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Abstract—This paper concerns the maximum coding rate at
which a code of given blocklength can be transmitted with
a given block-error probability over a non-coherent Rayleigh
block-fading channel with multiple transmit and receive antennas
(MIMO). In particular, a high-SNR normal approximation of the
maximum coding rate is presented, which is proved to become
accurate as the signal-to-noise ratio (SNR) and the number of
coherence intervals L tend to infinity.

I. INTRODUCTION

The next-generations of cellular systems are expected to
support the traffic generated by sensors and devices involved
in Internet of Things or machine-to-machine communications.
Such systems require the transmission of short packets with
low latency and ultra-high reliability [1]. While capacity and
outage capacity provide accurate benchmarks for the through-
put achievable in wireless communication systems when the
package length is not restricted, for short-package wireless
communications, a more refined analysis of the maximum
coding rate as a function of the blocklength is needed. Such
an analysis is provided in this paper.

Let R∗(n, ε) denote the maximum coding rate at which data
can be transmitted using an error-correcting code of length n
with a block-error probability no larger than ε. Building upon
Dobrushin’s and Strassen’s asymptotic results, Polyanskiy et
al. showed that for various channels with a positive capacity
C, R∗(n, ε) can be tightly approximated as [2]

R∗(n, ε) = C −
√
V

n
Q−1(ε) +O

( log n

n

)
(1)

where V is the so-called channel dispersion; Q−1(ε) denotes
the inverse of the Q-function Q(x) ,

∫∞
x

(1/
√

2π)e−t
2/2dt,

and O(log n/n) comprises terms that decay no slower than
log n/n. The approximation that follows by ignoring the
O(log n/n) term is sometimes referred to as normal approx-
imation. The work of Polyanskiy et al. has been generalized
to several wireless communication channels [3]–[9]. For in-
stance, the channel dispersion of coherent fading channels
was obtained in [3], [5], [6]. In the non-coherent setting, the
channel dispersion is known in the quasi-static case, where
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it is zero [4]. For general non-coherent Rayleigh block-fading
channels, non-asymptotic bounds on the maximum coding rate
were presented in [8], [9]. Saddlepoint approximations that
accurately approximate these bounds in the single-antenna
case with a negligible computational cost were given in
[10], [11]. However, a closed-form expression of the channel
dispersion for general non-coherent Rayleigh block-fading
channels is still missing. Obtaining such an expression for
non-coherent block-fading channels is difficult because their
capacity-achieving input distribution is in general unknown.
Fortunately, the high-SNR asymptotic behavior of the capacity
of such channels is well understood [12], [13]. This fact was
exploited in [7] to derive a high-SNR normal approximation
of R∗(n, ε) for non-coherent, single-antenna, Rayleigh block-
fading channels.

In this paper, we generalize [7] to the MIMO case. In
particular, we present an expression of R∗(n, ε) similar to (1)
for non-coherent MIMO Rayleigh block-fading channels. By
deriving asymptotically-tight approximations on the capacity
and the channel dispersion at high SNR, we obtain a high-
SNR normal approximation of R∗(n, ε), which complements
the existing non-asymptotic bounds.

II. SYSTEM MODEL

We consider a Rayleigh block-fading channel with nt trans-
mit antennas, nr receive antennas, and coherence interval T .
Within the l-th coherence interval, the channel input-output
relation is given by

Yl = XlHl + Wl (2)

where Xl ∈ CT×nt and Yl ∈ CT×nr are the complex-valued
transmitted and received matrices, respectively; Hl ∈ Cnt×nr

is the complex-valued fading matrix with independent and
identically distributed (i.i.d.) CN (0, 1) entries; Wl ∈ CT×nr

is the additive noise at the receiver with i.i.d. CN (0, 1) entries.
We assume that Hl and Wl are independent and take on
independent realizations over successive coherence intervals,
and the joint law of Hl and Wl does not depend on Xl. We
consider a non-coherent setting where neither the transmitter
nor the receiver has a priori knowledge of the realizations of
(Hl,Wl), but both know their statistics perfectly.

We assume that T ≥ nt + nr and nr ≥ nt. The latter
assumption does not reduce capacity at high SNR [12], and we
believe it is also reasonable in the finite-blocklength regime.



The former assumption ensures that a unitary space-time
modulation (USTM) input distribution achieves a lower bound
on the capacity that is asymptotically tight in the sense that the
difference between the lower bound and the capacity vanishes
as the SNR tends to infinity [12], [13]. Such an input can be
written as Xl =

√
Tρ/ntUl, where Ul ∈ CT×nt satisfies

UH
l Ul = Int

and is isotropically distributed.
For simplicity, we shall restrict ourselves to codes whose

blocklength is an integer multiple of T , i.e., n = LT for
some L. An (L, T,M, ε, ρ) code consists of:
(1) An encoder f : {1, · · · ,M} → CT×ntL that maps a mes-

sage A, which is uniformly distributed on {1, · · · ,M},
to a codeword XL = [X1, · · · ,XL]. The codewords are
required to satisfy the power constraint

‖Xl‖2 ≤ Tρ, l = 1, · · · , L

where ‖ · ‖ denotes the Frobenius norm [14, Sec. 5.2].
Since the variances of Hl and Wl are normalized, ρ can
be interpreted as the average SNR at the receiver.

(2) A decoder g: CT×ntL → {1, · · · ,M} satisfying a max-
imum error probability constraint

max
1≤a≤M

Pr
[
g(YL) �= A|A = a

]
≤ ε

where YL = [Y1, · · · ,YL] is the channel output induced
by the codeword XL = f(a), according to (2).

The maximum coding rate is defined as

R∗(L, T, ε, ρ) � sup

{
logM

LT
: ∃(L, T,M, ε, ρ) code

}

where we denote by log(·) the natural logarithm.

III. MAIN RESULT

A. High-SNR Normal Approximation

Theorem 1: Assume that T ≥ nr + nt, nr ≥ nt, and
0 < ε < 1/2. Then, at high SNR,

R∗(L, T, ε, ρ)

=
I(ρ)

T
+ oρ(1)−

√
Ṽ + oρ(1)

LT 2
Q−1(ε) +OL

(
logL

L

)

where OL(logL/L) comprises terms that are uniform in ρ and
decay no slower than logL/L; oρ(1) comprises terms that are
independent of L and vanish as ρ → ∞; and

I(ρ) = −ntnr log

(
1 +

Tρ

nt

)
+ nrnt log

Tρ

nt
+ log

Γnt
(nt)

Γnt(T )

+(T − nt)

(
nt−1∑
i=0

Ψ(nr − i) + nt log
Tρ

nt

)
− (T − nt)nt

Ṽ = nt(T − nt) + (T − nt)
2
nt−1∑
i=0

Ψ ′(nr − i)

where Ψ(·) denotes Euler’s digamma function, Ψ′(·) denotes
its derivative [15, Sec. 8.36], and Γnt(·) denotes the complex
multivariate Gamma function [13, Eq. (3)].

Proof: See Sec. IV.

Fig. 1. Bounds on R∗(L, T, ε, ρ) for nt = nr = 2, TL = 168, ε = 10−3.

The quantity I(ρ)/T is an asymptotically-tight lower bound
on the capacity C(ρ) of the non-coherent MIMO Rayleigh
block-fading channel [13]. The ratio Ṽ /T 2 can be viewed as
a high-SNR approximation of the channel dispersion. Observe
that, at high SNR, I(ρ)/T increases with nr and nt ≤ T/2,
while Ṽ /T 2 is independent of the SNR and decreases with nt

and nr.
For comparison, at high SNR, the capacity Cc(ρ)

of the coherent MIMO Rayleigh block-fading channel
roughly behaves as nt log(ρ) [16], and the channel
dispersion converges to nt/T + Var

(
log det(HHH)

)
as ρ → ∞ [6]. Noting that I(ρ)/T roughly behaves as
(1 − nt/T )nt log(ρ) and that Ṽ /T 2 can be written as
nt(T − nt)/T

2 +
(
(T − nt)/T

)2
Var

(
log det(HHH)

)
, we

observe that the high-SNR normal approximation presented
in Theorem 1 corresponds to the normal approximation one
obtains by transmitting one pilot symbol per coherence block
for each transmit antenna to estimate the fading coefficient,
and by then transmitting T − nt symbols over a coherent
fading channel.

B. Numerical Results and Discussion

In Figs. 1–3, we depict the high-SNR normal approximation
given in Theorem 1, the normal approximation of the coherent
MIMO Rayleigh block-fading channel obtained in [6], a non-
asymptotic (in ρ and L) lower bound on R∗(L, T, ε, ρ) that
is based on the dependence testing (DT) bound, and an
upper bound that is based on the meta converse (MC) bound
obtained in [9] (both evaluated by the communication toolbox
SPECTRE [17]).

In Fig. 1, we show R∗(L, T, ε, ρ) as a function of T with
a fixed blocklength n = LT = 168 for ρ = 15dB and
ρ = 25dB. Observe that the accuracy of the high-SNR normal
approximation increases as the SNR increases. Moreover, the
high-SNR normal approximation becomes more accurate as
L increases. As expected, the normal approximation of the
coherent setting is strictly larger than that of the non-coherent
setting. The gap between two normal approximations becomes
smaller as T increases, indicating that the cost for estimating
the channel vanishes as T tends to infinity.



Fig. 2. Bounds on R∗(L, T, ε, ρ) for T = 24, ε = 10−3.

Fig. 3. Bounds on ε∗ for R = 4, T = 24, L = 7.

In Fig. 2, we show R∗(L, T, ε, ρ) as a function of the
blocklength n = LT for T = 24, ρ = 15dB, and
(nt, nr) ∈ {(2, 2), (2, 4)}. Observe that the accuracy of the
high-SNR normal approximation increases with nr. Moreover,
the gap between the high-SNR normal approximation and the
coherent normal approximation appears to be independent of
L. This agrees with the intuition that the cost for estimating
the channel depends only on the coherence interval T .

In Fig. 3, we plot the minimum error probability ε∗ as
a function of the SNR for R = 4, n = 168 (T = 24
and L = 7), and (nt, nr) ∈ {(1, 1), (1, 2), (2, 4)}. When
the number of antennas increases, the diversity gain becomes
larger, which is reflected in the slope of the plots. Observe that
the error probability decreases significantly as the number of
antennas increases. Further observe that the high-SNR normal
approximation is accurate for (nt, nr) ∈ {(1, 1), (1, 2)} and
is overly pessimistic for (nt, nr) = (2, 4). Intuitively, for
(nt, nr) = (2, 4), the SNR required to achieve a given error
probability at a given rate is smaller than that in the other two
cases, so the oρ(1) terms in the high-SNR normal approxima-
tion are larger. In contrast, the coherent normal approximation
is overly optimistic for all parameters considered in this figure.

IV. PROOF OF THEOREM 1

The proof of Theorem 1 is based on a lower bound and an
upper bound on R∗(L, T, ε, ρ). Due to space limitations, we

only present an outline of the proof and defer the details to
the longer version of the paper [18].

A. Dependence Testing Lower Bound

To derive a lower bound on R∗(L, T, ε, ρ), we evaluate the
DT lower bound [2, Th. 22] for a USTM input distribution.
The DT bound states that there exists a code of blocklength
n = LT with M codewords and a maximum error probability
satisfying

ε ≤(M − 1)E
[
e−i(XL;YL) · l

{
i(XL;YL) > log(M − 1)

}]

+ P
[
i(XL;YL) ≤ log(M − 1)

]
(3)

where l{·} denotes the indicator function and i(XL;YL) is
the information density between XL and YL, given by

i(XL;YL) =
L∑

l=1

log
fY|X(Yl|Xl)

fY(Yl)
.

Here fY|X denotes the conditional pdf of the channel out-
put Yl of (2) given the input Xl and fY denotes the
output pdf induced by (2) with USTM channel inputs.
In the following, we denote by i(ρ) the random variable
log

(
fY|X(Yl|Xl)/fY(Yl)

)
conditioned on ‖Xl‖2 = Tρ. We

further define I(ρ) � E[i(ρ)] and U(ρ) � E
[(
i(ρ)− I(ρ)

)2]
.

Here and throughout the paper, we omit the subscript l where
it is immaterial.

To bound the right-hand side (RHS) of (3), we follow [2,
Eqs. (258)–(267)] (see also [7, Eqs. (69)–(85)]). In particular,
to ensure that the Berry-Esseen ratio

B(ρ) �
6E

[∣∣i(ρ)− I(ρ)
∣∣3]

U(ρ)3/2

is uniformly bounded in L, we show in [18] that, for suffi-
ciently large ρ0 > 0,

U(ρ) ≥Ṽ /2, ρ ≥ ρ0

sup
ρ≥ρ0

E
[∣∣i(ρ)− I(ρ)

∣∣3] <∞.

Thus, for ρ ≥ ρ0 and sufficiently large ρ0, B(ρ) is upper-
bounded by a finite constant that depends only on ρ0 and T .
It follows by the Berry-Esseen theorem and steps similar to
[7, Eqs. (71)–(74)] that

R∗(L, T, ε, ρ) ≥ I(ρ)

T
−

√
U(ρ)

LT 2
Q−1(ε) +O

( 1

L

)
. (4)

Since, as we show in [18], we have U(ρ) = Ṽ + oρ(1),
this demonstrates that the high-SNR normal approximation in
Theorem 1 is achievable.

B. Meta Converse Upper Bound

To derive an upper bound on R∗(L, T, ε, ρ), we first intro-
duce the mismatched information density

j(XL;YL) �
L∑

l=1

log
fY|X(Yl|Xl)

qY(Yl)



where qY is an auxiliary output pdf. In this paper, we choose
the pdf qY that was chosen in [13, Eq. (25)] to derive
a converse bound on the channel capacity of non-coherent
MIMO Rayleigh block-fading channels.

Let Dl be a diagonal matrix with entries (d1, . . . , dnt
),

where d2
i , ‖(xl)i‖2 denotes the power at transmit antenna

i and where we use (xl)i to denote the i-th column of xl.
Without loss of generality, we assume that tr(D2

l ) = Tαl,
αl ∈ [0, ρ], for each coherent block.

We next follow [6] and separate the codebook C into two
sub-codebooks C1 and C2. Clearly, if the maximum error
probabilities of C1 and C2 are ε, then the maximum error
probability of C cannot be smaller than ε. Specifically, C1
contains all the codewords for which d2

i > δ̄ρ, i = 1, · · · , nt,
(with δ̄ defined below) in at least half of the coherence
intervals. It follows that the Berry-Esseen ratio B̄(Dl) (see (7)
below) can be upper-bounded by a positive value, so the Berry-
Esseen theorem can be applied to derive an upper bound.
For C2, which contains the remaining codewords, an upper
bound is obtained using Chebyshev’s inequality. We then prove
that, as ρ and L tend to infinity, the cardinality of the entire
codebook C can be approximated by the cardinality of C1.
Consequently, R∗(L, T, ε, ρ) is asymptotically upper-bounded
by the upper bound on the maximum coding rate of C1.

To define C1 and C2 mathematically, we first define the sets

D1 ,
{
D ∈ Dnt

: d2
i,i > δ̄ρ, i ∈ [1, nt]

}
D2 , Dnt

\ D1

where Dnt denotes the set of (nt × nt)-dimensional diago-
nal matrices with non-negative, real-valued entries; and di,i
denotes the i-th diagonal element of D. Moreover,

δ̄ =
T

nt
− T

2nr
√
nt

√
E
[(

log det(HHH)
)2]

+ 1
.

Let LD1
(DL) ,

∑L
l=1 l{Dl ∈ D1}. Then, we define

C1 ,
{
xL ∈ C : LD1

(DL) ≥ L/2
}

C2 ,
{
xL ∈ C : LD1(DL) < L/2

}
.

1) The cardinality of C1: An upper bound on log |C1|
follows from the MC bound [2, Th. 31] and by an upper
bound on log

(
fY|X(Yl|Xl)/qY(Yl)

)
which, conditioned on

diag
{
‖(Xl)1‖, · · · , ‖(Xl)nt

‖
}

= Dl, is denoted as j̄(Dl)
[18]:

log |C1| ≤ sup
xL∈C1

{
log ξ(α)

− log
(

1− ε− Pr
[ L∑
l=1

j̄(Dl) ≥ log ξ(α)
])}

(5)

for every ξ : [0, ρ]L → (0,∞). Let J̄(Dl) , E[j̄(Dl)] and
V̄ (Dl) , E[(j̄(Dl) − J̄(Dl))

2]. It can be shown that, for
sufficiently large ρ0, supρ≥ρ0 E

[∣∣j̄(Dl) − J̄(Dl)
∣∣3] is finite

and depends only on ρ0 and T , and that∑
l : Dl∈D1

V̄ (Dl) ≥
L

2

[
(T − nt)nt

2

]
(6)

for ρ ≥ ρ0 and sufficiently large ρ0 [18]. It follows that, for
such ρ and ρ0, the Berry-Esseen ratio satisfies

B̄(Dl) ,
6
∑L
l=1 E

[∣∣j̄(Dl)− J̄(Dl)
∣∣3](∑L

l=1 V̄ (Dl)
)3/2 ≤ B̄(ρ0)√

L
(7)

for some finite B̄(ρ0) that depends only on ρ0 and T .
We next choose λ = Q−1

(
ε+ 2B̄(ρ0)/

√
L
)

and

log ξ(α) =
L∑
l=1

J̄(Dl)− λ

√√√√ L∑
l=1

V̄ (Dl)

and apply the Berry-Esseen theorem to (5) to obtain

log |C1|
L

≤ 1

L
sup

xL∈C1

{
L∑
l=1

J̄(Dl)−

√√√√ L∑
l=1

V̄ (Dl)Q
−1

(
ε+

2B̄(ρ0)√
L

)}

− log B̄(ρ0)

L
+

logL

2L

≤ 1

L
sup

xL∈C1

L∑
l=1

{
J̄(Dl)−

√
V̄ (Dl)

L
Q−1(ε)

}
+OL

( logL

L

)
(8)

where the OL(logL/L) term is uniform in ρ and decays no
slower than logL/L. Here, the second inequality follows by
performing a Taylor series expansion of the inverse Q-function
around ε and from Jensen’s inequality applied to the square-
root function. Since, in each block, xl independently satisfies
the power constraint ‖xl‖2 ≤ Tρ, the supremum on the RHS
of (8) can be written as

∑
l : Dl∈D1

sup
D∈D1

{
J̄(D)−

√
V̄ (D)

L
Q−1(ε)

}

+
∑

l : Dl∈D2

sup
D∈D2

{
J̄(D)−

√
V̄ (D)

L
Q−1(ε)

}
(9)

maximized over all sequences DL satisfying
LD1(DL) ≥ L/2. It can be shown that, for every D ∈ D1

with tr(D2) = Tα, [18]

J̄(D) ≤ J̄
(√ ρ

α
D
)
, V̄ (D) ≥ V̄

(√ ρ

α
D
)
− Υ(T )

L

where Υ(T ) is a non-negative constant that depends only on
T . Defining D̃1 , {D ∈ D1 : tr(D2) = Tρ}, it follows that

sup
D∈D1

{
J̄(D)−

√
V̄ (D)

L
Q−1(ε)

}

≤ sup
D∈D̃1

{
J̄(D)−

√
V̄ (D)−Υ(T )/L

L
Q−1(ε)

}

= sup
D∈D̃1

{
J̄(D)−

√
V̄ (D)

L
Q−1(ε)

}
+OL

( 1

L

)
(10)



where the OL(1/L) term is uniform in ρ and decays no slower
than 1/L. To optimize over D, we prove in [18] that, for every
D ∈ D̃1, V̄ (D) can be approximated as

V̄ (D) = Ṽ +KV̄ (T,D) (11)

for ρ ≥ ρ0 and sufficiently large ρ0, where Ṽ is given in Theo-
rem 1 and limρ→∞ supD∈D̃1

|KV̄ (T,D)| = 0. Consequently,
defining KV̄ (T ) , supD∈D̃1

|KV̄ (T,D)|, the RHS of (10)
can be upper-bounded by

sup
D∈D̃1

J̄(D)−

√
Ṽ −KV̄ (T )

L
Q−1(ε) +OL

( 1

L

)
. (12)

It can be shown that the supremum over D̃1 is achieved
when d2

i = Tρ/nt, i ∈ [1, nt], and we denote the resulting
value of J̄(D) by J̃(ρ) [18]. Combining (10) and (12), we
thus obtain that

sup
D∈D1

{
J̄(D)−

√
V̄ (D)

L
Q−1(ε)

}

≤ J̃(ρ)−

√
Ṽ −KV̄ (T )

L
Q−1(ε) +OL

( 1

L

)
. (13)

Regarding the second sum in (9), it can be shown that, for
L ≥ L0, ρ ≥ ρ0, and sufficiently large L0 and ρ0,

sup
D∈D2

{
J̄(D)−

√
V̄ (D)

L
Q−1(ε)

}

≤ J̃(ρ)−

√
Ṽ −KV̄ (T )

L
Q−1(ε) +OL

( 1

L

)
. (14)

To obtain (14), we first prove that [18]

sup
D∈D2

J̄(D) ≤ sup
D∈D̃2

J̄(D)

where D̃2 , {D ∈ D2 : tr(D2) = Tρ}. We then show that,
for L ≥ L0 and sufficiently large L0, [18]

J̃(ρ)− sup
D∈D̃2

J̄(D) ≥ τ

for some positive constant τ that is independent of ρ and L.
Lower-bounding V̄ (D) ≥ 0, it thus follows that

J̃(ρ)−

√
Ṽ −KV̄ (T )

L
Q−1(ε) +OL

( 1

L

)
− sup

D∈D̃2

{
J̄(D)−

√
V̄ (D)

L
Q−1(ε)

}

≥J̃(ρ)−

√
Ṽ −KV̄ (T )

L
Q−1(ε) +OL

( 1

L

)
− sup

D∈D̃2

J̄(D)

≥τ −

√
Ṽ −KV̄ (T )

L
Q−1(ε) +OL

( 1

L

)

which is strictly positive for L ≥ L0, ρ ≥ ρ0, and sufficiently
large L0 and ρ0, so (14) follows. Thus, combining (13) and
(14) with (9) yields for L ≥ L0 and ρ ≥ ρ0

log |C1|
L

≤ J̃(ρ)−

√
Ṽ −KV̄ (T )

L
Q−1(ε) +OL

( logL

L

)
.

(15)
2) The cardinality of C2: To bound the cardinality of C2, we

show in [18] that V̄ (D) ≤ K̄(T ) for every D, where K̄(T )
is a positive constant that depends only on T . Chebyshev’s
inequality then yields that

log |C2| ≤ sup
xL∈C2

L∑
l=1

J̄(Dl) +

√
LK̄(T )

2(1− ε)
+ log(1− ε).

Similar to the analysis of log |C1|, it can be shown that [18]

sup
xL∈C2

L∑
l=1

J̄(Dl)

≤ sup
DL : LD1

(DL)<L/2

{ ∑
l : Dl∈D1

sup
D∈D̃1

J̄(D)

+
∑

l : Dl∈D2

sup
D∈D̃2

J̄(D)

}
≤ sup
DL : LD1

(DL)<L/2

{
LD1

(DL)J̃(ρ)

+ (L− LD1(DL))(J̃(ρ)− τ)
}

<LJ̃(ρ)− L

2
τ.

It follows that

log |C2|
L

< J̃(ρ)− 1

2
τ +

√
K̄(T )

2L(1− ε)
+

log(1− ε)
L

. (16)

3) The cardinality of C: Denote the RHSs of (15) and (16)
by κ1 and κ2, respectively. It follows that

log |C| ≤ log eLκ1 + log
(
1 + eL(κ2−κ1)

)
. (17)

By the behavior of KV̄ (T,D) in (11), we have that
Ṽ +KV̄ (T ) ≤ 2Ṽ for ρ ≥ ρ0 and sufficiently large ρ0. Thus,

κ2 − κ1

≤ −1

2
τ +

√
K̄(T )

2L(1− ε)
+

√
2Ṽ

L
Q−1(ε) +OL

( logL

L

)
which tends to −τ/2 as L→∞. Applied to (17), this implies
that log |C|/L ≤ κ1 + oL(1/L), where the oL(1/L) term is
uniform in ρ ≥ ρ0 and vanishes faster than 1/L. Consequently,

R∗(L, T, ε, ρ)

≤ J̃(ρ)

T
−

√
Ṽ −KV̄ (T )

LT 2
Q−1(ε) +OL

( logL

L

)
. (18)

Comparing the lower bound (4) with the converse bound (18),
and using that, as shown in [18], J̃(ρ) = I(ρ) + oρ(1), we
obtain Theorem 1.
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