ℓγ , then there are additional terms correspond-

ing to string u such that logB ≤
∣

∣0Mu10M
∣

∣ ≤ ℓγ . Again

by Lemma 11,

Pr
(

0Mu10M ∈ Y B
1 |Eu

)

≤ 2AL
Sδ

(∣

∣0Mu10M
∣

∣, 3B2A
)

2|0Mu10M |

≤ 5BL2−|0
M

u10M |(1+D(γ||δ)),

where the second inequality follows from (8) and the fact

that 2nH(γ) ≤ B
A2−nD(γ||δ) if n ≤ log(B/A)

H(γ,δ) .
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Thus,

⌊ℓγ⌋−2M−1
∑

ℓ=⌈logB⌉−2M−1

∑

u∈Rℓ
M

Pr
(

0Mu10M ∈ Y B
1 |Eu

)

· (ℓ+M + 2)

≤

⌊ℓγ⌋−2M−1
∑

ℓ=⌈logB⌉−2M−1

∑

u∈Rℓ
M

5BL2−(ℓ+2M+1)(1+D(γ||δ))

· (ℓ+M + 2)

≤
5BL

22M

⌊ℓγ⌋−2M−1
∑

ℓ=⌈logB⌉−2M−1

(

1−
1

2M+1

)ℓ

2−(ℓ+2M+1)D(γ||δ)

· (ℓ+M + 2)

≤
5BLℓ2γ
22M

(

1−
1

2M+1

)logB−2M−1

2−D(γ||δ) logB

=Θ
(

B1−D(γ||δ)L
)

=o(BL), (25)

where the first equality follows from the fact that
ℓ2γ
22M

and
(

1− 1
2M+1

)logB−2M−1
are both Θ(1) since 2M and

ℓγ are Θ(log(B/A)).

Plugging (23), (24) and (25) in (22), we find that as B → ∞
(also A,L → ∞),

E





∑

w∈C◦(s)

(|w|+ 1)|Eu



 ≤ 12e−cM (cM + 1)BL+ o(BL),

where cM =
ℓγ

2M+1 .

If the complement of Eu holds, then the number of bits

needed for encoding interior chunks at their first occurrences

is at most 4BL, since the total length of interior chunks is at

most 2BL and the total number of chunks is at most 2BL.

By noting that Pr
(

Ēu
)

≤ Ae−
B

10A ,

E





∑

w∈C◦(s)

(|w|+ 1)





≤ 12e−cM (cM + 1)BL + o(BL) + 4BLAe−
B

10A

= 12e−cM (cM + 1)BL(1 + o(1)). (26)

The number of bits needed for encoding pointers of repeated

chunks can be bounded from above in a trivial way. Note that

there are at most
|s|
M +1 strings in the dictionary T . So a pointer

takes at most log
(

|s|
M + 1

)

+ 1 ≤ log|s| bits. Moreover, the

total number of chunks is less than the number of occurrences

of 0M plus 1 since every chunk except possibly the last one

ends with 0M . On average, the number of occurrences of 0M

in Yb is at most
|Yb|
2M . So given |s|, the expected number of

chunks in s is at most
|s|
2M + B + 1. Therefore the expected

number of bits used by pointers is at most

E

[

(log|s|+ 1) ·

(

|s|

2M
+B + 1

)]

≤ log(2BL+ 1)

(

2BL

2M
+B + 1

)

≤ 2BL
log(BL)

2M
(1 + o(1))

≤ 4H(γ, δ)
(1 + k1)

k2
cM · BL(1 + o(1)), (27)

where the last inequality follows from
log(BL)
log(B/A) ≤

1+k1

k2
(1 + o(1)).

The desired result follows from summing (26) and (27) and

noting that the number of bits used for encoding the length of

s and the unique boundary chunks are o(BL).
A detailed analysis in the Results section shows that as δ

approaches 0, by appropriately choosing M , the compression

ratio
E[|s|]

E[LV L(s)] can get arbitrarily large.

VIII. CONCLUSION

In this paper, we studied the performance of deduplication

algorithms on data streams with approximate repeats, a situ-

ation that is common in practice. For simplicity, we modeled

the process producing approximate repeats as independent bit-

wise Bernoulli substitutions. We showed, in particular, that

correctly choosing the chunk lengths is critical to the suc-

cess of deduplication. With optimally chosen chunk lengths,

deduplication in the fixed-length scheme is shown to achieve

performance within a constant factor of optimal for a specific

family of source models and with the knowledge of source

parameters. Additionally, appropriately choosing the length of

the marker leads to suitable chunk lengths for variable-length

deduplication, resulting in arbitrarily large compression ratios

as source entropy gets smaller.

While this work sheds light on certain important aspects of

the problem, the information-theoretic analysis of data dedu-

plication provides a wealth of open problems. For example,

while VLD was shown to achieve high compression ratios,

it is not known whether it is order optimal. Moreover, the

source model proposed in this paper only included independent

substitution edits. However, in practice, insertions, deletions

and substitutions of single symbols, as well as longer strings,

occur frequently. The probabilistic description of the source

models can also be further refined based on experiments.

Therefore, to gain a fuller understanding, it is important to

study deduplication algorithms under more general source

models and edit processes.

APPENDIX A

PROOF OF LEMMA 1

Lemma 1. Let k be a positive integer. The number of binary

k-RLL strings of length n, |Rn
k |, satisfies

(2−
1

2k−2
)n ≤ |Rn

k | ≤ 2(2−
1

2k
)n.
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Proof: Clearly, if 0 ≤ n ≤ k−1, then any string of length

n is a k-RLL string (we consider the empty string as the only

string of length 0). Therefore, for all 0 ≤ n ≤ k − 1,

|Rn
k | = 2n ≥ (2−

1

2k−2
)n,

and

|Rn
k | = 2n = 2n+12−1 ≤ 2n+1(1−

1

2k+1
)k−1

≤ 2n+1(1−
1

2k+1
)n = 2(2−

1

2k
)n.

For n ≥ k, we prove the lemma by induction on n.

Suppose the desired results hold for all n′ < n. It is shown

in [15, Chapter 8] that
∣

∣RN
k

∣

∣ =
∑k

i=1

∣

∣RN−i
k

∣

∣ for all N ≥ k.

Therefore,

|Rn
k | =

k
∑

i=1

∣

∣Rn−i
k

∣

∣ ≥

k
∑

i=1

(2−
1

2k−2
)n−i

=
(2− 1

2k−2 )
n − (2 − 1

2k−2 )
n−k

1− 1
2k−2

=

(

2−
1

2k−2

)n

+
(2 − 1

2k−2 )
n−k2k

2k−2 − 1

(

(1−
1

2k−1
)k −

1

4

)

≥ (2−
1

2k−2
)n,

and

|Rn
k | =

k
∑

i=1

∣

∣Rn−i
k

∣

∣ ≤

k
∑

i=1

2(2−
1

2k
)n

= 2
(2− 1

2k
)n − (2− 1

2k
)n−k

1− 1
2k

= 2(2−
1

2k
)n +

2(2− 1
2k )

n−k

1− 1
2k





(

2− 1
2k

2

)k

− 1





≤ 2(2−
1

2k
)n.

APPENDIX B

PROOF OF LEMMA 3

Lemma 3. Let r be a string drawn uniformly at random from

Σℓ. Let r1, r2, . . . , rm be m iid descendants of r by δ-edit and

let r[m] = {r1, r2, . . . , rm}. For any w ∈ Σℓ, let w ∈ r[m]

denote the event that w = ri for some i. Then

1

2

Sδ(ℓ,m)

2ℓ
≤ Pr

(

w ∈ r[m]

)

≤
Sδ(ℓ,m)

2ℓ
, (4)

and thus the expected number of unique strings in r[m] is

bounded between 1
2Sδ(ℓ,m) and Sδ(ℓ,m).

Furthermore, Sδ(ℓ,m) takes the following values for differ-

ent values of ℓ and m:

• If ℓ ≥ logm
H(δ) , then

Sδ(ℓ,m) ≥
1

4
m. (5)

In particular if ℓ ≥ logm
log( 1

1−δ )
, then

Sδ(ℓ,m) = m. (6)

• If ℓ ≤ logm
H( 1

2 ,δ)
, then

Sδ(ℓ,m) ≥ 2ℓ−1. (7)

In particular if ℓ ≤ logm
log( 1

δ )
, then

Sδ(ℓ,m) = 2ℓ.

• For any δ < δ′ < 1
2 ,

Sδ(ℓ,m) ≤ 2ℓH(δ′) +m2−ℓD(δ′||δ). (8)

In particular if ℓ = logm
H(δ′,δ) , then

Sδ(ℓ,m) ≤ 2ℓH(δ′) +m2−ℓD(δ′||δ) = 2ℓH(δ′)+1. (9)

• For any values of ℓ and m,

Sδ(ℓ,m) ≤ min
(

2ℓ,m
)

. (10)

Proof: We first prove inequality (4). Given r, the prob-

ability of a δ-edit descendant being equal to w is δdw,r(1 −
δ)ℓ−dw,r , where dw,r denotes the Hamming distance between

w and r. Therefore,

Pr
(

w ∈ r[m]

)

= 1− Pr
(

w /∈ r[m]

)

= 1−
∑

r∈Σℓ

Pr(r) Pr(w 6= r1|r)
m

= 1−
∑

r∈Σℓ

Pr(r)
(

1− δdw,r (1− δ)ℓ−dw,r
)m

= 1−

ℓ
∑

t=0

(

(

ℓ
t

)

2ℓ
(

1− δt(1 − δ)ℓ−t
)m

)

,

where the second equality follows from the fact that

r1, r2, . . . , rm are iid given r and the last equality follows

from the fact that there are
(

ℓ
t

)

strings of length ℓ that

are at Hamming distance t from w. The desired inequal-

ities then follow directly from applying inequalities (1) on

1−
(

1− δt(1− δ)
ℓ−t
)m

.

The expected number of unique strings in r[m] equals

E





∑

w∈Σℓ

Iw∈r[m]



 =
∑

w∈Σℓ

Pr
(

w ∈ r[m]

)

.

So the upper bound Sδ(ℓ,m) and the lower bound 1
2Sδ(ℓ,m)

follow from replacing Pr
(

w ∈ r[m]

)

with its upper and lower

bounds, respectively.

We show that Sδ(ℓ,m) takes the given values for different

m and ℓ:

• When ℓ ≥ logm
H(δ) , mδδℓ(1− δ)(1−δ)ℓ ≤ 1. It follows that

Sδ(ℓ,m) ≥

ℓ
∑

t=⌈δℓ⌉

(

ℓ

t

)

min
(

1,mδt(1 − δ)ℓ−t
)

=

ℓ
∑

t=⌈δℓ⌉

(

ℓ

t

)

mδt(1− δ)ℓ−t ≥
1

4
m,
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where the equality follows from the fact that mδt(1 −
δ)ℓ−t is decreasing in t so mδt(1− δ)

ℓ−t
≤ 1 for all

t ≥ δℓ and the second inequality follows from the result

shown in [4] that for a binomial random variable X with

parameters n and p, Pr(X ≥ np) > 1
4 if p ≥ 1/n.

Moreover, when ℓ ≥ logm
log( 1

1−δ )
, mδt(1− δ)ℓ−t ≤ 1 for all

t. Hence,

Sδ(ℓ,m) =

ℓ
∑

t=0

(

ℓ

t

)

mδt(1− δ)ℓ−t = m.

• When ℓ ≤ logm
H( 1

2 ,δ)
, mδ

ℓ
2 (1− δ)

ℓ
2 ≥ 1. It follows that

Sδ(ℓ,m) ≥

⌊ ℓ
2⌋
∑

t=0

(

ℓ

t

)

min
(

1,mδt(1− δ)ℓ−t
)

=

⌊ ℓ
2⌋
∑

t=0

(

ℓ

t

)

≥ 2ℓ−1,

where the first inequality follows from the fact that

mδt(1− δ)
ℓ−t

≥ 1 for all t ≤ ℓ
2 .

Moreover, when ℓ ≤ logm
log( 1

δ )
, mδt ≥ 1 for all t. Hence,

Sδ(ℓ,m) =

ℓ
∑

t=0

(

ℓ

t

)

· 1 = 2ℓ.

• For any δ < δ′ < 1/2,

Sδ(ℓ,m) ≤

⌊δ′ℓ⌋
∑

t=0

(

ℓ

t

)

+

ℓ
∑

t=⌈δ′ℓ⌉

(

ℓ

t

)

mδt(1− δ)ℓ−t

≤ 2ℓH(δ′) +m2−ℓD(δ′||δ),

where the second inequality follows from applying the

Chernoff bound on a binomial distribution with parame-

ters ℓ and δ.

When ℓ = logm
H(δ′,δ) , 2ℓH(δ′) = m2−ℓD(δ′||δ). So 2ℓH(δ′)+

m2−ℓD(δ′||δ) = 2ℓH(δ′)+1 and

Sδ(ℓ,m) ≤ 2ℓH(δ
′)+1.

• The upper bounds 2ℓ and m follow from:

Sδ(ℓ,m) ≤

ℓ
∑

t=0

(

ℓ
t

)

2ℓ
= 1,

Sδ(ℓ,m) ≤

ℓ
∑

t=0

(

ℓ
t

)

2ℓ
mδt(1− δ)

ℓ−t
=

m

2ℓ
.

APPENDIX C

PROOFS OF LEMMA 4 AND LEMMA 5

Lemma 4. Suppose K strings of length n are chosen indepen-

dently and uniformly from Σn. Assume each string produces

at least m1 and at most m2 descendants by δ-edits. For any

string w with |w| = n, let Gw denote the event that w equals

one or more descendants. Then

1

2
min

(

1,
1

2
K

Sδ(n,m1)

2n

)

≤ Pr(Gw) ≤

min

(

1,K
Sδ(n,m2)

2n

)

.

Proof: Let the K strings be denoted y1,y2, . . . ,yK . Let

Gw(i) denote the event that w equals one of the descendants

of yi. Clearly, Gw(1), Gw(2), . . . , Gw(K) are independent

and

Gw = ∪K
i=1Gw(i). (28)

Note that by Lemma 3 and the fact that Sδ(n,m) is non-

decreasing in m,

1

2

Sδ(n,m1)

2n
≤ Pr(Gw(i)) ≤

Sδ(n,m2)

2n
.

Applying the union bound on (28) gives

Pr(Gw) ≤

K
∑

i=1

Pr(Gw(i)) ≤ K
Sδ(n,m2)

2n
.

The desired upper bound follows by noting that 1 is a trivial

upper bound.

We then prove the lower bound. By independence,

Pr(Gw) = Pr
(

∪K
i=1Gw(i)

)

= 1−

K
∏

i=1

(1− Pr(Gw(i)))

≥ 1−

(

1−
1

2

Sδ(n,m1)

2n

)K

≥
1

2
min

(

1,
1

2
K

Sδ(n,m1)

2n

)

,

where the last inequality follows from inequality (1) that 1−
(1− x)n ≥ 1

2 min(1, nx) for x ∈ (0, 1) and integer n.

Lemma 5. Consider the two-stage fixed-length chunking pro-

cess with first-stage parsing length D = L and chunk length

ℓ. The dictionary sizes T 1
F (s) and T

1/2
F (s) satisfy

E
[∣

∣T 1
F (s)

∣

∣|Eu
]

≤ min

(

2ℓ, ACSδ

(

ℓ,
3B

2A

))

+B,

E

[∣

∣

∣T
1/2
F (s)

∣

∣

∣|El

]

≥
1

2
min

(

2ℓ,
1

2
ACSδ

(

ℓ,
B

4A

))

. (12)

Proof: The size of T 1
F (s) equals the number of distinct

strings among chunks Zb
c , 1 ≤ c ≤ C+1, 1 ≤ b ≤ B. Clearly,

chunks of length ℓ are δ-edit descendants of the AC source

symbol substrings Ua
c , 1 ≤ c ≤ C, 1 ≤ a ≤ A, which are

independent and uniformly distributed in Σℓ. Given Eu, each

Ua
c has at most 3B

2A descendants. Moreover, since we assume

that the source symbols X1, . . . ,XA are chosen uniformly and

independently, it follows directly from Lemma 4 that for any

ℓ-string w,

Pr
(

w ∈ T 1
F (s)|Eu

)

≤ min

(

1, AC
Sδ

(

ℓ, 3B2A
)

2ℓ

)

.
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Hence

E
[∣

∣T 1
F (s)

∣

∣|Eu
]

≤
∑

w∈Σℓ

Pr
(

w ∈ T 1
F (s)|Eu

)

+B

≤ min

(

2ℓ, ACSδ

(

ℓ,
3B

2A

))

+B,

where the addend B accounts for the chunks of lengths less

than ℓ at the end of each source block, if any.

The lower bound on

∣

∣

∣T
1/2
F (s)

∣

∣

∣ given El follows similarly

from Lemma 4.

APPENDIX D

PROOF OF LEMMA 10 AND LEMMA 11

Lemma 10. Suppose K strings of length n are chosen

independently and uniformly from Σn. Assume each string

produces at least m1 and at most m2 descendants by δ-edits.

For any string w with |w| ≤ n, let Hw denote the event that

w appears as a substring of one or more descendants. Then,

1

2
min

(

1,
1

2

⌊

n

|w|

⌋

K
Sδ(|w|,m1)

2|w|

)

≤ Pr(Hw) ≤

min

(

1, (n− |w|+ 1)K
Sδ(|w|,m2)

2|w|

)

.

Proof: Let the K strings be denoted y1,y2, . . . ,yK . We

use Di to denote the set of δ-edit descendants of yi. Let

Hw(i, j) denote the event that w = xj,|w| for some x ∈ Di.

Clearly,

Hw = ∪K
i=1 ∪

n−|w|+1
j=1 Hw(i, j). (29)

Note that the strings {xj,|w|}x∈Di are iid δ-edit descendants

of (yi)j,|w|. Hence by Lemma 3

1

2

Sδ(|w|,m1)

2|w|
≤

1

2

Sδ(|w|, |Di|)

2|w|

≤ Pr(Hw(i, j)) ≤

Sδ(|w|, |Di|)

2|w|
≤

Sδ(|w|,m2)

2|w|
.

where the first and the last inequalities follow from m1 ≤
|Di| ≤ m2.

Applying the union bound on (29) gives

Pr(Hw) ≤ ∪K
i=1 ∪

n−|w|+1
j=1 Pr(Hw(i, j))

≤ (n− |w|+ 1)K
Sδ(|w|,m2)

2|w|
.

The desired upper bound follows by noting that 1 is a trivial

upper bound.

We next prove the lower bound. For each i, non-overlapping

substrings of ri are independent and so are their descendants.

Hence, events Hw(i, j), j = 1, 1 + |w|, . . . , 1 + (p − 1)|w|,

where p =
⌊

n
|w|

⌋

, are mutually independent. It follows that

Pr
(

∪K
i=1 ∪

p
a=1 Hw(i, 1 + (a− 1)|w|)

)

= 1−
K
∏

i=1

p
∏

a=1

(1− Pr(Hw(i, 1 + (a− 1)|w|)))

≥ 1−

(

1−
1

2

Sδ(|w|,m1)

2|w|

)Kp

≥
1

2
min

(

1,
1

2
Kp

Sδ(|w|,m1)

2|w|

)

,

where the last inequality follows from inequality (1) that 1−
(1 − x)n ≥ 1

2 min(1, nx) for x ∈ (0, 1) and integer n. The

desired lower bound thus follows by noting that

∪K
i=1 ∪

p
a=1 Hw(i, 1 + (a− 1)|w|) ⊆ Hw.

Lemma 11. Consider the source model with edit probability

δ. For any string w ∈ Σ∗ with |w| ≤ 2L,

Pr(w ∈ Y B
1 |Eu) ≤ min

(

1, 2AL
Sδ

(

|w|, 3B
2A

)

2|w|

)

.

For any string w ∈ Σ∗ with |w| ≤
⌈

1
2L
⌉

,

Pr
(

w ∈ Y
B/2
1 |El

)

≥
1

2
min

(

1,
AL

8|w|

Sδ

(

|w|, B
4A

)

2|w|

)

. (17)

Proof: Recall that we assume every source symbol (and

thus every source block) is of length at least 1
2L and at most

2L. So we can get a lower bound on Pr
(

w ∈ Y
B/2
1 |El

)

by

assuming every source block is of length L
2 . Similarly, we get

an upper bound on Pr
(

w ∈ Y B
1 |Eu

)

by assuming every source

block is of length 2L.

Now that the B source blocks are independent and each

is a δ-edit descendant of one of the A source symbols.

Moreover, each random string (source symbol) has at most
3B
2A descendants given Eu. Therefore, by directly applying

Lemma 10,

Pr
(

w ∈ Y B
1 |Eu

)

≤ min

(

1, (2L− |w|+ 1)A
Sδ

(

|w|, 3B
2A

)

2|w|

)

≤ min

(

1, 2LA
Sδ

(

|w|, 3B
2A

)

2|w|

)

.

The lower bound can be obtained similarly:

Pr
(

w ∈ Y
B/2
1 |El

)

≥
1

2
min

(

1,
1

2

⌊

L/2

|w|

⌋

A
Sδ

(

|w|, B
4A

)

2|w|

)

≥
1

2
min

(

1,
1

8

L

|w|
A
Sδ

(

|w|, B
4A

)

2|w|

)

.



19

APPENDIX E

PROOF OF LEMMA 12

Lemma 12. Consider the source model with edit probability

δ < 1
2 . For any n such that

log(B/A)−2
H(δ) ≤ n+ 2M + 2 ≤ L

4 ,

∑

u∈Rn
M

Pr
(

10Mu10M ∈ Y
B/2
1 |El

)

≥

BL

27 · 22M+2
·

(

1−
1

2M−1

)n

−
3B2L2

2n+2M+2
.

Proof: Let w = 10Mu10M . By assumption, |w| = |u|+

2M + 2 ≥ log(B/A)−2
H(δ) .

For definiteness, we assume
∣

∣Y1/2(a)
∣

∣ = B
4A for all a and

all source symbols are of length L
2 . With these assumptions,

we have a similar setting to that in Lemma 10. So we adopt

the same notation. Let Hw denote w ∈ Y
B/2
1 and Hw(a, j)

denote the event that w = xj,|w| for some x ∈ Y1/2(a).
Similar to (29):

Hw = ∪A
a=1 ∪

⌈L/2⌉−|w|+1
j=1 Hw(a, j). (30)

Moreover,

1

2

Sδ

(

|w|, B
4A

)

2|w|
≤ Pr(Hw(a, j)) ≤

Sδ

(

|w|, B
4A

)

2|w|
.

In Lemma 11, an upper bound on Pr
(

w ∈ Y
B/2
1 |El

)

is

obtained by applying the union bound on (30). Here, we get

a lower bound by the inclusion-exclusion principle:

Pr(Hw) ≥
A
∑

a=1

⌈L/2⌉−|w|
∑

i=1

Pr(Hw(a, i)) (31)

−
∑

1≤a1 6=a2≤A

⌈L/2⌉−|w|
∑

j=1

⌈L/2⌉−|w|
∑

k=1

Pr(Hw(a1, j) ∩Hw(a2, k))

(32)

−

A
∑

a=1

∑

1≤j,k≤⌈L/2⌉−|w|
j 6=k

Pr(Hw(a, j) ∩Hw(a, k)). (33)

We compute the three terms on the right-hand side of the

inequality above as follows.

For the term in (31), since |w| ≥ log(B/A)−2
H(δ) ,

Pr(Hw(a, i)) ≥
1

2

Sδ

(

|w|,
⌈

B
4A

⌉)

2|w|
≥

1

2

Sδ

(

|w|, B
4A

)

2|w|

≥
B

32A · 2|w|
,

where the last inequality follows from (5). It follows that

A
∑

a=1

⌈L/2⌉−|w|
∑

i=1

Pr(Hw(a, i)) ≥ A(⌈L/2⌉ − |w|)
B

32A · 2|w|

≥
BL

27 · 2|w|
. (34)

For the term in (32), since for all a1 6= a2, ya1
and ya2

are

independent and so are their descendants, we get

∑

1≤a1 6=a2≤A

⌈L/2⌉−|w|
∑

j=1

⌈L/2⌉−|w|
∑

k=1

Pr(Hw(a1, j) ∩Hw(a2, k))

=
∑

1≤a1 6=a2≤A

⌈L/2⌉−|w|
∑

j=1

⌈L/2⌉−|w|
∑

k=1

Pr(Hw(a1, j)) Pr(Hw(a2, k))

≤
∑

1≤a1 6=a2≤A

⌈L/2⌉−|w|
∑

j=1

⌈L/2⌉−|w|
∑

k=1

(

Sδ

(

|w|,
⌈

B
4A

⌉)

2|w|

)2

≤
∑

1≤a1 6=a1≤A

B2L2

A222|w|

≤
B2L2

22|w|
, (35)

where the second inequality follows from (10) that Sδ(ℓ,m) ≤
m and the inequalities ⌈L/2⌉ − |w| ≤ L,

⌈

B
4A

⌉

≤ B
A .

We then consider the term in (33), where the two occur-

rences of w are among the descendants of a single source

symbol, and thus might not be independent. Unlike the pre-

vious two terms, we consider lower bounding the sum of

probabilities Pr(Hw(a, j) ∩Hw(a, k)) over all w of the form

10Mu10M ,u ∈ Rn
M . For clarity of presentation, we first claim

(to be proved later) that for any a,
∑

w:w=10Mu10M

u∈Rn
M

∑

1≤j,k≤⌈L/2⌉−|w|
j 6=k

Pr(Hw(a, j) ∩Hw(a, k))

≤
B2L2

A22|w|

(

1 +
n+M + 1

L

)

. (36)

It follows that

∑

w:w=10Mu10M

u∈Rn
M

A
∑

a=1

∑

1≤j,k≤⌈L/2⌉−|w|
j 6=k

Pr(Hw(a, j) ∩Hw(a, k))

≤
B2L2

A2|w|

(

1 +
n+M + 1

L

)

. (37)

Thus, combining (33), (34), (35) and (37) gives
∑

w:w=10Mu10M

u∈Rn
M

Pr(Hw)

≥
∑

w:w=10Mu10M

u∈Rn
M

(

BL

27 · 2|w|
−

B2L2

22|w|

)

−
B2L2

A2|w|

(

1 +
n+M + 1

L

)

≥
BL

27 · 2|w|
· |Rn

M |

−
B2L2

22|w|
· |Rn

M | −
B2L2

A2|w|

(

1 +
n+M + 1

L

)

≥
BL

27 · 2|w|
· |Rn

M | −
3B2L2

2|w|
,

where the last inequality follows from |Rn
M | ≤ 2|w|,

n+M+1
L ≤ 1 and A ≥ 1. The desired lower bound thus follows

from bounding |Rn
M | by Lemma 1.
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Finally, we prove inequality (36). Fix a. That Hw(a, j)
and Hw(a, k) both hold means there exist descendants x1,x2

(possibly the same one) of ya such that (x1)j,|w| =
(x2)k,|w| = w. Assume j < k without loss of generality.

We compute Pr(Hw(a, j) ∩Hw(a, k)) for different values of

(j, k):

• |j − k| ≥ |w|. The two occurrences of w in x1 and x2

are plotted in Figure 4. In this case, they are produced

by two non-overlapping substrings of ya and thus are

independent. It follows that
∑

|j−k|≥|w|

Pr(Hw(a, j) ∩Hw(a, k))

=
∑

|j−k|≥|w|

Pr(Hw(a, j)) Pr(Hw(a, k))

≤ L2

(

Sδ

(

|w|,
⌈

B
4A

⌉)

2|w|

)2

≤
L2B2

A222|w|
. (38)

ya

x1 10
M u 10

M

x2 10
M u 10

M

j k

w

w

Figure 4. Relative position of the two occurrences of w at position j and k
when |j − k| ≥ |w|.

• 1 ≤ |j − k| < |u|. The two occurrences of w in x1

and x2 are plotted in Figure 5. In this case, the two

occurrences of w are descendants of two overlapping

substrings of ya. Recall that w = 10Mu10M . We write

the string u in x1 as u1u2, and write the string u in

x2 as u
′
2u3, so that u2 and u

′
2 have the same ancestors,

denoted r2. Denote the ancestor of u1 and u3 by r1

and r3, respectively. Denote the ancestor of 10M at the

beginning of w in x1 by r0, and the ancestor of 10M at

the end of w in x2 by r4. We have |r1| = |u1| = |r3| =
|u3| = k − j, |r2| = |u2| = |u′

2| = |u| − (k − j). Write

r = r0r1r2r3r4.

ya r0 r1 r2 r3 r4

x1 10
M u1 u2 10

M

x2 u
′
2 u3 10

M
10

M

j k

w

w

Figure 5. Relative position of the two occurrences of w at position j and k
when 1 ≤ |j − k| < |u|.

For a single descendant x of ya, x can not have w as

substrings at positions j and k simultaneously since u is

M -RLL. In other words, either exactly one of xj,|w| and

xk,|w| equals w or none of them does. So given r, we

can get an upper bound on the probability of Hw(a, j)∩
Hw(a, k) by assuming they are independent, i.e.,

Pr(Hw(a, j) ∩Hw(a, k)|r)

≤ Pr(Hw(a, j)|r) Pr(Hw(a, k)|r). (39)

We prove (39) rigorously by Lemma 19 at the end of this

section.

Denote the Hamming distance between r0 and 10M by

d0, r1 and u1 by d1, r2 and u2 by d2, r2 and u
′
2 by

d′2, r3 and u3 by d3, and r4 and 10M by d4. Let wl =
10Mu and wr = u10M . The probability of occurrences

increases if we only consider substrings wl or wr. We

have

Pr(Hw(a, j)|r)

≤ Pr(Hwl
(a, j)|r)

=1−
(

1− δd0+d1+d2(1− δ)|w|−M−1−(d0+d1+d2)
)⌈ B

4A⌉

≤
B

A
δd0+d1+d2(1 − δ)|w|−M−1−(d0+d1+d2),

and

Pr(Hw(a, k)|r)

≤ Pr(Hwr
(a, k +M + 1)|r)

=1−
(

1− δd
′
2+d3+d4(1 − δ)|w|−M−1−(d′

2+d3+d4)
)⌈ B

4A⌉

≤
B

A
δd

′
2+d3+d4(1− δ)|w|−M−1−(d′

2+d3+d4).

It follows from (39) that Pr(Hw(a, j) ∩Hw(a, k)) is less

than or equal to
∑

r∈Σ|w|

Pr(r) Pr(Hw(a, j)|r) Pr(Hw(a, k)|r)

=

(

B

A

)2

·





∑

r0∈ΣM+1

1

2|r0|
δd0(1− δ)|r0|−d0





·





∑

r1∈Σk−j

1

2|r1|
δd1(1− δ)|r1|−d1





·





∑

r3∈Σk−j

1

2|r3|
δd3(1− δ)|r3|−d3





·





∑

r4∈ΣM+1

1

2|r4|
δd4(1− δ)|r4|−d4





·





∑

r2∈Σ|u|−(k−j)

1

2|r2|
δd2+d′

2(1− δ)2|r2|−(d2+d′
2)





=

(

B

A

)2

·
1

22M+2+2(k−j)

·





∑

r2∈Σ|u|−(k−j)

1

2|r2|
δd2+d′

2(1− δ)2|r2|−(d2+d′
2)



.

Let d◦ denote the Hamming distance between u2 and u
′
2.

Among the |u2| − d◦ positions where u2 and u
′
2 are the
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same, suppose u2 differs from r2 in v of them. Among

the d◦ positions where u2 differs from u
′
2, suppose u2

differs from r2 in t of them. It follows that d2 = v + t
and d′2 = d◦ + v − t. Thus, we further have

∑

r2∈Σ|u|−(k−j)

1

2|r2|
δd2+d′

2(1− δ)2|r2|−(d2+d′
2)

=
∑

r2∈Σ|u|−(k−j)

1

2|r2|
δ2v+d◦

(1− δ)2|r2|−2v−d◦

=

|r2|−d◦

∑

v=0

(

|r2| − d◦

v

)

2d
◦

2|r2|
δ2v+d◦

(1 − δ)2|r2|−2v−d◦

=
(2δ(1− δ))

d◦

2|r2|

|r2|−d◦

∑

v=0

(

|r2| − d◦

v

)

·
(

δ2
)v(

(1− δ)2
)(|r2|−d◦)−v

=
1

2|r2|
(2δ(1− δ))d

◦(

δ2 + (1− δ)2
)|r2|−d◦

.

Since |r2| = |w| − (k − j),

Pr(Hw(a, j) ∩Hw(a, k))

≤

(

B

A

)2 (2δ(1− δ))
d◦(

δ2 + (1− δ)2
)|r2|−d◦

2|w|+(k−j)
.

Note that u2 is the |r2|-suffix of u and u
′
2 is the |r2|

prefix of u. With |u| = n, the number of n-strings whose

|r2|-suffix and |r2|-prefix are at Hamming distance d◦

is 2n−|r2|
(

|r2|
d◦

)

since an n-string can be uniquely deter-

mined by its |r2|-prefix and the mismatches. Therefore,

∑

w:w=10Mu10M

u∈Rn
M

∑

1≤|j−k|<|u|

Pr(Hw(a, j) ∩Hw(a, k))

≤
∑

1≤|j−k|<|u|

∑

w:w=10Mu10M

u∈Σn

Pr(Hw(a, j) ∩Hw(a, k))

≤ L|u| ·

|r2|
∑

d◦=0

2|r1|

(

|r2|

d◦

)

·

(

B

A

)2

·
(2δ(1− δ))

d◦(

δ2 + (1− δ)2
)|r2|−d◦

2|w|+k−j

=

(

B

A

)2
Ln

2|w|
. (40)

• |u| ≤ |j − k| < |w|. The two occurrences of w in x1

and x2 are plotted in Figure 6.

ya

x1 10
M u 10

M

x2 10
M u 10

M

j k

w

w

Figure 6. Relative position of the two occurrences of w at position j and k
when |u| ≤ |j − k| < |w|.

It can be seen that the prefix 10Mu of w in x1 and w in

x2 are descendants of non-overlapping substrings of ya

and thus independent. We can write

Pr(Hw(a, j) ∩Hw(a, k))

≤ Pr(Hwl
(a, j) ∩Hw(a, k))

= Pr(Hwl
(a, j)) Pr(Hw(a, k))

≤
Sδ

(

|wl|,
⌈

B
4A

⌉)

Sδ

(

|w|,
⌈

B
4A

⌉)

2|wl|+|w|

≤

(

B

A

)2
1

22|w|−M−1
.

It follows that
∑

|u|≤|j−k|<|w|

Pr(Hw(a, j) ∩Hw(a, k))

≤

(

B

A

)2
L · 2(M + 1)

22|w|−M−1
. (41)

Thus, combining (38), (40), (41) gives
∑

w:w=10Mu10M

u∈Rn
M

∑

1≤j,k≤⌈L/2⌉−|w|
j 6=k

Pr(Hw(a, j) ∩Hw(a, k))

≤
∑

w:w=10Mu10M

u∈Rn
M





∑

|j−k|≥|w|

Pr(Hw(a, j) ∩Hw(a, k))

+
∑

1≤|j−k|<|u|

Pr(Hw(a, j) ∩Hw(a, k))

+
∑

|u|≤|j−k|≤|w|

Pr(Hw(a, j) ∩Hw(a, k))





≤
L2B2

A2 · 22|w|
· |Rn

M |+
B2Ln

A2 · 2|w|
+

2B2L(M + 1)

A2 · 22|w|−M−1
· |Rn

M |

≤
B2L2

A22|w|

(

1 +
n+M + 1

L

)

.

We present a lemma from which inequality (39) follows

directly.

Lemma 19. Let r be any string of length n with m iid δ-

edit descendants. For a string v, |v| < n and 1 ≤ j < k ≤
n− |v|+1, let J (v),K(v) denote the events that there exists

a descendant of r whose j-th, k-th |v|-substring equal v,

respectively. We have

Pr(J (v) ∩ K(v)) ≤ Pr(J (v)) Pr(K(v)),

if the (|v| − (k − j))-suffix and (|v| − (k − j))-prefix of v are

not the same.

Proof: If the (|v| − (k − j))-suffix and (|v| − (k − j))-
prefix of v are not the same, then in any descendant x, v

can not be both the j-th and the k-th substring. Therefore,

in x, exactly one of the following three mutually exclusive

events holds: i) xj,|v| = v, ii) xk,|v| = v, iii) xj,|v| 6= v and

xk,|v| 6= v. Let pj denote the probability of xj,|v| = v and

pk denote the probability of xk,|v| = v. We have

Pr
(

xj,|v| 6= v ∩ xk,|v| 6= v
)

= 1− pj − pk.
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Therefore, among the m iid descendants of r,

Pr(J (v) ∩ K(v))

= Pr(J (v)) + Pr(K(v)) + Pr
(

J̄ (v) ∩ K̄(v)
)

− 1

= (1− (1− pj)
m
) + (1− (1− pk)

m
)

+ (1− pj − pk)
m − 1

= 1− (1− pj)
m
− (1− pk)

m
+ (1− pj − pk)

m
.

On the other hand,

Pr(J (v)) Pr(K(v))

= (1− (1− pj)
m)(1− (1− pk)

m)

= 1− (1− pj)
m
− (1− pk)

m

+ (1− pj)
m(1− pk)

m.

The desired inequality thus follows by noting that 1−pj−pk ≤
(1− pj)(1− pk).

Inequality (39) can be obtained by replacing J (v) and K(v)
with Hw(a, j) and Hw(a, k), respectively.

APPENDIX F

PROOFS OF LEMMA 13 AND LEMMA 16

Lemma 13. Consider the source string s = Y1Y2 . . . YB .

When 2M = o(L), for B,L sufficiently large,

Pr

(

CM
V L(s) ≥

1

4
·

⌊

B

2

⌋(

L

2M+8
− 1

))

≥
5

6
.

Proof: Equally parse each of Y⌈B/2⌉+1, . . . , YB into seg-

ments of length 2M+7. So that every Yb contains
⌊

|Yb|
2M+7

⌋

segments. We show that among these
∑B

b=⌊B
2 ⌋+1

⌊

|Yb|
2M+7

⌋

segments, a constant fraction of them contain a chunk of length

over 2M−4.

Pick an arbitrary segment, denoted z. Consider the two

halves of z. The second half of z, which is of length 2M+6,

is by itself a Bernoulli(1/2) process going forward. We study

the first time a run of M 0’s appears in this process. By the

union bound, with probability at least 1 − 2M−5

2M , there exist

no runs of M 0s in the first 2M−5 bits. Moreover, the average

position of the end of the first run of M 0s in a Bernoulli(1/2)

process is 2M+1 − 2 [15]. Therefore, by Markov’s inequality,

with probability at least 1− 2M+1−2
2M+6 , there is a 0M within the

first 2M+6 bits. So the first time we see 0M is after 2M−5

bits and before 2M+6 bits (i.e., the first 0M is within the last

2M+6 − 2M−5 bits) with probability at least

1−
2M−5

2M
−

2M+1 − 2

2M+6
≥ 1−

1

24
.

Similarly, the first half of z can be regarded as a reversed

Bernoulli(1/2) process. So we also have with probability at

least 1 − 1
24 , the first 0M (counting backwards) is within the

first 2M+6−2M−5 bits. Clearly, a chunk exists between these

two occurrences of 0M . So with probability at least 1− 1
23 , z

contains a chunk of length at least 2M−4. Since this property

holds for all such segments of length 2M+7, by the Markov

inequality, with probability at least 1 − 1
6 , at least 1

4 of the

segments in Y⌈B/2⌉+1 · · ·YB contain a chunk of length at least

2M−4. The desired result is derived by noting |Yb| ≥ L/2.

Lemma 16. Consider the source string s = Y1Y2 · · ·YB ,

with each Yb being a descendant of source symbol XJb
. For

any integer h and any pairs of integers (b1, b2), (i1, i2), the

probability of Yb1 and Yb2 having identical substrings of length

h starting at positions i1 and i2, respectively, is

Pr
(

(Yb1)i1,h = (Yb2)i2,h

)

=
1

2h
,

if Jb1 6= Jb2 or i1 6= i2.

Proof: We compute Pr((Yb1)i1,h = (Yb2)i2,h) as

(b1, b2), (i1, i2) take different values in the following three

cases:

• Jb1 6= Jb2 or |i1 − i2| ≥ h. If Jb1 6= Jb2 , then Yb1 and

Yb2 have different ancestors and are thus independent.

It follows that their substrings are also independent.

If |i1 − i2| ≥ h, then (Yb1)i1,h and (Yb2)i2,h are de-

scendants of non-overlapping substrings of the source

alphabet and are thus also independent. The desired result

follows from the fact that (Yb1)i1,h and (Yb2 )i2,h are both

Bernoulli(1/2) processes by themselves.

• b1 = b2, |i1 − i2| < h. In this case, (Yb1)i1,h and

(Yb2)i2,h are overlapping substrings of a single source

block. Again, Yb1 is Bernoulli(1/2) by itself. So the

probability of (Yb1)i1,h = (Yb2 )i2,h is the same as that

when (Yb1)i1,h and (Yb2)i2,h are independent.

• Jb1 = Jb2 , b1 6= b2, |i1 − i2| < h. Let Jb1 = Jb2 = a.

Assume i1 < i2 without loss of generality. In this

case, (Yb1)i1,h and (Yb2)i2,h are two independent δ-

edit descendants of (Xa)i1,h and (Xa)i2,h, respectively.

So Pr((Yb1)i1,h = (Yb2)i2,h) is uniquely determined by

the Hamming distance between (Xa)i1,h and (Xa)i2,h.

Moreover, the distribution of the Hamming distance be-

tween (Xa)i1,h and (Xa)i2,h is the same as the distribu-

tion of the Hamming distance between two independent

Bernoulli(1/2) process of length h. Therefore, we can

assume (Yb1)i1,h and (Yb2 )i2,h are independent and thus

Pr((Yb1)i1,h = (Yb2)i2,h) =
1
2h .

APPENDIX G

SUMMATIONS

For integers b ≥ a and β > 1, summations of the forms
∑b

n=a

(

1− 1
β

)n

and
∑b

n=a n
(

1− 1
β

)n

appear in the proofs

of Theorem 15 and Theorem 18. Let x = 1− 1
β . The limits of

these sums in a certain asymptotic regime is discussed bolew.

A. Asymptotic behavior of
∑b

n=a x
n

We have

b
∑

n=a

xn =
xa
(

1− xb−a+1
)

1− x

= β

(

1−
1

β

)a
(

1−

(

1−
1

β

)b−a+1
)

.
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If b− a = ω(β), then as β → ∞,

(

1−
1

β

)b−a+1

=

(

(

1−
1

β

)β
)

b−a+1
β

= o(1).

It follows that

b
∑

n=a

(

1−
1

β

)n

= β

(

1−
1

β

)a

(1 + o(1))

= βe−
a/β(1 + o(1)). (42)

B. Asymptotic behavior of
∑b

n=a nx
n

We have

b
∑

n=a

nxn = x

b
∑

n=a

nxn−1 = x

(

b
∑

n=a

xn

)′

= x

(

xa
(

1− xb−a+1
)

1− x

)′

= x

(

axa−1 − (b+ 1)xb
)

(1− x) +
(

xa − xb+1
)

(1− x)
2

= β2

(

(

a− 1

β
+ 1

)(

1−
1

β

)a

+

(

b

β
+ 1

)(

1−
1

β

)b+1
)

.

If b
β = ω(1), then as β → ∞,

(

b

β
+ 1

)(

1−
1

β

)b+1

=

(

b

β
+ 1

)

(

(

1−
1

β

)β
)

b+1
β

= o(1).

It follows that

b
∑

n=a

n

(

1−
1

β

)n

= β2

((

a− 1

β
+ 1

)(

1−
1

β

)a

+ o(1)

)

= β2

(

a− 1

β
+ 1

)

e−
a/β(1 + o(1)). (43)
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