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Abstract—Determining entropy rates of stochastic processes is
a fundamental but difficult problem, with closed-form solutions
known only for specific cases. This paper pushes the state-of-the-
art by solving the problem for Hidden Markov Models (HMMs)
and Renyi entropies. While computation of Renyi entropy for
Markov chains reduces to studying the growth of a simple matrix
product, computations for HMMs involve products of random
matrices. As a result, this case is much harder and no explicit
formulas have been known so far.

In the finite-sample regime we circumvent this issue for Renyi
entropy of integer orders, reducing the problem again to single
matrix products where the matrix is built from transition and
emission probabilities by means of tensor products. To obtain
results in the asymptotic setting, we use a novel technique for
determining the growth of non-negative matrix powers. The
classical approach – Frobenius-Perron theory – requires positivity
assumptions; we instead work directly with the spectral formula.
As a consequence, our results do not suffer from limitations such
as irreducibility and aperiodicity. This improves our understand-
ing of the entropy rate even for standard (unhidden) chains.

A recently published side-channel attack against RSA was
proven effective using our result.

I. INTRODUCTION

A. Renyi Entropy of Stochastic Processes
The notion of Renyi entropy, introduced by Renyi in [28]

as an extension of Shannon entropy, finds a number of appli-
cations across many disciplines including coding theory [7],
unsupervised learning [13, 32], anomaly detection [17],
multiple source adaptation [21], image processing [19, 23,
29], password guessing [2, 8, 25], randomness extraction [5,
11], testing random number generators [16, 30], quantifying
neural activity [24], or economy and finance [9, 14]. In the
finite sample regime, one defines the α-th order Renyi entropy
of a random variable Z over a finite alphabet Z as

Hα(Z) =
1

1− α log
∑
z∈Z

PZ(z)
α

whereas, for a stochastic source Z = {Zi}∞i=1 the quantity
of interest is the entropy per output symbol in a finite-length
realization Zn1 = Z1, . . . , Zn and its limit

Hα(Z) = lim
n→∞

Hα(Z
n
1 )

n
,

called the entropy rate. Finding explicit formulas for entropy
rates or finite realizations for general sources is intractable, and
it remains non-trivial even for restricted classes of sources. So
far, the most general sources with known entropy formulas are
Markov chains, with the asymptotic analysis given in [26] and
the finite-length regimes studied recently in [15]. We focus on
Hidden Markov Models, which are Markov chains observed

through a noisy, memoryless channel. While the study of Renyi
entropy is justified on its own right, investigating HMM is
particularly important because they are very powerful models
for sequential data, as seen in natural language processing or
in bioinformatics.

B. Summary of Our Results and Related Works

Due to space contraints we were not able to accom-
modate all the proofs; they appear in the full version
(available on arxiv).

We show how to explicitly compute the Renyi entropy of
HMMs over finite alphabets in both finite-length and asymptotic
regimes. This problem has been open so far; Wu et al. [31]
discuss some convergence properties with no explicit formulas
and under further restrictions.

For Shannon entropy the problem has been found hard
and solvable only for specific cases, being related to the
intractable task of finding top Lapunov exponents [12] in
random matrix products. We find that calculating the Renyi
entropy in finite-length regimes can be reduced to powering
of explicit substochastic matrices; in the asymptotic regime
powers can be approximated by spectral analysis which yields
formulas on entropy rates.

To set up the right level of expectations, we note that
the IID case and Markov chains are easy to handle due to
factorization [26] but finite-sample probabilities of HMMs do
not factorize into deterministic matrix products 1. Nonetheless,
we show that collision probabilities can be computed using
tensor products of an explicit auxiliary matrix.

While this part assumes the the entropy order is an integer
bigger than 1, it is a mild limitation. Firstly, most of applications
of Renyi entropy use integer orders and, in fact, integer orders
are preffered for algorithmic efficiency [1]. Secondly and more
importantly, Renyi entropy obeys powerfull interpolation prop-
erties when its smoothed version is used [27]; by perturbing
the distribution by a negligible mass of one makes all Renyi
entropies of order bigger or equal than 2 close by a constant2

(no matter the alphabet size), so that asymptotically all rates
are close (by o(1) with a large number of samples).

Interestingly, in the “spectral analysis” part, we remove pos-
itivity assumptions used before [12, 15, 26, 31] for computing
entropy rates; the key ingredient is an elegant general lemma

1In HMMs factorization depends on randomness of emission probabilities.
2Perturbing ε fraction of the mass yields the gap of at most log(1/ε) bits.



on the growth of matrix products. Table I gives a summary of
our results compared to related literature.

TABLE I: Formulas on entropy of stochastic processes.

Authors Model Entropy Technique Model Limitations

[15, 26] Markov Renyi matrix powering positivity assumptions

[12] HMM (binary) Shannon random matrix products positivity assumptions

[31] HMM Renyi Markov-approximations positivity assumptions
no explicit formula

this paper HMM Renyi tensoring + matrix powering
new lemma on matrix products none

C. Our Result and Techniques
Evaluation of Renyi entropy of a process Z = {Zi}∞i=1 over

an alphabet Z reduces to the collision probability

CPα(Z
n
1 ) =

∑
zn1 ∈Zn

p(zn1 )
α. (1)

If Z is a Markov chain, then we can factorize p(zn1 ) =
p(zi) ·

∏n
i=2 p(zi|zi−1) which can be computed as a product of

one matrix because p(zi|zi−1) = M(zi; zi−1), where M is the
state transition matrix, does not depend on i. Thus (1) depends
on matrix products of the α-entrywise power of M , denoted
by M�α. Matrix powers, under extra positivity assumptions,
can be approximated using Perron-Frobenius theory [20]. It
follows that the asymptotic behavior is controlled by the biggest
eigenvalue ρ of M�α. In particular for large n we have [26]

CPα(Zn1 ) = Θ(1) · ρ(M�α)n (2)
Hα(Zn1 )

n
=

1 + o(1)

1− α
log ρ(M�α), n→∞. (3)

For Hidden Markov Models, which are observations of some
Markov process {Xi}∞i=1, this approach fails. This is because
the factorization p(zn1 )α = p(z1)α ·

∏n
i=2 p(zi|zi−1)α boils

down to random matrix products, as the transition from zi−1 to
zi depends the hidden states xi−1, xi which changes following a
random process. The theory of asymptotic properties of random
matrix products is not only fairly involved but so far insufficient
for the problem at hand. We have explicit results for products of
stochastic matrices [3]; however our matrices p(zi|zi−1)α are
sub-stochastic because of the α-power. A tempting alternative
might be the standard factorization conditioned on hidden states
p(zn1 ) = p(z1, x1) ·

∑
xn1

∏n
i=2 p(zi|xi)p(xi|xi−1). However,

while it can be computed recursively by dynamic programming,
it does not reduce to matrix multiplication when raised to the
power α (as opposed to the previous case).

From now, we assume that Zi is a hidden Markov process
with the underlying Markov chain Xi, both on finite alphabets.

1) Closed Formulas for Renyi Entropies of HMMs: To avoid
random matrix products or recurrences with no explicit solution,
we change the approach and observe that, in case of integer
α, we can see (1) as the probability that α independent finite
length realizations collide. Thus, we are interested in the event

En =
{
∀i = 1, . . . , n : Z

(1)
i = Z

(2)
i = . . . = Z

(α)
i

}
where Z(1), . . . , Z(α) are independent copies of Z. The
probability of this event can be evaluated recursively by
dynamic programming, conditioned on hidden states. More
precisely, denote for shortness the tuples of random variables

M = MX,Z

transition matrix
X,Z together are Markov!

M = M⊗α

tensored transition matrix
α independent chains

M = M⊗αC

restricted tensored matrix
rows and columns satisfy (5)

PT(X1,Z1)⊗α

(
M⊗αC

)n−1
1

collision probabilities in Equation (6)
a) iterate restricted tensored matrix
b) multiply by the initial dist.
c) multiply by the vector of ones

Fig. 1: Our framework for computing integer-order Renyi entropies.

X ′i =
(
X

(1)
i , . . . , X

(α)
i

)
and Z ′i =

(
Z

(1)
i , . . . , Z

(α)
i

)
. The

probability of going from Z
(j)
i = z

(j)
i to Z

(j)
i+1 = z

(j)
i+1 is

fully explained by the hidden states x(j)i and x(j)i+1. Namely

Pr[En] =
∑

(x′i,z
′
i)∈C

PX′i,Z′i|X′i−1,Z
′
i−1

(
x′i, z

′
i|x′i−1, z′i−1

)
(4)

summation over tuples x′i, z
′
i satisfying collision restrictions

C = {x1, z1 . . . xα, zα ∈ (X × Z)α : z1 = . . . = zα}. (5)

Each distribution PX′i+1,Z
′
i+1|X′i,Z′i in Equation (4) is given by

a fixed matrix, namely the transition matrix of the process
{X ′i, Z ′i}i which is Markov (once we have revealed hidden
states, the proof is simple and appears in the full version).
Denoting the transition matrix of {Xi, Zi}i by M , we can
find the matrix of {X ′i, Z ′i}i as the α-fold Kronecker tensor
product of M , denoted by M⊗α, which is a matrix with rows
and columns in the α-fold Cartesian product of X × Z; we
call it the tensored matrix of M . Let M⊗αC be its submatrix
restricted to rows and columns satisfying the restriction C in
Equation (5), referred to as the restricted tensored matrix, and
let
(
PX′1,Z′1

)
C be the restriction of the probability vector of

X ′, Z ′ to indices from C.
Equation (4) is then expressed in the following compact form

(multiplications are understood as matrix/vector multiplications)

Theorem 1 (Renyi entropy in finite-length regimes). Renyi
entropy of finite-length realizations of Z can be computed with
powers of the restricted tensored product of M as follows

Hα(Zn1 ) =
1

1− α
log
((
PX′1,Z′1

)T
C ·
(
M⊗αC

)n−1 · 1) (6)

See Section III-A for the proof.

Remark 1 (Explicitly computing the base matrix). The matrix
M can be computed from emission and transition probabilities,
respectively p(zi|xi) and p(xi|xi−1).

Figure 1 illustrates how to compute explicit entropies.
2) Explicit Renyi Entropy Rates for HMMs Without Positivity:

To approximate the iterated powers of non-negative matrices in
(6) we can use classical Perron-Frobenius theory. A drawback is,
however, that this requires positivity assumptions on the matrix
– for example, that it has a strictly positive power. Phrased
in terms of the stochastic process, this means that results
would suffer from being only applicable to to matrices with
irreducible and aperiodic supporting graphs. In principle, one
can decompose the matrix into components obeying positivity
assumptions (for example the canonical decomposition into
irreducible parts), and apply the Perron-Frobenius theory
separately. However, handling periodicity or even merging
results from individual components is not immediate. One such
counter-intuitive case is discussed in Section I-D2.



We give an elegant solution to a more general problem –
the growth of certain pseudonorms of matrix powers. Namely,
for any non-negative matrix A and a non-negative vector u we
determine the rate of growth of uT ·An · 1 with n (which in
particular fits Equation (6)). The mapping B → uT · |B| · 1,
where |B| is the element-wise application of the absolute value,
is a weighted sum of absolute elements in B with non-negative
coefficients and thus a pseudonorm. Our problem reduces to
estimating how powers of A grow under this pseudonorm,
which we handle by using the spectral formula. This result,
stated later in Lemma 1 and of independent interest, allows us
to compute the rate of any hidden Markov process.

Theorem 2 (Renyi entropy rates). Let ρi for i ∈ I be the
spectral radius of matrices corresponding to the irreducible
components of M⊗αC . Then the entropy rate is given by

Hα(Z) =
1

1− α log
(
max
i∈I+

ρi
)

where the set I+ of “reachable” components is defined as
all components that can be reached in the associated graph of
the matrix M⊗αC from tuples in C having positive probability
under the initial distribution PX′1,Z′1 .

See Section III-B for the proof.

Remark 2 (Positivity assumptions removed). Note that the
result depends on the initial distribution and the dominant
eigenvalue, but the matrix can be arbitrary.

Remark 3 (Note on computational aspects). For bounded α
evaluating the rate is polynomial in the alphabet size; moreover
the matrix size can be drastically reduced by constraints (e.g.
for deterministic leakages or no hidden states). One might
further use sparsity and entropy interpolation. These aspects
are beyond the scope of this paper.

3) Key Lemma: Growth of Non-negative Matrix Powers: Be-
low we abstract our main technical ingredient: the lemma giving
the growth rate of matrix powers under certain “pseudonorms”.
Since more limited results of this form have found applications
in theory of random matrices [3] and previous works on entropy
of HMMs [12, 26] we believe it to be of independent interest.

Lemma 1 (Weighted element sum of matrix powers). Let A be
a non-negative matrix of size m×m and u be a non-negative
vector of length m. Let I+ contain all i ∈ {1, . . . ,m} with

uT
∞∑
k=0

Akei > 0. (7)

If A+ is the submatrix of A with rows and columns I+ then

lim
n→∞

(
uTAn1

) 1
n = ρ(A+). (8)

Remark 4 (Simplification by the associated graph and ir-
reducible decomposition). The description of A+ can be
simplified slightly by using the associated graph and the
irreducible components. See the proof of Theorem 2 for details.

The proof, which appears in the full version, combines the
canonical decomposition, sandwiching argument and Gelfand’s

1

2 3

0.9

0.1

0.4

0.6

0.6

0.4

(a) The original markov chain.

1 1

1 22 1

2 2

2 33 2

3 3

1 33 1

(b) The second tensor. Colliding states
C are highlighted.

Fig. 2: A three state hidden markov chain, the color is observable.

formula. A very special case when A is irreducible and u is
positive follows from [22], and the case of any matrix A and
positive u appears in [3]. Our result for non-negative weights
is more general.

D. Examples and Applications
1) Example: Tensoring and Restricting Step by Step:

Consider the Markov chain X in Figure 2. Its hidden states
are {1, 2, 3}, of which the observer cannot distinguish state 1
and 3, as indicated by color. Let the starting distribution X1

be 1
3 on every state and the transition matrix

M =

0.9 0.1 0
0 0.4 0.6
0 0.6 0.4

 .
To calculate its collision entropy, we take the second tensor,

and obtain the graph on the right of the picture. Intuitively, this
models two independent copies of X . The transition matrix on
the states {11, 12, 13, 21, 22, 23, 31, 32, 33} is

M
⊗2

=



0.81 0.09 0.09 0.01
0.36 0.54 0.04 0.06
0.54 0.36 0.06 0.04

0.36 0.04 0.54 0.06
0.16 0.24 0.24 0.36
0.24 0.16 0.36 0.24

0.54 0.06 0.36 0.04
0.24 0.36 0.16 0.24
0.36 0.24 0.24 0.16


.

But not all of these states are in C = {11, 13, 31, 33, 22}, so
we consider the restriction to C

M
⊗2
C =


0.81 0.01

0.36 0.06
0.16 0.36
0.06 0.36
0.36 0.16

 .

The intuition here is that we only care about executions where
the observed behaviors of the two independent copies of X
are indistinguishable.

To investigate the asymptotic behavior, we find that largest
eigenvalues of two irreducible components are ρ1 = 0.52 and
ρ2 = 0.81. Intuitively, the eigenvectors e1 = (0, 0, 1, 0, 1) and
e2 = (0.96666, 0, 0.02145, 0, 0.01188) describe a distribution
that is stationary under the condition that we continue to
observe the same output; the eigenvalue is the probability
of continued collision. Since ρ2 is the larger of the two, it is
the asymptotically relevant, and according to Theorem 3 we
have H2(X) = − log(ρ2) = 0.304.

2) Example: (Lack of) Relation to Stationary Distribution
and Recurrent States: Consider again the transition matrix M
from the previous example, with all states being visible (Z =
X). The Markov chain converges to a stationary distribution
where state 1 has probability zero. This state is not recurrent:
with probability 1, the chain hits it only a finite number of
times because

∑
kM

k
11 <∞ (test for recurrent states).

Intuitively, such a state should be negligible in the asymptotic
entropy analysis. However the opposite happens: for Renyi
entropy of order α = 2 and any finite length n the first state



contributes most to the matrix powering (0.81n as opposed to
λn where |λ| < 0.81 contributed by the component formed by
the second and third state). Thus in the asymptotic setting the
entropy depends only on the first state.

Corollary 1. Renyi entropy rate is not a function of the
stationary distribution. It depends even on non-recurrent states.

3) Noiseless Observations: We consider the hidden Markov
model where the state chain is observed through noiseless
measurements. More precisely, for a deterministic mapping
T : X → Z the observed (hidden) chain Zi is given by
mapping the base Markov chain: Zi = T (Xi). While this is
less general than our result in Theorem 2, this particular case
leads to a very sparse tensored matrix and simpler formula for
the entropy rate (independent on the dimension of Z).

Theorem 3 (More compact formula for noisyless case). Let
Xi be as above with the transition matrix M . Let M⊗αC be the
α-fold Kronecker tensor product of M restricted to the tuples
of indices s = (s1, . . . , sα) such that T (s1) = T (s2) = . . . =
T (sα). Then for any integer α > 1:
• the entropy rate of Zi under Renyi entropy of order α is

given by Theorem 2 applied to M⊗αC as above and the
initial distribution being PX⊗α1

(α-fold product of X1).
• if M is irreducible and aperiodic, the entropy rate is

Hα({Zi}i) =
1

α− 1
· ρ(M⊗αC )

where ρ(·) denotes the spectral radius.

The proof appears in the full version.
4) Modeling Side Channel Leakage: The motivation and

first application for this work was the theoretical analysis of a
side-channel attack against RSA encryption [6]. By observing
memory access timing, the attacker gains knowledge about
the instructions the victim’s encryption program is executing.
In this particular case, while the victim performs the modular
exponentiation necessary for encryption using a sliding-window
square-and-multiply algorithm, the attacker learns the sequence
of squares and multiplies performed.

The attacker tries to recover the secret key using an
established search-and-prune technique [10], which is practical
if the size of this search tree is linear in the size of the secret
key. The contribution of [6] was a more aggressive pruning
strategy which, empirically, made attacks against 2048 bit RSA
feasible. But why was this attack so effective?

It turns out that the formula that bounds the size of the search
tree from above depends directly on the collision entropy of
the stochastic process that models the leaked observations
(assuming a random and uniformly distributed key). This make
intuitive sense, as the tree is pruned if two independent copies
of this process (the real one and the guessed one) no longer
collide. Concretely, the tree size is linear in the key size if
the entropy rate is H > 0.5. By modelling the states of the
square-and-multiply algorithm as a Markov chain, and modeling
the observation as a HMM, we can apply Theorem 3 of the
present paper, obtain H = 0.545 and thus gain a rigorous
understanding of why this attacks works so well.

5) Entropy Rates for Finite Markov Chains: If T in
Theorem 3 is a one-to-one mapping, and Xi is aperiodic and
irreducible, then the rate equals 1

1−α log ρ(M�α) where M�α

is the α-fold Hadamard product. This reproves the formula for
Markov chains with no hidden states [26]. Illustrative example
and details appear in the full version.

In fact, the more general part of Theorem 3 holds with
no positivity (aperiodicity and irreducibility) assumptions.
Moreover, although it uses the assumption that α is integer,
for this case we can use directly Lemma 1 in the analysis [26],
instead of Perron-Frobenius theory. We thus extend the classical
result to possibly periodic and reducible Markov chains

Corollary 2 (Renyi entropy for any Markov chain). Let α 6= 1
be a positive real number. Let Zi be a finite-alphabet Markov
chain and M its transition matrix. Let ρi for i ∈ I be the
spectral radius of all irreducible components of M�α. Then
the entropy rate is given by

Hα(Z) =
1

1− α log
(
max
i∈I+

ρi
)

where the maximum is over all ’positive’ components I+ that
are assigned positive mass under the initial distribution X1.

6) Binary Markov chains and Bernoulli Noise: If the chain
outcomes are flipped with probability ε by a noisy channel,
the rate (for order α > 1) changes by an O(ε) term. The
exact expression up to O(ε2) has been studied in [12]. We
provide an alternative characterization of the entropy rate, as
the root of an explicit polynomial of degree 8. In particular,
for any ε we can compute the exact value numerically, without
asymptotic expressions. Here we assume that the transition
matrix is positive, to apply perturbation theory. The detailed
discussion appears in the full version

E. Algebraic Equations for the Entropy Rate

Our results imply that the Renyi entropy rate of integer order
α > 1 is characterized by an algebraic equation.

Corollary 3. The Renyi entropy rate of integer order α > 1 of
a hidden Markov process (the base chain over a finite alphabet)
is the absolute value of a root of an explicit polynomial.

This is interesting when compared to the Shannon entropy
rate, which can be characterized by a more complicated
functional equation [18]. We can thus derive exact expansions,
approximations or study perturbations (e.g. due to noise ).

F. Evaluating Security of True Random Number Generators

As per modern paradigms in the design of harwadre random
number generators [4], the security is evaluated by developing
a model for the stochastic source and evaluating the entropy
in the outcome. An appealing model for the raw source is a
Markov chai [4]. however as the output gets post-processed
(condensers or extractors that increase the entropy rate of a raw
source) we technically work with hidden chains. In this context
our result may be used to explicitly determine the entropy rate.



II. PRELIMINARIES AND NOTATIONAL CONVENTIONS

For a process Z = Z1, Z2, . . . we define the finite realization
of length n as Zn1 = Z1, . . . , Zn. To simplify the notation, we
use the standard convention that probabilities involving events
of the form Ai = ai, Bi = bi are written with capital symbols
omitted, that is P (Ai = ai) = p(ai), P (Ai = ai|Bi = bi) =
p(ai|bi) and so on. We identify the probability distribution
of a random variable S with values in (finite) S with the
vector with coordinates indexed by S. For any vector µ or
matrix A indexed by S , by µS′ respectively AS′ we understand
restrictions to indices from S ′ where S ′ ⊆ S. Single vectors
are understood as columns; yT denotes the transposition of a
vector or matrix y. All logarithms are taken at base 2.

Definition 1 (Associated graph of a matrix). For a non-negative
matrix A its associated graph is the directed graph with all
matrix indices 1, . . . ,m as nodes, and edges i→ j iff Ai,j > 0.

Definition 2 (Renyi Entropy [28]). The Renyi entropy of order
α of a discrete random variable Z is defined as

Hα(Z) =
1

1− α log
∑
z

PZ(z)
α

The limit α = 1 is Shannon entropy
H1(Z) = −

∑
z PZ(z) logPZ(z) and min-entropy

H∞(Z) = minz log(1/PZ(z)).

Definition 3 (Entropy Rate). The Renyi entropy rate of order
α of a discrete process Z = {Zi}i>1 is defined as

Hα(Z) = lim
n→∞

1

n
Hα(Z1, . . . , Zn)

Definition 4 (Kronnecker Tensor Product). The Kronecker
product of two square matrices A,B over X ×X , is a matrix
A⊗B = C with entries C((i, j), (i′, j′)) = A(i, j) ·B(i′, j′).

The α-fold tensor product of a matrix A is denoted by Aα.
Sometimes for shortness we will also denote by PY ⊗α the joint
distribution of α-independent copies of a distribution PY .

Definition 5 (Hidden Markov Model). The hidden Markov
model consists of the base (hidden) chain Xi and observations
Zi, for i = 1, 2, . . . such that

1) PXi|Xi−1,...,X1
= PXi|Xi−1

(Markov assumption)
2) PZi|X1,Z1...XT ,ZT = PZi|Xi (Output independence)

and the transition PXi|Xi−1
and emission PZi|Xi probabilities

do not change with time i.

III. MAIN RESULTS

A. Proof of Theorem 1
Proof. For convenience, we assume that the processes X and
Z are indexed starting from i = 0. For every z ∈ Z we have

PZn(z)
α = p(z0)

α
n∏
i=1

p(zi|zi−1)
α

=

( ∑
x0,...,xn

p(z0, x0)

n∏
i=1

p(zi, xi|zi−1, xi−1)

)α
.

Defining, as in Equation (5), the set of colliding states

C = {(x1, z1, . . . , x(α), z(α)) ∈ (X × Z)α : z(1) = . . . = z(α)}

we can write p =
∑
z PZn(z)α as

p =
∑

(xi,zi)∈C

n∏
i=1

α∏
j=1

p(z
(j)
i , x

(j)
i |z

(j)
i−1, x

(j)
i−1)

α∏
j=1

p(z
(j)
0 , x

(j)
0 )

where xi = (x
(1)
i , . . . , x

(α)
i ), zi = (z

(1)
i , . . . , z

(α)
i ), and for

brevity we use the isomorphism (X × Z)α ∼= Xα ×Zα

(x
(1)
i , z

(1)
i , . . . , x

(α)
i , z

(α)
i ) ∼= ((x

(1)
i , . . . , x

(α)
i ), (z

(1)
i , . . . , z

(α)
i )) = (xi, zi).

This can be further simplified: let M⊗αC be the α-fold tensor
product of the matrix M = p((z, x)|(z′, x′)) restricted to C, µ
be the vector with elements

∏α
j=1 p(x

j
0, z

j
0) over all choices

x0, z0 ∈ C, and 1 be the vector of ones indexed by C. Then∑
z

PZn(z)
α = µT ·

(
M⊗αC

)n · 1
which, together with Definition 2, implies Equation (6) (there

we go back to the original numeration starting from i = 1).

B. Proof of Theorem 2
Proof. By Theorem 1 we obtain

lim
n→∞

Hα(Z
n
1 )

n
=

1

1− α log

(
lim
n→∞

((
PX′1,Z′1

)T
C
·
(
M⊗αC

)n−1 · 1
)1/n

)
The result will follow now from Lemma 1 applied with A =
M⊗αC , once we prove the following about “positive indices”.

Claim 1. Let A be a non-negative matrix and u be a
non-negative vector. Let I1, . . . , Id be the subsets of indices
corresponding to d irreducible classes in the canonical decom-
position of A. Then

∑
k uA

kei > 0 if and only if the associated
graph of A connects i with some j such that uj > 0 (in a
finite number of steps).

Proof of Claim. This follows immediately from the properties
of the adjacency matrix, namely Aki,j > 0 if there is a path
from i to j of length k.

Translated to the setting of Theorem 2, the claim implies
that we consider only irreducible components reachable from
points with positive measure under (PX′1,Z′1)C (these points
are tuples in C with positive initial probaiblity PX′1,Z′1 ).

IV. CONCLUSION

We have analytically omputed Renyi entropies of hidden
Markov processes, when the entropy order is an integer
bigger than 1. The main technical contribution is a result
on pseudonorms of iterated matrices, that allow us (for the
first time) to get rid of positivity assumptions. Some problems
we leave for future work are:
• Analytical tractability of rates for non-integer α?
• Rates of smooth Renyi entropy?
• Seed of the convergence towards the entropy rate.
• Use of perturbation theory to handle small leakages.
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