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Abstract—Guo, Kopparty and Sudan have initiated the study of
error-correcting codes derived by lifting of affine-invariant codes.
Lifted Reed-Solomon (RS) codes are defined as the evaluation of
polynomials in a vector space over a field by requiring their
restriction to every line in the space to be a codeword of the RS
code. In this paper, we investigate lifted RS codes and discuss
their application to batch codes, a notion introduced in the
context of private information retrieval and load-balancing in
distributed storage systems. First, we improve the estimate of
the code rate of lifted RS codes for lifting parameter m ≥ 3
and large field size. Second, a new explicit construction of batch
codes utilizing lifted RS codes is proposed. For some parameter
regimes, our codes have a better trade-off between parameters
than previously known batch codes.

Index Terms—Lifting, batch codes, Reed-Solomon codes, dis-
tributed storage systems, disjoint recovering sets

I. INTRODUCTION

Modern distributed storage systems are commonly set up

to provide a large number of users access to the data, where

each user is free to request any file stored in the system. To

avoid delays and bottlenecks in data delivery, it is desirable for

the system being able to serve each set of requested files by

distributing the load, i.e., the task of transmitting some of its

stored data to the user, among the servers in the system. While

replicating all files on each servers allows for a trivial manner

of balancing this load, it entails a large storage overhead.

On the other hand, the use of classical erasure codes, such

as Reed-Solomon (RS) codes, can minimize this overhead,

but generally doesn’t provide an efficient method of load

balancing. Batch codes are a class of codes which aim to

bridge this gap.

A. Related work

Batch codes were originally motivated by different appli-

cations such as load-balancing in storage and cryptographic

protocols [1]. Several explicit and non-explicit constructions
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of these codes have been proposed, employing methods based

on generalizations of Reed-Muller (RM) codes [1], [2], unbal-

anced expanders [1], graph theory [3], array and multiplicity

codes [4], and finite geometries [5]. In this work, we consider a

special notion of batch codes, namely primitive multiset batch

codes (for a more general study on the different notions of

batch codes the reader is referred to [6]).

Informally, a primitive multiset k-batch code (in what

follows, we simply write a k-batch code to refer to this class

of codes) of length N and dimension n allows for the recovery

of any set of k message symbols, possibly with repetition, in k
disjoint ways, i.e., for any k-tuple (batch) of message symbols

xi1 , ..., xik with i1, ..., ik ∈ [n] there exist k non-intersecting

sets R1, ..., Rk ⊂ [N ] such that the message symbol xij can

be recovered from the codeword symbols indexed by the set

Rj . For large k = Ω(n), batch codes are closely related to

constant-query locally correctable codes and it is known [7],

[8] that their rate approaches zero. On the other hand, when

k = O(1) is fixed, there exist explicit code constructions with

the code rate very close to one [9].

Because of the above motivation, we classify batch codes

by the required redundancy r(n, k) := N−n. In this paper, we

will be concerned with the regime of sublinear k, i.e., k = nε

with n→∞ and 0 ≤ ε ≤ 1. We write ε− if a statement holds

for any ε∗ with 0 ≤ ε∗ < ε. Several achievability results, i.e.,

upper bounds on the smallest achievable r(n, k), have been

shown. We summarize the results that provide the smallest

r(n, nε) for the binary batch codes and some ε:

[2] r(n, nε−) = O(nlog4(3)+(2−log2(3))ε) for 0 < ε < 1
2 ,

[4] r(n, nε−) = O(ng(ε)) for 0 ≤ ε ≤ 1, where

g(ε) := min
b∈N:b> 2

1−ε

[

1− b(1− ε)− 2

4b(b− 1)

]

,

[5] r(n, nε−) = O(n
3ε+1

2 ) for 0 < ε < 1/3.

On the other hand, the only non-trivial converse bound on

the redundancy, yielding that r(n, 3) = Ω(
√
n), was obtained

independently in [10] and [11] for linear private information

retrieval codes and for codes with the disjoint repair group

property, concepts closely related to batch codes.

http://arxiv.org/abs/2001.11981v2
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Fig. 1: Comparison of parameters of binary batch codes based on
m-variate lifts of the RS code for different values of m with the
upper bounds on the minimal redundancy of [2], [4], [5].

B. Our approach

The main technique in this work is lifting of codes, which

was first studied in [13] in the context of LDPC codes and

later employed to design locally correctable codes [12], [14]

and codes with the disjoint repair group property [15], [16].

Specifically, we construct batch codes from Reed-Solomon

codes by lifting them to a higher dimension, while requiring

the restriction of each codeword to a line to be a codeword of

the RS code. This is shown [12] to be equivalent to generating

a code by evaluating the polynomials in a vector space F
m
q

from the linear span of all m-variate monomials, such that,

when restricted to a line in the space, the resulting univariate

polynomial is of degree at most d < q−1. An m-variate Reed-

Muller (RM) code of order d over a field Fq restricts the degree

of the multivariate polynomials to be at most d and thereby

naturally provides this property. However, this causes the rate

of the RM code to be very small. Lifted RS codes include not

only the multivariate monomials of low degree, as RM codes

do, but all polynomials which fulfill the required property. This

gives a construction of codes with locality properties similar

to RM codes, but of significantly higher rate.

C. Outline

The remainder of the paper is organized as follows. In

Section II, we give rigorous definitions of lifted RS codes

and batch codes and introduce several auxiliary notations. The

rate of lifted RS codes can be determined by computing the

fraction of so-called good monomials, for which we will derive

tight asymptotic formulas in Section III and, thus, improve the

result from [12]. In Section IV, we show that a lifted RS code

is also an appropriate batch code, which gives us the best

known upper bounds on the required redundancy r(n, k) for

k = nε with 0.4 < ε < 0.6483. We illustrate the trade-off

between parameters of batch codes in Figure 1. Finally, we

conclude with open problems in Section V.

II. PRELIMINARIES

We start by introducing some notation that is used through-

out the paper. Let [n] be the set of integers from 1 to n.

A vector is denoted by bold lowercase letters such as d.

Let q = 2ℓ and Fq be a field of size q. We write log x to

denote the logarithm of x in base two. By Z≥ and Zn denote

the set of non-negative integers and the set of integers from

0 to n − 1, respectively. In what follows, we fix m to be

a positive integer representing the number of variables. For

d = (d1, . . . , dm) ∈ Z
m
q and X = (X1, . . . , Xm), let Xd

denote the monomial
∏

m
i=1X

di

i from Fq[X]. Let deg(d) be

the sum of components of d ∈ Z
n
≥ and |d| be the number of

non-zero components of d.

Let us define a partial order relation on Zq . We write a ≤2 b

if a and b can be represented by a =
∑ℓ−1

i=0 a
(i)2i and b =

∑ℓ−1
i=0 b

(i)2i with a(i), b(i) ∈ {0, 1} and a(i) ≤ b(i) for all

i ∈ {0, . . . , ℓ − 1}. We denote a = (a(ℓ−1), ..., a(0))2. For

vectors d,p ∈ Z
m
q , we write d ≤2 p if di ≤2 pi for all

i ∈ [m].
Define an operation (mod∗ q) that takes a non-negative

integer and maps it to the element from Zq as follows

a (mod∗ q) :=

{

0, if a = 0,

b ∈ [q − 1], if a 6= 0, a = b (mod q − 1).

It can be readily seen that if a (mod∗q) = b, then T a =
T b (mod T q − T ) in Fq[T ].

For a function f : Fm
q → Fq and a set S ⊂ F

m
q let f |S

denote the restriction of f to the domain S. Abbreviate the

set of all lines in F
m
q by

Lm :=
{

(aT + b)|T∈Fq
for a,b ∈ F

m
q

}

.

We note that a multivariate polynomial restricted to a line is

an univariate polynomial and the degree of the latter does not

depend on the parameterization of the line.

For a positive integer d < q, denote the set of univariate

polynomials of degree less than d by

Fd,q := {f(T ) ∈ Fq[T ] : deg(f) < d}.

A. Lifted Reed-Solomon codes

Let us recall the definition of lifted Reed-Solomon codes

introduced in [12] in a more general form.

Definition 1 (Lifted Reed-Solomon code, [12]). For an integer

m ≥ 1, the m-dimensional lift of the Reed-Solomon code (or

the [m, d, q]-lifted-RS code) is the code
{

(f(a))|a∈Fm
q
:

f(X) ∈ Fq[X] such that

∀L ∈ Lm : f |L ∈ Fd,q

}

.

Remark. Note that the one-dimensional lift of a Reed-Solomon

code represents the ordinary Reed-Solomon code of length q
and dimension d. Also, we observe that the [m, d, q]-lifted-RS

code include all codewords of the m-variate RM code of order

d− 1 over Fq .

Example. Let f(X1, X2) = X2
1X

2
2 . Then the [2, 3, 4]-lifted-

RS code includes the codeword c = (f(a1, a2))|(a1,a2)∈F2
4

as

for every line L, the degree of f |L is at most 2 < 3 = d.



Indeed, given a line L parameterized as (α1T + β1, α2T +
β2)|T∈F4

in F
2
4, we have

f |L = f(α1T + β1, α2T + β2) = (α1T + β1)
2(α2T + β2)

2

(i)
= (α2

1T
2 + β2

1)(α
2
2T

2 + β2
2)

(ii)
= (α2

1β
2
2 + α2

2β
2
1)T

2 + α2
1α

2
2T + β2

1β
2
2 ,

where in (i) we used the property 2α = 0 for any α ∈ F4,

and (ii) is implied by the fact that T 4 = T in F4[T ]. On the

other hand, the 2-variate RM code of order 3 doesn’t contain

c as the degree of f is 4, which is larger than 3.

As shown in the example above, the characteristic of the

field Fq can provide a gain in the number of good polynomials

when compared with the RM code.

Definition 2 (d∗-bad and good monomials). Given a positive

integer d < q, we say that a monomial Xd with d ∈ Z
m
q is

d∗-bad over Fq[X] if there exists at least one i ∈ Z
m
q such

that i ≤2 d and deg(i) (mod∗ q) ∈ {d, d+ 1, . . . , q − 1}. A

monomial is said to be d∗-good if it is not d∗-bad.

A characterization of lifting was established in [12]. We

make use of this result for lifted Reed-Solomon codes.

Lemma 1 (Follows from [12, Section 2]). The [m, q, d]-
lifted-RS code is equivalently defined as the evaluation of

polynomials from the linear span of d∗-good monomials over

Fq[X].

We do not include the proof of this lemma here but some

elaboration on the connection between lifted-RS codes and d∗-

good monomials is given in the Appendix. Lemma 1 suggests a

way to compute the dimension of the [m, q, d]-lifted-RS code,

namely one needs to estimate the size of the set of d∗-good m-

variate monomials over Fq[X]. We carry out a careful analysis

on the latter in Section III.

B. Batch codes

We now proceed with a thorough definition of batch codes.

Definition 3 (Batch code, [1]). Let F : F
n
q → F

N
q be a map

that encodes a string x1, . . . , xn to y1, . . . , yN and C be the

image of F . The code C will be called a k-batch code if

for every multiset of symbols {xi1 , . . . , xik}, ij ∈ [n], there

exist k mutually disjoint sets R1, . . . , Rk ⊂ [N ] (referred to

as recovering sets) and functions g1, . . . , gk such that for all

y ∈ C and for all j ∈ [k], gj(y|Rj
) = xij , where y|R is the

projection of y onto coordinates indexed by R.

A one-way connection between lifted RS codes and batch

codes is shown in Section IV.

III. CODE RATE OF LIFTED RS CODES

In this section, we investigate the code dimension of lifted

RS codes. For this purpose, we first introduce the concept of

(q − r)-bad monomials (slightly different from (q − r)∗-bad

monomials) and derive an explicit evaluation formula to count

the number of such monomials when the parameter r ≤ m is

fixed and the field size q = 2ℓ is scaled. Second, we show

how to use the evaluation formula to derive a bound on the

number of (q − r)∗-bad monomials for arbitrary r ≤ q. Our

estimate improves upon the result presented in [12, Sections

3.2, 3.4] for m ≥ 3 and is consistent with the result for m = 3
provided in [16].

A. Computing the number of (q − r)-bad monomials

Let us introduce a terminology useful for establishing the

number of d∗-bad monomials. Let r ≤ min(m, q) be a fixed

positive integer.

Definition 4 ((q−r)-bad monomial). We say that a monomial

Xd with d ∈ Z
m
q is (q − r)-bad over Fq[X] if there exists

at least one i ∈ Z
m
q such that i ≤2 d and deg(i) (mod q) =

(q − r).

Remark. The difference with Definition 2 is, roughly speak-

ing, in the modulo operation, namely (mod q) is used in

Definition 4, whereas (mod q − 1) is used in Definition 2.

Let Sj(ℓ) denote the set of tuples d ∈ Z
m
q , q = 2ℓ, for

which there exists i ≤2 d with deg(i) = (q − r) + jq =
(2ℓ − r) + j2ℓ and sj(ℓ) be the cardinality of Sj(ℓ). We note

that Sj(ℓ) also depends on r, however, we omit this in our

notion as we fix r and scale only ℓ = log q. We provide an

evaluation formula that does not depend on r as well. Clearly,

sj(ℓ) = 0 for j ≥ m as the maximal deg(i) over admissible i

is m(q−1) which is smaller than (q−r)+mq. Therefore, we

aim to compute
∑m−1

i=0 si(ℓ) since the number of (q− r)-bad

monomials over Fq is bounded by this value from one side

and by s0(ℓ) from the other side.

Example. For q = 4, r = 1 and m = 2 the set S0(2) is

S0(2) = { (3,0), (2,1), (3,1), (1,2), (3,2), (0,3), (1,3), (2,3), (3,3) }
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

i : (3,0) (2,1) (3,0) (1,2) (3,0) (0,3) (1,2) (2,1) (3,0)
.

It is easy to check that for any d ∈ S0(2) and the correspond-

ing i it holds that i ≤2 d and deg(i) = (q − r) + jq = 3.

The cardinality of the set is s0(2) = |S0(2)| = 9. For these

parameters the only d with deg(d) ≥ q − r = 3 that is not

(q − r)-bad is d = (2, 2).

Let
(

b
≥a

)

denote the number of ways to choose an (un-

ordered) subset of at least a elements from a fixed set of b
elements. For a < 0 or a > b, we assume that

(

b
a

)

= 0.

Proposition 1. The system of recurrence relations




















s0(ℓ + 1)
s1(ℓ + 1)

...

sj(ℓ+ 1)
...

sm−1(ℓ+ 1)





















= Am





















s0(ℓ)
s1(ℓ)

...

sj(ℓ)
...

sm−1(ℓ)





















holds true, where the square m×m matrix Am is given by

Am :=



















(m

≥1) (m0 ) 0 0 ... 0

(m
≥3) (m2 ) (m1 ) (m0 ) ... 0

...
...

...
...

. . .
...

( m

≥2j+1) (m2j) ( m

2j−1) ( m

2j−2) ... ( m

2j−m+2)
...

...
...

...
. . .

...
( m
≥2m−1) (

m
2m−2) (

m
2m−3) (

m
2m−4) ... (mm)



















.



TABLE I: The largest eigenvalue λm of Am, the resulting conver-
gence rate m − log(λm) derived in this work, and the convergence
rate pm of [12] for different values of m.

m λm m− log(λm) pm
2 3.0000 4.1504 × 10−1 4.1504 × 10−1

3 7.2361 1.4479 × 10−1 1.1360 × 10−2

4 15.5436 4.1747 × 10−2 2.8233 × 10−3

5 31.7877 9.6043 × 10−3 4.6986 × 10−4

6 63.9217 1.7653 × 10−3 1.1742 × 10−4

7 127.9763 2.6714 × 10−4 2.9353 × 10−5

8 255.9939 3.4467 × 10−5 2.8664 × 10−8

9 511.9986 3.8959 × 10−6 2.6872 × 10−9

Remark. The proof of this technical statement can be found

in the Appendix. As a side note, this expression agrees with

similar formulas for m = 2 and m = 3 mentioned in [12]

and [16], respectively.

Definition 5 (Largest eigenvalue λm). Let Am be as in

Proposition 1 and Λ be the set of its eigenvalues. We define

λm to be the largest element from Λ.

It is well known that the eigenvalues of a matrix are upper

and lower bounded by the largest and smallest sum of its rows

or columns, respectively. It follows directly from the structure

of Am that 2m−1 ≤ λm ≤ 2m. For the readers convenience,

we provide λm and m− logλm for 2 ≤ m ≤ 9 in Table I.

Note that the order of sj(ℓ) is the maximum value in the

matrix Aℓ
m, the ℓth power of Am. The exponential growth

rate of the matrix powers Aℓ
m as ℓ → ∞ is controlled by

λℓ
m. Since all elements of Am−1

m are positive (except the mth

row which has all zeros but the last entry), the matrix Am

has only one eigenvalue of maximum modulus by Perron-

Frobenius theorem for non-negative matrices (e.g., see [17,

Theorem 8.5.2]). Finally, we obtain the following statement.

Corollary 1. For an integer r ≤ m, the number of (q−r)-bad

monomials is Θ(λℓ
m) = Θ(qlog λm) as q →∞.

B. Computing the number of (q − r)∗-bad monomials

Now let r ≤ q (the restriction r ≤ m is no longer necessary,

i.e., r could be very large). By Definition 2, a monomial Xd

is (q− r)∗-bad if there exists an i ∈ Z
m
q such that i ≤2 d and

deg(i) (mod∗ q) ∈ {q − r, q − r + 1, . . . , q − 1}. The latter

condition is equivalent to

deg(i) = q − r0 + (q − 1)j = (q − r0 − j) + qj

for some r0 ∈ [r] and j ∈ Zm. Let us drop the ⌈log(r +m)⌉
least significant bits in every component of d and i to obtain

some d′ and i′ from Z
m
q′ with q′ = 2ℓ

′

and ℓ′ = ℓ− ⌈log(r +
m)⌉. Then we have that i′ ≤2 d′ and

(q′ −m) + jq′ ≤ deg(i′) ≤ ⌊deg(i)/2ℓ−ℓ′⌋ ≤ (q′ − 1) + jq′.

Therefore, by Definition 4, we have that Xd
′

is (q′ − r′)-
bad over Fq′ [X] for some positive integer r′ ≤ m. By simple

counting arguments and Corollary 1, the following statement

is implied.

Corollary 2. For an integer r < q = 2ℓ, the number of (q −
r)∗-bad monomials is Θ(rm−log λmqlog λm) as ℓ→∞.

Proof of Corollary 2. The number of (q−r)∗-bad monomials

can be bounded by the number of (q′ − r′)-bad monomials

with r′ ≤ m multiplied by the number of ways to choose

m⌈log(r +m)⌉ bits. By Corollary 1, it can be estimated as

m2m(r +m)mO
(

q′
log λm

)

= O
(

rm−log λmqlog λm
)

,

where the factor m comes from the number of choices for the

parameter r′ ∈ [m] and 2m(r + m)m ≥ 2m⌈log(r+m)⌉ is the

number of ways to choose m⌈log(r +m)⌉ bits.

Now let us elaborate on showing that the number of (q−r)∗-

bad monomials is Ω
(

rm−log λmqlog λm
)

. Take all (q′−1)-bad

monomials Xd
′

over Fq′ [X] with the property that there exists

i′ ≤2 d′ such that deg(i′) = q′ − 1. By Proposition 1 and

Corollary 1, the number of such monomials can be bounded

as Ω(q′ log λm). Define

ℓ0 := ⌈log(m+ r)⌉ − ⌊log r⌋.
Then we concatenate every component d′j of d′ =
(d′1, . . . , d

′
m) with the all-one string of length ℓ0 and an

arbitrary binary string of length ⌊log r⌋. The total number of

obtained tuples d ∈ Z
m
q is then

2m⌊log r⌋Ω
(

q′ log λm
)

= Ω
(

rm−log λmqlog λm
)

.

For every resulting tuple d, the monomial Xd is also (q−r)∗-

bad over Fq[X]. Indeed, we can construct an appropriate i

based on i′. To see this, we concatenate every component i′j
(except i′1) with the all-zero string of length ⌈log(r+m)⌉, and

i′1 with the all-one string of length ℓ0 and the all-zero string

of length ⌊log r⌋. Then we have i ≤2 d and deg(i) can be

easily bounded as q− r ≤ deg(i) ≤ q− 1. This completes the

proof. �

Example. Consider the parameters q′ = 2ℓ
′

= 4, m = 2,

r = 2, and q = 2ℓ
′+⌈log(r+m)⌉ = 16. As shown in the previous

example, we have d′ = (1, 3) ∈ S0(ℓ
′) with i′ ≤2 d′ for

i′ = (1, 2). The binary representations of d′ and i′ are given

by

d′ = (01, 11)2

i′ = (01, 10)2

Concatenating the all-one string of length ℓ0 = ⌈log(m+r)⌉−
⌊log r⌋ = 1 followed by arbitrary strings of length ⌊log r⌋ = 1
to the components of d′ gives the tuples

d1 = (0110, 1110)2

d2 = (0110, 1111)2

d3 = (0111, 1110)2

d4 = (0111, 1111)2 .

The i such that i ≤ dj , j = 1, 2, 3, 4 can be found by concate-

nating every component i′j except for i′1 with ⌈log(r+m)⌉ = 2
zeros and i1 with ℓ0 = 1 one and ⌊log r⌋ = 1 zero, to obtain

i = (0110, 1000)2 .

The degree of i is deg(i) = 14 ≥ q − r.



C. Code rate of lifted RS codes

Theorem 1. The rate of the [m, q, q − r]-lifted-RS code is

1−Θ
(

(q/r)log λm−m
)

as q →∞.

It is clear that the rate approaches 1 for r = o(q) as

λm < 2m. This fact was also proved in [12] in order to

show the existence of high rate locally correctable codes

with sublinear locality. Let us illustrate the improvement

of Theorem 1 compared to the result from [12]. We take

r = O(1) and check that the convergence rate of our estimate

is 1−Θ
(

qlog λm−m
)

. The arguments from [12] show that for

m ≥ 2, the rate is

1−O

(

(

1− 2−m⌈logm⌉
)log q/⌈logm⌉

)

= 1−O(q−pm ),

where pm := − log
(

1− 2−m⌈logm⌉
)

/⌈logm⌉. In Table I, we

depict some values of m− logλm and pm for 2 ≤ m ≤ 9.

Proof of Theorem 1. Lemma 1 provides a way to estimate the

code rate of [m, q − r, q]-lifted-RS codes by computing the

fraction of (q− r)∗-good monomials. By Corollary 2, the rate

is

1−Θ
(

rm−log λmqlog λm
)

/qm = 1−Θ
(

(q/r)log λm−m
)

as q →∞. This completes the proof. �

IV. BATCH CODES BASED ON LIFTED RS CODES

In this section, a new construction of binary batch codes is

presented. To this end, we first provide a construction of non-

binary k-batch codes of length n based on the m-dimensional

lifts of an RS code. After that, we compute the parameters of

this construction in the asymptotic regime for the availability

parameter k = nε with real ε ∈ [m−2
m , m−1

m ]. Finally, we show

how to convert this construction into a binary batch code.

Theorem 2. Fix integers q, m and r < q. The [m, q − r, q]-
lifted-RS code has the following properties:

1) The length of the code is qm.

2) The rate of the code is 1−Θ
(

(q/r)log λm−m
)

as q →∞.

3) The code is a k-batch code for k = qm−2r.

Proof of Theorem 2. The first property follows from Defini-

tion 1. The second property is implied by Theorem 1.

To prove the third property, we first note that a lifted

RS code is a linear code over Fq and it can be encoded

systematically. Let y be a codeword of the [m, d, q]-lifted-

RS code. Since every coordinate of y is simply the evaluation

f(a) for some a ∈ F
m
q , we can index coordinates of our code

by elements a from F
m
q .

Now we shall prove a slightly stricter condition than

required for k-batch codes, namely for every multiset of

symbols {ya1
, . . . , yak

}, there exist mutually disjoint sets

R1, . . . , Rk ⊂ F
m
q and some functions g1, . . . , gk such that

yai
= gi(y|Ri

). Let us prove the existence of R1, . . . , Rk by

using the inductive procedure described below.

To reconstruct ya1
, we take an arbitrary line L1 in F

m
q

containing a1 and let R1 = L1 \ {a1}. As the restriction

of polynomial f to a line L1 has degree less than q − r
by definition of lifted RS codes, we can interpolate f |L1

by

reading evaluations of f at some q−r points on the line L1 and

evaluate f |L1
at point a1. Suppose that for k′ < k, symbols

{ya1
, . . . , yak′} can be reconstructed by using recovering sets

R1, . . . , Rk′ , where Ri is a subset of a line Li from the space

F
m
q . Since the number of lines passing through the point ak′+1

is larger than qm−1 and the total number of points already

employed for recovering {ya1
, . . . , yak′} is at most qk′, we

conclude that there exists a line Lk′+1 among qm−1 ones such

that the cardinality of the intersection
∣

∣

∣

∣

∣

∣

Lk′+1

⋂







⋃

i∈[k′]

Li







∣

∣

∣

∣

∣

∣

≤ qk′

qm−1
<

qk

qm−1
= r.

Therefore, we can reconstruct yak′+1
by reading evaluations

of f at some q − r unused points on Lk′+1, interpolating the

univariate polynomial f |Lk′+1
of degree less than q − r and

evaluating the latter at point ak′+1.

Thus, the required multiset of codeword symbols can be

determined by this procedure. This completes the proof. �

In the next statement we show a connection between param-

eters of the non-binary batch code constructed in Theorem 2.

Theorem 3. Given a positive integer m, for any real ε with
m−2
m ≤ ε < m−1

m and a power of two q, there exists a nε-

batch code of length N = qm and dimension n over Fq such

that the redundancy, N − n, satisfies

N − n = O
(

n(m−log λm)ε+((m−1) log λm/m−m+2)
)

.

Proof of Theorem 3. Let r = ⌈qmε−m+2⌉ ≥ nε−(m−2)/m. By

Theorem 2, there exists a k-batch code with k = rqm−2 ≥
qmε = nε over Fq of length N = qm and redundancy at most

N − n = O
(

rmλℓ−log r
m

)

= O
(

2ℓm(mε−m+2)λℓ−ℓ(mε−m+2)
m

)

= O
(

n(m−log λm)ε+((m−1) log λm/m−m+2)
)

.

�

Theorem 4. Given a positive integer m, for any real ε with
m−2
m ≤ ε ≤ m−1

m , any real δ > 0 and an integer n sufficiently

large, there exists a binary nε−δ-batch code of length N and

dimension n such that the redundancy, N − n, satisfies

N − n = O
(

n(m−log λm)ε+((m−1) log λm/m−m+2)
)

.

Proof of Theorem 4. Let C be a non-binary batch code from

Theorem 3. We construct the binary batch code C′ from

C by converting each symbol of the alphabet of size q to

log q = logN1/m = 1
m logN = Θ(logn) bits. Denote the

length, dimension of the binary code by N ′, n′ respectively.

Thus, n′ = Θ(n logn) and N ′ = Θ(N log n). Therefore,

n = Θ(n′/ logn′). Denote by r′ = N ′ − n′ the redundancy

of the binary code and by k′ be the availability parameter of

the new code.

First, we note that the availability parameter of C′ is at least

that of C. Indeed, we know that each bit in C′ is a bit among

log q bits representing some symbol in C. For each recovering

set of a symbol in C, we have the corresponding recovering



set for any bit from the image of this symbol in C′. Therefore,

k′ ≥ k = nε ≥ (n′/ logn′)ε.
Second, we rewrite the redundancy r′ in terms of n′ as

r′ = N ′ − n′ = O((N − n) logn)

= O
(

n′(m−log λm)ε+((m−1) log λm/m−m+2) logn′
)

.

As for any δ > 0 and sufficiently large n we have logn < nδ,

the required statement is proved. �

V. CONCLUSION

In this paper, we have investigated the code rate of lifted

Reed-Solomon codes and discussed how to use the latter to

construct batch codes. Our results are two-fold.

1) We have improved the estimate on the rate of the m-

dimensional lifts of the RS codes when the field size is large.

In particular, we have shown that for r = O(1), the [m, q −
r, q]-lifted-RS code has rate 1−Θ(qlog λm−m) as q →∞. As

a further research direction, it would be of great interest to

analyze lifted multiplicity codes when the parameter of lifting

m ≥ 3. This would continue the study initiated by Li and

Wootters in [15] of two-dimensional lifts. It has been shown

that this natural generalization makes the construction much

more flexible for various parameters.

2) The locality property of lifted RS codes makes them

attractive for constructing locally correctable codes and codes

with the disjoint repair group property. Additionally, we have

shown that a [m, q−r, q]-lifted-RS code is also a k-batch code

with k = rqm−2. This improves the known upper bounds on

the redundancy of batch codes in some parameter regimes. On

the other hand, there is no lower bound on the redundancy

beyond the lower bound for k = 3, stating [10] that the

redundancy of linear batch codes of length N is Ω(
√
N). An

improvement of the latter for larger k remains an interesting

open problem.

APPENDIX

A. Lifted-RS codes from d∗-good monomials

We shall show that lifted-RS codes include the evaluation of

d∗-good monomials (and their linear combinations). By Defi-

nition 1, it suffices that every d∗-good monomial f(X) = Xd

over Fq satisfies the property that for any line L ∈ Lm, the

restriction f |L is an univariate polynomial of degree less than

d. Let a line L be parameterized as (aT + b)|T∈Fq
and 0 be

the all-zero vector. Then, we have that

f |L = (aT + b)d

=
∑

0≤i≤d

m
∏

j=1

a
ij
j b

dj−ij
j

(

dj
ij

)

T ij

=

q−1
∑

k=0

ckT
k,

where coefficients ck are derived by using the property T q =
T in Fq[T ]

ck :=
∑

0≤i≤d

deg(i) (mod∗ q)=k

m
∏

j=1

a
ij
j b

dj−ij
j

(

dj
ij

)

.

By Definition 2, for k ≥ d, there is no i ∈ Z
m
q such that i ≤2 d

and deg(i) (mod∗ q) = k. Thus, for k ≥ d and every i used

in the summation above for defining ck, there exists some

coordinate j ∈ [m] such that ij 6≤2 dj . By Lucas’s Theorem

(e.g., see [12], [15]), for integers dj = (d
(ℓ−1)
j , ..., d

(0)
j )2 and

ij = (i
(ℓ−1)
j , ..., i

(0)
j )2 it holds that

(

dj
ij

)

=

ℓ−1
∏

ξ=0

(

d
(ξ)
j

i
(ξ)
j

)

mod 2.

It follows that if ij 6≤2 dj the coefficient
(

dj

ij

)

= 0 in Fq (as q
is a power of two) and therefore ck = 0 for all k ≥ d.

We have proved that the restriction of Xd to any line is an

univariate polynomial of degree at most d− 1. Therefore, the

[m, d, q]-lifted-RS code includes codewords

{(ad)|a∈Fm
q
: Xd is d∗-good over Fq[X]}

and their linear combinations over Fq. This completes the

proof.

B. Proof of Proposition 1

We have two important ingredients, Lemma 2 and Lemma 3,

in the proof of Proposition 1.

Lemma 2. If d ∈ Sj(ℓ) for a non-negative integer j, then

d ∈ Sl(ℓ) for any non-negative integer l < j.

Proof of Lemma 2. As d ∈ Sj(ℓ), there exists some i such

that i ≤2 d and deg(i) = (q − r) + jq = (2ℓ − r) + j2ℓ. We

shall prove that there exists i′ such that i′ ≤2 i and deg(i′) =
(2ℓ − r) + l2ℓ. This is sufficient for showing d ∈ Sl(ℓ). To

see it, we provide an iterative procedure that takes an arbitrary

i ∈ Z
m
q with deg(i) ≥ j2ℓ and outputs a ≤2 i with deg(a) =

deg(i) − (j − l)2ℓ for l ∈ [j]. The procedure goes from the

leading bits to the least significant ones and replaces some ones

in the binary representations of i = (i1, . . . , im) by zeros.

1) Step 1. Let us initialize a ← i and ∆ ← (j − l) and

h← ℓ.
2) Step 2. If h = 0, output a. Else, let h ← h − 1 and

∆ ← 2∆. Compute δ = ∆ −∑m
ξ=1 a

(h)
ξ . If δ > 0, let

∆← ∆− δ and a
(h)
ξ ← 0 for all ξ ∈ [m]. Repeat Step 2.

Else, let m′ satisfy ∆−
∑m′

ξ=1 a
(h)
ξ = 0 and let a

(h)
ξ ← 0

for all ξ ∈ [m′]. Output a.

According to the procedure, we output the correct a if we

do the else-part in Step 2 at some point. Assume this never

happens. This means that we output the all-zero tuple at the

end. However, ∆ = (j − l)2ℓ − deg(i) > 0 at the final

step which contradicts with deg(i) ≥ j2ℓ. This completes the

proof. �

Example. Consider the parameters q = 2ℓ = 4, m = 2, r = 2,

j = 1, and l = 0. For the element d = (3, 3) ∈ S1(2) and i =
(3, 3) = (11, 11)2 with i ≤2 d we will find the corresponding

a with a ≤2 i and deg(a) = deg(i)− (j − l)2ℓ = 2.

1) Step 1. Initialize a ← (3, 3) and ∆ ← j − l = 1 and

h← ℓ = 2.



2) Step 2. Let h← h− 1 = 1 and ∆← 2∆ = 2. Compute

δ = ∆−
∑m

ξ=1 a
(h)
ξ = 0. Since δ 6> 0 we choose m′ = 2

to satisfy ∆−∑m′

ξ=1 a
(h)
ξ = 0 and set a

(1)
1 ← 0, a

(1)
2 ← 0

to obtain a = (01, 01)2 = (1, 1).

As a ≤2 i ≤2 d and deg(a) = q − r = 2 it follows that

d ∈ S0(2).

Let us introduce some auxiliary functions. We define two

maps Fdrop : Z2ℓ → Z2ℓ−1 and Flead : Z2ℓ → Z2 that

take an integer a =
∑ℓ−1

i=0 a
(i)2i and output a − 2ℓ−1a(ℓ−1)

and a(ℓ−1), respectively (we either drop the leading bit in

the binary representation of a or output it). We extend the

maps Fdrop and Flead to Z
m
2ℓ in a straightforward manner by

applying functions to each component of a vector a ∈ Z
m
2ℓ ,

that is

Fdrop(a) = (Fdrop(a1), . . . , Fdrop(am)),

Flead(a) = (Flead(a1), . . . , Flead(am)).

For an integer a, we denote max(a, 0) by (a)+.

Lemma 3. If d ∈ Sj(ℓ+1) for a non-negative integer j, then

Fdrop(d) belongs to S0(ℓ), S1(ℓ), . . . , S(2j+1−|Flead(d)|)+(ℓ).

Proof of Lemma 3. By definition, if d ∈ Sj(ℓ+1), then there

exists some i ∈ Z
m
2ℓ+1 with i ≤2 d and deg(i) = (2ℓ+1− r)+

j2ℓ+1. It is obvious that if the leading bits in i are dropped,

then the sum of components of Fdrop(i)

deg(Fdrop(i)) = deg(i)− |Flead(i)|2ℓ

= (2ℓ − r) + (2j + 1− |Flead(i)|)|2ℓ.
Since we also have the property Fdrop(i) ≤2 Fdrop(d),
we obtain that Fdrop(d) belongs to S2j+1−|Flead(i)|(ℓ − 1).
Additionally, we note that |Flead(i)| ≤ min(2j+1, |Flead(d)|)
as i ≤2 d and deg(i) = (2ℓ−r)+j2ℓ. From this and Lemma 2,

we conclude that r(d) belongs to S0(ℓ − 1), S1(ℓ − 1), . . . ,
S(2j+1−|Flead(d)|)+(ℓ− 1). This completes the proof. �

Note that we can uniquely encode d ∈ Z
m
2ℓ+1 by the pair

(Flead(d), Fdrop(d)). Let us define the set Pair(j) as follows

Pair(j) = {(Flead(d), Fdrop(d)) : d ∈ Sj(ℓ + 1)} .
For w ∈ {0, . . . ,m}, we define the set T (w)(j) as follows

T (w)(j) = {(v,y) : v ∈ Z
m
2 ,y ∈ S(2j+1−w)+(ℓ), |v| = w}.

Recall that sj(ℓ) = |Sj(ℓ)|. To show

sj(ℓ + 1) =

(

m

≥ 2j + 1

)

s0(ℓ) +

(

m

2j

)

s1(ℓ)

+

(

m

2j − 1

)

s2(ℓ) + · · ·+
(

m

2j −m+ 3

)

sm−2(ℓ)

+

(

m

2j −m+ 2

)

sm−1(ℓ) +

(

m

2j −m+ 1

)

sm(ℓ),

it remains to prove that the disjoint union of T (w)(j) coincides

with Pair(j), that is
⊔

w∈{0,...,m}

T (w)(j) = Pair(j).

First, we prove that each element in Pair(j) is covered

by the union. Let (Flead(d), Fdrop(d)) ∈ Pair(j) for some

d ∈ Sj(ℓ + 1). By denoting w = |Flead(d)| and applying

Lemma 3, we get that Fdrop(d) ∈ S(2j+1−w)+(ℓ). Therefore,

(Flead(d), Fdrop(d)) ∈ T (w)(j).
Second, we show that each element in T (w)(j) is included

in Pair(j). Let (v,y) ∈ T (w)(j). Construct d ∈ Z
m
2ℓ+1 to

satisfy Flead(d) = v and Fdrop(d) = y. By definition, we

have that |v| = w and y ∈ S(2j+1−w)+(ℓ). The latter means

that there exists an i such that i ≤2 y and deg(i) = (2ℓ−r)+
(2j + 1 − w)+2ℓ. Construct i′ ∈ Z

m
2ℓ+1 such that Fdrop(i

′) =
i ≤2 y = Fdrop(d) and Flead(i

′) ≤2 v = Flead(d) and

|Flead(i
′)| = min(2j + 1, w). Thus, we obtain that i′ ≤2 d

and deg(i′) = (2ℓ+1 − r) + j2ℓ+1. This completes the proof.
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