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Abstract—We define and analyze low-rank parity-check (LRPC)
codes over extension rings of the finite chain ring Zpr , where p is
a prime and r is a positive integer. LRPC codes have originally
been proposed by Gaborit et al. (2013) over finite fields for
cryptographic applications. The adaption to finite rings is inspired
by a recent paper by Kamche et al. (2019), which constructed
Gabidulin codes over finite principle ideal rings with applications
to space-time codes and network coding. We give a decoding
algorithm based on simple linear-algebraic operations. Further, we
derive an upper bound on the failure probability of the decoder.
The upper bound is valid for errors whose rank is equal to the
free rank.

I . I N T R O D U C T I O N

Low-rank parity check (LRPC) codes were introduced over
finite fields in [1] and are rank-metric codes with applications to
cryptography [1], powerline communications [2], and network
coding [3]. They can be seen as the rank-metric analogs of low-
density parity-check codes in the Hamming metric. In [4], new
decoders for LRPC codes were proposed. Compared to other
known rank-metric codes, LRPC codes have a comparably low
minimum distance, but their decoding is efficient and they have a
weak algebraic structure. The latter property makes them suitable
for cryptography: cryptosystems based on LRPC codes [5] are
among the most promising candidates for future public-key
encryption and key encapsulation systems that are secure against
attacks by quantum computers. They achieve small public key
sizes compared to other code-based systems and are supported
by strong security reductions.

The rank metric and most of the known rank-metric codes [6]–
[9] have been originally defined over finite fields. Recently, [10]
studied rank-metric codes over finite principal ideal rings and
defined, analyzed and proposed a decoder for Gabidulin codes
over these rings. They also studied applications to network coding
and space-time coding, where the codes over finite rings have
advantages compared to rank-metric codes over finite fields.

In this paper, we combine the ideas of [1] and [10] by studying
LRPC codes over the finite chain ring Zpr , where a finite chain
ring is a ring whose ideals are linearly ordered by inclusion.
We describe a decoder that is similar to [1] and analyze its
failure probability for error vectors whose rank is equal to the
free rank. This limitation is acceptable since in applications like
the McEliece cryptosystem the errors can be restricted to such
vectors. Similar to [1], the main difficulty is the derivation of
a bound on the failure probability, which becomes even more
involved when replacing fields by rings.
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The results constitute a proof of concept that LRPC codes
work also over finite rings. Similar to Gabidulin codes over
rings, the new codes can be applied to network coding and
space-time coding, cf. [10]. The benefit of ring LRPC codes
compared to ring Gabidulin codes is a potentially faster and
simpler decoder, which comes at the cost of a small failure
probability. Furthermore, these codes can be considered for code-
based cryptography, where replacing a field by a finite ring might
increase the cost of generic decoding attacks. Studying these
applications in detail is out of the scope of this paper and should
be done in future work. It would also be interesting, especially in
the context of cryptography, to extend the codes and the decoder
failure bound to a wider class of finite rings.

I I . P R E L I M I N A R I E S

We use a similar notation and the properties of rings stated in
[10]. Let p be a prime, r and m positive integers, q=pr,Rq=Zq ,
and Rq,m=Rq[x]/(h), where h∈Rq[x] is a monic polynomial
of degree m, which, if projected to Fp[x]1, is irreducible over
Fp. Note that elements in Rq,m can be seen as vectors in Rmq .

We denote the set of m×n matrices over a ring R by Rm×n

and the set of row vectors of length n over R by Rn = R1×n.
Rows and columns of m× n matrices are indexed by 1, . . . ,m
and 1, . . . , n, where Ai,j is the entry in the i-th row and j-th
column of the matrix A. For all A ∈ Rm×n, there exist an in-
vertible matrix S ∈ Rm×m, an invertible matrix T ∈ Rn×n and
a diagonal matrix D ∈ Rm×n such that D = SAT , where D is
called a Smith normal form ofA. The rank and the free rank ofA
is defined by rk(A) := |{i ∈ {1, . . . ,min{m,n}} :Di,i 6= 0}|
and frk(A) := |{i ∈ {1, . . . ,min{m,n}} : Di,i is a unit}|,
respectively.

Let γ = [γ1, . . . , γm] be an ordered basis of Rq,m over Rq.
By utilizing the vector space isomorphism Rq,m ∼= Rmq , we can
relate each vector a ∈ Rnq,m to a matrix A ∈ Rm×nq according
to extγ : Rnq,m → Rm×nq ,a 7→ A, where aj =

∑m
i=1Ai,jγi,

j ∈ {1, . . . , n}. Note that Rq,m is a ring of qm elements and a
free Rq-module of dimension m. Hence, elements ofRq,m can be
treated as vectors in Rmq and linear independence, Rq-subspaces
of Rq,m and the Rq-linear span of elements are well-defined.
Lemma 1 ([10, Lemma 2.4]). Let x ∈ Rq,m. Then, x is linearly
independent over Rq if and only if x is a unit in Rq,m.

The lemma above implies that x ∈ Rq,m is a unit if and only
if at least one entry of its vector representation is a unit. Note that
we have |R∗q | = q(1−1/p), so |R∗q,m| = qm−(|Rq|−|R∗q |)m =
qm[1− (1/p)m].
Lemma 2. For any x ∈ Rq \ {0}, there is a unique integer
j ∈ {0, . . . , r − 1} such that ∃x∗ ∈ R∗q with x = pjx∗.

Proof. Trivial since Rq is a finite chain ring, the integers
p0, . . . , pr−1 generate the ideals of the ring, and j is the largest
integer such that x ∈ (pj).

1Note that one can map every element of Fp to an arbitrary element of the
residue class Rq/m, where m is maximal ideal of Rq .
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Lemma 3. For any x ∈ Rq,m \ {0}, there is a unique integer
j ∈ {0, . . . , r − 1} such that ∃x∗ ∈ R∗q,m with x = pjx∗.

Proof. The proof follows directly from Lemma 1 and Lemma 2
by choosing j to be the minimum of the j’s of the entries of the
vector representation of x (this is independent of the basis).

The (free) rank norm of a vector a ∈ Rnq,m is denoted by
(f)rkRq (a) and is the (free) rank of the matrix representation A,
i.e., rkRq (a) := rk(A) and frkRq (a) := frk(A), respectively.

The Rq-linear module that is spanned by v1, . . . , v` ∈ Rq,m is
denoted by 〈v1, . . . , vn〉Rq :=

{∑`
i=1 aivi : ai ∈ Rq

}
. The Rq-

linear module that is spanned by the entries of a vector a ∈ Rnq,m
is called the support of a, i.e., suppR(a) := 〈a1, . . . , an〉Rq . If
a support has a basis, we refer to it as a free support. Further,
AB denotes the product module of two submodules A and B
of Rq,m.

I I I . L R P C C O D E S

Definition 1. Let k, n, λ be positive integers with 0 < k < n.
Furthermore, let F ⊆ Rq,m be a free Rq-submodule of Rq,m of
dimension λ. A low-rank parity-check (LRPC) code with parame-
ters λ, n, k is a code with a parity-check matrix H ∈ R(n−k)×n

q,m

such that rk(H) = n− k and F = 〈H1,1, . . . ,H(n−k),n〉Rq .
Note that an LRPC code is a free submodule of Rnq,m of

rank k. We define the following three additional properties of
the parity-check matrix that we will use throughout the paper
to prove the correctness of our decoder and to derive failure
probabilities.
Definition 2. Let λ, F , and H be defined as in Definition 1. Let
f1, . . . , fλ ∈ Rq,m be a free basis of F . For i = 1, . . . , n − k,
j = 1, . . . , n, and ` = 1, . . . , λ, let hi,j,` ∈ Rq be the unique
elements such that Hi,j =

∑λ
`=1 hi,j,`f`. Define

Hext :=



h1,1,1 h1,2,1 . . . h1,n,1
h1,1,2 h1,2,2 . . . h1,n,2
...

...
. . .

...
h2,1,1 h2,2,1 . . . h2,n,1
h2,1,2 h2,2,2 . . . h2,n,2
...

...
. . .

...

 ∈ R
(n−k)λ×n
q . (1)

Then, H has the
1) unique-decoding property if λ ≥ n

n−k and frk (Hext) =
rk (Hext) = n,

2) maximal-row-span property if every row of the parity-check
matrix H spans the entire space F ,

3) unity property if every entry Hi,j of H is chosen from the
set Hi,j ∈ F̃ :=

{∑λ
i=1 αifi : αi ∈ R∗q ∪ {0}

}
⊆ F .

As its name suggests, the first property is related to unique
erasure decoding, i.e., the process of obtaining the full error
vector e after having recovered its support. The next lemma
establishes this connection.
Lemma 4 (Unique Erasure Decoding). Given a parity-check
matrix H that fulfills the unique-decoding property. Let E be
a free support of dimension t ≤ m

λ . If dimRq (EF) = λt, then,
for any syndrome s ∈ Rn−kq,m , there is at most one error vector
e ∈ Rnq,m with support E that fulfills He> = s>.

Proof. The proof follows by the same arguments as in [4,
Section 4.5] (see also [11] for more details), where the unique-
decoding property implies that Hext is full-rank and shows
that there is at most one solution B ∈ Rt×nq that solves the
linear system of equations HB>a> = s, where the entries of
a ∈ Rtq,m form a basis of E .

In the original papers about LRPC codes over finite fields,
[1], [4], some of the properties of Definition 2 are used without
explicitly stating them.

The unique-decoding property is necessary to obtain a unique
decoding result after recovering the support of the error. Hence,
the property is also necessary for the decoder in [1] to return
a unique decoding result. In practice, this property is not very
restrictive: for entries Hi,j chosen uniformly at random from
F , this property is fulfilled with the probability that a random
λ(n − k) × n matrix has full (free) rank n, which again is
arbitrarily close to 1 for increasing λ(n− k)− n (cf. [11] for
the field and Lemma 10 for the ring case).

We will use the maximal-row-span property to prove a bound
on the failure probability of the decoder in Section V. It is a
sufficient condition that our bound (in particular Theorem 11
in Section V) holds. Although not explicitly stated, [4, Proposi-
tion 4.3] must also assume a similar or slightly weaker condition
in order to hold. It does not hold for arbitrary parity-check
matrices as in [4, Definition 4.1] (see Remark 12 in Section V).
This is again not a big limitation in general for two reasons: first,
the ideal codes in [4, Definition 4.2] appear to automatically
have this property, and second, a random parity-check matrix
has this property with high probability.

In the case of finite fields, the unity property is no restriction
at all since the units of a finite field are all non-zero elements.
That is, we have F̃ = F . Over rings, we need this additional
property as a sufficient condition for one of our failure probability
bounds (Theorem 11 in Section V). It is not a severe restriction
in general, since |F̃ | = (|R∗q |+ 1)λ = ( qp + 1)λ = (pr−1 + 1)λ

compared to |F| = qλ = prλ.

I V. D E C O D I N G

Fix λ and F as in Definition 1. Let f1, . . . , fλ ∈ Rq,m be a
free basis of F . Note that since the fi are linearly independent,
the sets {fi} are linearly independent, which by the above
discussion implies that all the fi are units in Rq,m. Hence,
f−1i exists for each i.

Algorithm 1: LRPC Decoder
Input:
• LRPC parity-check matrix H (as in Definition 1)
• r = c+ e, such that

– c is in the LRPC code C given by H and
– The support of e is a free module of dimension t.

Output: Codeword c′ of C or “decoding failure”
1 s = [s1, . . . , sn−k]← rH>

2 S ← 〈s1, . . . , sn−k〉Rq
3 if dimRq S < λt then
4 return “decoding failure”

5 for i = 1, . . . , λ do
6 Si ← f−1i S =

{
f−1i s : s ∈ S

}
7 E ′ ←

⋂λ
i=1 Si

8 if dimRq E ′ > t or dimRq (E ′F) < λt then
9 return “decoding failure”

10 e← Erasure decoding with support E ′ w.r.t. the syndrome
s, as described in Lemma 4 (analogous to [4, Section 4.5]
or [11, Section III.B])

11 return r − e

The following theorem states precisely under which conditions
on the error support and parity-check matrix space F the decoder
(Algorithm 1) returns the transmitted codeword. For fixed F and
random errors of a given weight t, we study the probability of
failure (i.e., the probability that the conditions are not fulfilled)
in Section V.
Theorem 5. Let H be chosen as in Definition 1 such that
it has the unique-decoding property (cf. Definition 2). Then,



Algorithm 1 returns the correct codeword c if the following
three conditions are fulfilled:

1) dimRq S = λt, (syndrome condition),

2) dimRq

(⋂λ
i=1 Si

)
= t, (intersection condition),

3) dimRq (EF) = λt, (product condition).

Proof. In Line 2, Algorithm 1 computes the module spanned
by the syndrome. Since the syndromes are sums of products of
error and parity-check matrix entries, the syndrome space S is a
subset of the product space EF . Due to the syndrome condition,
we have equality, i.e., S = EF .

By the definition of S1, . . . ,Sλ, we have that E ⊆ Si for
i = 1 . . . , λ and thus E ⊆

⋂λ
i=1 Si. Due to the intersection

condition, the space
⋂λ
i=1 Si cannot be larger than E and we

have equality, i.e, E =
⋂λ
i=1 Si. The product condition on the

error, together with the unique-decoding property of the parity-
check matrix ensures that we can recover uniquely the error
vector e from its support (cf. Lemma 4).

Remark 6. Note that the conditions in Theorem 5 imply that
λt ≤ m (due to the product condition) as well as λ ≥ n

n−k
(due to the unique-decoding property). Combined, we obtain
t ≤ mn−k

n = m(1−R), where R := k
n is the rate of the LRPC

code.

V. FA I L U R E P R O B A B I L I T Y

A. Failure of Product Condition

Lemma 7. Let A′, B be free submodules of Rq,m of dimension
α′ and β, respectively, such that also A′B is a free submodule
of Rq,m of dimension α′β. For an element a ∈ R∗q,m, chosen
uniformly at random, let A := A′ + 〈a〉. Then, we have

Pr
(
AB is a free module of dimension α′β + β

)
≥ 1−

∑r−1
j=0

[
(q/pj)β − (q/pj+1)β

] (
q/pj

)α′β−m
.

Proof. First note that since a is a unit in Rq,m, the mapping
ϕa : B → Rq,m, b 7→ ab is injective. This means that aB is a
free module of dimension dimRq (aB) = dimRq (B) = β. Let
b1, . . . , bβ be a basis of B. Then, ab1, . . . , abβ is a basis of aB.

Hence, AB is a free module of dimension dim(AB) =
αβ + β if and only if all the elements ab1, . . . , abβ are lin-
early independent of A′B. This again holds if and only if∑β
i=1 λiabi /∈ A′B ∀λi ∈ Rq, not all 0. This is equivalent

to aB ∩A′B = {0}. Hence,
Pr
(
dimAB 6=α′β+β

)
≤ Pr (∃b ∈B \ {0} : ab ∈ A′B) . (2)

Let c be chosen uniformly at random from Rq,m. Recall that a
is chosen uniformly at random from R∗q,m. Then,

Pr(∃b∈B\{0} :ab∈A′B)≤Pr(∃b∈B\{0} :cb∈A′B) . (3)
This holds since if c is chosen to be a non-unit in Rq,m, then
the statement “∃ b ∈ B \ {0} : cb ∈ A′B” is always true. To
see this, write c = pc′ for some c′ ∈ Rq,m. Since β > 0, there
is a unit b∗ ∈ B∩R∗q,m. Choose b := pr−1b∗ ∈ B \{0}. Hence,
cb = pc′pr−1b∗ = 0, and b is from B and non-zero.

Now we bound the right-hand side of (3) as follows
Pr (∃b ∈B\{0} :cb ∈A′B)≤

∑
b∈B\{0}Pr (cb ∈ A′B)

=

r−1∑
j=0

∑
b∈B:jb=j

Pr
(
cb∗pj ∈A′B

)
.

Since b∗ is a unit in Rq,m, for uniformly drawn c, cb∗ is
also uniformly distributed on Rq,m. Hence, cb∗pj is uniformly
distributed on the ideal pjRq,m of Rq,m generated by pj and

we have Pr
(
cb∗pj ∈ A′B

)
=
|pjRq,m∩A′B|
|pjRq,m| . Let v1, . . . , vα′β

be a basis of A′B. Then, an element c ∈ A′B is in pjRq,m if
and only if it can be written as c =

∑
i µivi, where µi ∈ pjRq

for all i. This is true due to the following argument: Assume
not. Then there is a non-empty set I ⊆ {1, . . . , αβ} such that
µi /∈ pjRq for all i ∈ I and µi ∈ pjRq for all i /∈ I. Note
that this implies pr−jµi 6= 0 if and only if i ∈ I. Hence,
0 = pr−jc =

∑
i∈I p

r−jµivi. However, this contradicts the fact
that the vi are linearly independent since all the pr−jµi are in
Rq , but not zero.

Hence,
∣∣pjRq,m ∩A′B∣∣ = |pjRq|α′β . Furthermore, we have

|pjRq,m| = |pjRq|m, where |pjRq| = q/pj . Overall, we get
Pr (∃ b ∈ B \ {0} : cb ∈ A′B)

≤
∑r−1
j=0

∑
b∈B : jb=j

(
q/pj

)α′β−m
=
∑r−1
j=0

∣∣{b ∈ B : jb = j}
∣∣ (q/pj)α′β−m . (4)

Furthermore, we have (note that pj+1Rq,m ⊆ pjRq,m)∣∣{b ∈ B : jb = j}
∣∣ = ∣∣∣(pjRq,m \ pj+1Rq,m

)
∩B

∣∣∣
=
∣∣pjRq,m ∩B∣∣− ∣∣pj+1Rq,m ∩B

∣∣
= (q/pj)β − (q/pj+1)β . (5)

Combining (2), (3), (4), and (5) gives the result.

Lemma 8. LetB be a fixed free submodule ofRq,m of dimension
β. Furthermore, let A be drawn uniformly at random from the
set of free submodules of Rq,m of dimension α. Then,

Pr
(
AB is a free module of dimension αβ

)
≥ 1− α

∑r−1
j=0

[
(q/pj)β − (q/pj+1)β

] (
q/pj

)αβ−m
.

Proof. Drawing a free submodule A ⊆ Rq,m of dimension
α uniformly at random is equivalent to drawing iteratively
A0 := {0}, Ai := Ai−1 + 〈ai〉 for i = 1, . . . , α where for
each iteration i, the element ai ∈ Rq,m is chosen uniformly at
random from the set of vectors that are linearly independent
of Ai−1. The equivalence of the two random experiments is
clear since the possible choices of the sequence a1, . . . , aα gives
exactly all bases of free Rq-submodules of Rq,m of dimension α.
Furthermore, all sequences are equally likely and each resulting
submodule has the same number of bases that generate it (which
equals the number of invertible α × α matrices over Rq). We
have the following recursive formula for any i = 1, . . . , α:

Pr
(
dim(AiB) < iβ

)
= Pr

(
dim(AiB) < iβ ∧ dim(Ai−1B) = (i− 1)β

)
+ Pr

(
dim(AiB) < iβ ∧ dim(Ai−1B) < (i− 1)β

)︸ ︷︷ ︸
dim(Ai−1B) < (i− 1)β implies dim(AiB) < iβ

= Pr
(
dim(AiB) < iβ | dim(Ai−1B) = (i− 1)β

)︸ ︷︷ ︸
(∗)
≤

∑r−1
j=0

[
(q/pj)β−(q/pj+1)β

]
(q/pj)(i−1)β−m

· Pr(dim(Ai−1B) = (i− 1)β)︸ ︷︷ ︸
≤1

+ Pr
(
dim(Ai−1B) < (i− 1)β

)
≤
∑r−1
j=0

[
(q/pj)β − (q/pj+1)β

] (
q/pj

)(i−1)β−m
+ Pr

(
dim(Ai−1B) < (i− 1)β

)
,

where (∗) follows from Lemma 7 by the following additional
argument:

Pr
(
dim(AiB) < iβ |
dim(Ai−1B) = (i− 1)β ∧ ai l.i. of Ai−1

)
≤ Pr

(
dim(AiB) < iβ |

dim(Ai−1B) = (i− 1)β ∧ ai uniformly from R∗q,m
)

≤
r−1∑
j=0

[
(q/pj)β − (q/pj+1)β

] (
q/pj

)(i−1)β−m
,



where the last inequality is exactly the statement of Lemma 7.
By Pr

(
dim(A0B) < 0

)
= 0, we get

Pr (dim(AB) < αβ)

= Pr
(
dim(AαB) < αβ

)
=
∑α
i=1

∑r−1
j=0

[
(q/pj)β − (q/pj+1)β

] (
q/pj

)(i−1)β−m
≤ α

∑r−1
j=0

[
(q/pj)β − (q/pj+1)β

] (
q/pj

)αβ−m
.

This proves the claim.

The following theorem follows directly from the previous
lemma by choosing A to be the random error support of
dimension t and B to be the fixed submodule F of dimension λ.
Theorem 9. Let F be defined as in Definition 1. Let t be a
positive integer with tλ < m and let E be the support of an
error word e chosen uniformly at random among all error words
with free support of dimension t. Then, the probability that the
product condition is not fulfilled is

Pr
(
dimRq (EF) < λt

)
≤ t
∑r−1
j=0

[
(q/pj)λ − (q/pj+1)λ

] (
q/pj

)λt−m
.

B. Failure of Syndrome Condition

Lemma 10. Let a, b be positive integers with a < b. Then,
NM(a, b;Rq) := |{A ∈ Ra×bq : frk(A) = rk(A) = a}| =
qab
∏a−1
a′=0

(
1− pa′−b

)
.

Proof. First note that NM(1, b;Rq) = qb− (q/p)b since a 1× b
matrices over Rq is of free rank 1 if and only if at least one entry
is a unit. Hence we subtract from the number of all matrices (qb)
the number of vectors that consist only of non-units ((q/p)b).

Let now for any a′ ≤ a be A ∈ Ra′×bq a matrix of free rank a′.
We define V(A) :=

{
v ∈ R1×b

q : frk
(
[A>v>]

> )
= a′

}
. We

study the cardinality of V(A). We have frk
(
[A>v>]

> )
= a′ if

and only if the rows of the matrix Â := [A>v>]
> are linearly

dependent. Due to frk(A) = a′ and the existence of a Smith
normal form of A, there are invertibe matrices S and T such
that SAT =D, where D is a diagonal matrix with ones on its
diagonal.

Since S and T are invertible, we can count the number of
vectors v′ such that the rows of the matrix

[
D>v′

>]> are
linearly independent instead of the matrix Â (note that v =
v′T−1 gives a corresponding linearly dependent row in Â).

Since D is in diagonal form with only ones on its diagonal,
the linearly dependent vectors are exactly of the form

v′ = [v′1, . . . , v
′
a, v
′
a′+1, . . . , v

′
b],

where v′i ∈ Rq for i = 1, . . . , a′ and v′i ∈ pRq for i = a′ +
1, . . . , b. Hence, we have |V(A)| = qa

′
(q/p)b−a

′
= qbpa

′−b.
Note that this value is independent of A.

By the discussion on |V(A)|, we get the following recursive
formula:

NM(a′+1, b;Rq)=

{
NM(a′, b;Rq)

(
qb − qbpa′−b

)
, a′ ≥ 1,

qb − (q/p)b, a′ = 0,

which resolves into NM(a, b;Rq)=q
ab
∏a−1
a′=0

(
1− pa′−b

)
.

Theorem 11. Suppose that the product condition is fulfilled.
Let F be defined as in Defintion 1. Let t be a positive integer
with tλ < m and E be the support of a error word e chosen
uniformly at random among all error words with free support
of dimension t.

Suppose further that H has the maximal-row-span and unity
properties (cf. Definition 2).

Then, the probability that the syndrome condition is not fulfilled
is

Pr
(
dimRq (S) < λt | dimRq (EF) = λt

)
≤ 1−

∏λt−1
i=0

(
1− pi−(n−k)

)
.

Proof. Let e′ ∈ Rnq,m be chosen such that every entry e′i is
chosen uniformly at random from the error support E .2 Denote
by Se and Se′ the syndrome spaces obtained by computing the
syndromes of e and e′, respectively. Then, we have

Pr
(
Se′ = EF

)
≤ Pr

(
Se′ = EF | suppR(e′) = E

)
= Pr

(
Se = EF

)
,

where the latter equality follows from the fact that the random
experiments of choosing e′ and conditioning on the property that
e′ has free rank t is the same as directly drawing e uniformly
at random from the set of free rank t errors. Hence, we obtain
a lower bound on Pr

(
Se = EF

)
by studying Pr

(
Se′ = EF

)
,

which we do in the following.
Let f1, . . . , fλ be a basis of F and ε1, . . . , εt be a basis of

E . Since e′i is an element drawn uniformly at random from E ,
we can write it as e′i =

∑t
µ=1 e

′
i,µεµ, where e′i,j are uniformly

distributed on Rq . Furthermore, we can write any Hi,j as Hi,j =∑λ
η=1 hi,j,ηfη , where the hi,j,η are units in Rq or zero (due to

the unity property). Furthermore, since each row of H spans the
entire module F (full-row-span property), for each i and each η,
there is at least one j∗ with hi,j∗,η . By the previous assumption,
this means that hi,j∗,η ∈ R∗q .

Then, each syndome coefficient can be written as

si =
∑n
j=1 e

′
jHi,j =

∑t
µ=1

∑λ
η=1

(∑n
j=1 e

′
j,µhi,j,η

)
︸ ︷︷ ︸

=:sµ,η,i

εµfη.

By the above discussion, for each i and η, there is a j∗ with
hi,j∗,η 6= 0. Hence, sµ,η,i is a sum (with at least one summand)
of the products of uniformly distributed elements of Rq and
units of Rq. A uniformly distributed ring element times a unit
is also uniformly distributed on Rq . Hence sµ,η,i is a sum (with
at least one summand) of uniformly distributed elements of Rq .
Hence, sµ,η,i itself is uniformly distributed on Rq .

All together, we can write s1s2
...

sn−k

 =

 s1,1,1 s1,2,1 . . . st,λ,1
s1,1,2 s1,2,2 . . . st,λ,2
...

...
. . .

...
s1,1,n−k s1,2,n−k . . . st,λ,n−k


︸ ︷︷ ︸

=:S

·

ε1f1ε1f2
...

εtfλ

 ,
where the εifj are a basis of EF (since the product condition is
fulfilled by assumption) and the matrix S is chosen uniformly at
random from R

(n−k)×tλ
q . We have Se′ = EF if and only if S has

full free rank tλ. By Lemma 10, the probability of drawing such
a full-rank matrix is NM(a,b;Rq)

qab
=
∏a−1
a′=0

(
1− pa′−b

)
.

Remark 12. In contrast to Theorem 11 the full-row-span
property was not assumed in [4, Proposition 4.3], which is
the analogous statement for finite fields. However, also the
statement in [4, Proposition 4.3] is only correct if we assume
additional structure on the parity-check matrix (e.g., that each
row spans the entire space F or a weaker condition), due to
the following counterexample: Consider a parity-check matrix
H that contains only non-zero entries on its diagonal and in
the last row. More precisely, the diagonal entries are all f1 and
the last row contains the remaining f2, . . . , fλ. This is a valid
parity-check matrix according to [4, Definition 4.1] since the
entries of H span the entire space F . However, due to the
structure of the matrix, the first n− k − 1 syndromes are all in
f1E , hence dim(S) ≤ t+ 1 < tλ for any error of dimension t.

2This means that e′ might have rank t or smaller. The difference to the actual
error e is that e is chosen uniformly at random from the vectors of rank t.



C. Failure of Intersection Condition

Lemma 13 (Equivalent of [4, Lemma 3.4]). Let A,B ⊆ Rq,m
be free Rq-modules of dimensions α and β, respectively. Fur-
thermore, let β2 := dim(B2).

Assume that dim(AB2) = αβ2 and there is a module E ⊆
Rq,m with A ( E and EB = AB. Then, there is an x ∈ B \Rq
such that xB ⊆ B.

Proof. Let a1, . . . , aα be a basis of A and b1, . . . , bβ be a basis
of B.

First note that the existence of E with the presumed properties
implies that there is an e ∈ AB \A such that eB ⊆ AB. Then,
there are coefficients ei,j ∈ Rq with

e =
∑α
i=1

(∑β
j=1 ei,jbj

)
︸ ︷︷ ︸

=: b′i

ai. (6)

By assumption, e is not in A, which means that there is an
η ∈ {1, . . . , β} with b′η /∈ Rq .

Let now b ∈ B. Since by assumption eb ∈ AB, there are ci,j ∈
Rq with eb =

∑α
i=1

(∑β
j=1 ci,jbj

)
ai. By (6), we can also write

eb =
∑α
i=1

(∑β
j=1 ei,jbjb

)
ai. Due to the maximality of the

dimension of AB2, there is a unique representation c =
∑
i ciai

with ci ∈ B2 for each c ∈ AB2. Since eb ∈ AB, we must
therefore have b′ib =

(∑β
j=1 ei,jbj

)
b =

∑β
j=1 ci,jbj ∀ i, in

particular b′ηb ∈ B. Since this hold for any b, we have b′ηB ⊆ B
(recall also that b′η /∈ Rq). Choosing x = b′η gives the claimed
result.

Theorem 14. Suppose that the syndrome condition is fulfilled
and m is chosen such that the smallest intermediate ring R′

between Rq ( R′ ⊆ Rq,m has cardinality greater than qλ. Let
F be defined as in Defintion 1. Let t be a positive integer with
tλ < m and E be the support of a error word e chosen uniformly
at random among all error words with free support of dimension
t.

Then, the probability that the intersection condition is not
fulfilled is

Pr
(
dimRq

(⋂λ
i=1 Si

)
> t | dimRq (S) = λt

)
≤ t
∑r−1
j=0

[
(q/pj)β − (q/pj+1)β

] (
q/pj

) tλ(λ+1)
2 −m

.

Proof. Assume that the intersection condition is not fulfilled.
Then we have

⋂λ
i=1 Si =: E ′ ) E . Choose now A = E , E = E ′,

andB = F in Lemma 13. Since E is chosen uniformly at random
from all free submodules of Rq,m of dimension t, we can apply
Lemma 8 and obtain that dim(EF2) = tλ′ with probability at
least

Pr(dim(EF2) = tλ′)

≥ 1− t
∑r−1
j=0

[
(q/pj)β − (q/pj+1)β

] (
q/pj

)tλ′−m
≥ 1− t

∑r−1
j=0

[
(q/pj)β − (q/pj+1)β

] (
q/pj

) tλ(λ+1)
2 −m

,

where λ′ := dim(F2) ≤ 1
2λ(λ + 1) (this is clear since F2 is

generated by the products of all unordered pairs of basis elements
of F).

Hence, with probability at least this value, both conditions of
Lemma 13 are fulfilled. This means that there is an element
x ∈ F \ Rq such that xF ⊆ F . Thus, also xiF ⊆ F for all
positive integers i, and we have that the ring Rq(x) extended
by the element x /∈ Rq fulfills Rq(x) ⊆ F (this holds since F
contains at least one unit). By the condition on intermediate rings
in the lemma statement, we must have qλ = |F| ≥ |Rq(x)| > qλ,
a contradiction.

D. Overall Failure Probability
Theorem 15. Let m be chosen such that the smallest inter-
mediate ring R′ between Rq ( R′ ⊆ Rq,m has cardinality
greater than qλ and F be defined as in Defintion 1. Suppose
further that H has the maximal-row-span and unity properties
(cf. Definition 2).

Let t be a positive integer with tλ < m and e ∈ Rnq,m be
chosen uniformly at random from the set of vectors with free
support of dimension t (i.e., rank and free rank of e are t).

Then, Algorithm 1 with input c+ e returns c with probability
at least

Pr(success) ≥ 1

− t
∑r−1
j=0

[
(q/pj)β − (q/pj+1)β

] (
q/pj

)λt−m
−
∏λt−1
i=0

(
1− pi−(n−k)

)
− t
∑r−1
j=0

[
(q/pj)β − (q/pj+1)β

] (
q/pj

) tλ(λ+1)
2 −m

,

independent of the transmitted codeword c.

Proof. The statement follows by applying the union bound to
the failure probabilities of the three success conditions, derived
in Theorems 9, 11, and 14.

V I . S I M U L AT I O N R E S U LT S

We performed simulations of LRPC codes with λ = 2, k = 8
and n = 20 (note that we need k ≤ λ−1

λ n by the unique-
decoding property) over the ring R4,20 (q = 4 and m = 20). In
each simulation, we generated one parity-check matrix (fulfilling
the maximal-row-span and the unity properties) and conducted
a Monte Carlo simulation in which we collected exactly 1000
decoding errors. All simulations gave very similar results and
confirmed our analysis. We show one of the simulation results in
Figure 1 where we indicate by markers the estimated probabilities
of violating the product condition (S: Prod), the syndrome
condition (S: Synd), the intersection condition (S: Inter) as well
as the decoding failure rate (S: Dec). Further we show the
derived bounds on the probabilities of not fulfilling the product
condition (B: Prod) given in Theorem 9, the syndrome condition
(B: Synd) derived in Theorem 11, the intersection condition (B:
Inter) provided in Theorem 14 and the union bound (B: Dec)
stated in Theorem 15. One can observe that the bound on the
probability of not fulfilling the syndrome condition is very close
to the true probability while the bounds on the probabilities of
violating the product and syndrome condition are loose. Gaborit
et al. have made the same observation in the case of finite fields.
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Figure 1. Simulation results for λ = 2, k = 8 and n = 20 over R420 . The
markers indicate the estimated probabilities of not fulfilling the product condition
(S: Prod), the syndrome condition (S: Synd), the intersection condition (S: Inter)
and the decoding failure rate (S: Dec). The derived bounds on these probabilities
are shown as lines.
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