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Abstract—This paper introduces coherent quantum channel
discrimination as a coherent version of conventional quan-
tum channel discrimination. Coherent channel discrimination is
phrased here as a quantum interactive proof system between
a verifier and a prover, wherein the goal of the prover is to
distinguish two channels called in superposition in order to distill
a Bell state at the end. The key measure considered here is
the success probability of distilling a Bell state, and I prove
that this success probability does not increase under the action
of a quantum superchannel, thus establishing this measure as
a fundamental measure of channel distinguishability. Also, I
establish some bounds on this success probability in terms of
the success probability of conventional channel discrimination.
Finally, I provide an explicit semi-definite program that can
compute the success probability.

I. INTRODUCTION

Quantum channel discrimination is a fundamental
information-processing task in quantum information theory
[1], [2], [3], [4], [5], [6], [7], [8]. There are at least two
ways of thinking about it: one in terms of quantifying error
between an ideal channel and an experimental approximation
of it [1], [2] and another in terms of symmetric hypothesis
testing [5], [6]. In both scenarios, the diamond distance
between channels [1] arises as the fundamental metric
quantifying the distinguishability of two quantum channels.
These interpretations of diamond distance are the main reason
that it is employed as the primary theoretical quantifier
of channel distance in applications such as fault-tolerant
quantum computation [9], quantum complexity theory [10],
and quantum Shannon theory [11].

To expand upon the first way of thinking about channel
discrimination from [1], [2], suppose that the ideal channel
to be implemented is N 0

A→B (a completely positive, trace-
preserving map taking operators for a system A to operators
for a system B). Suppose further that the experimental ap-
proximation is N 1

A→B . To interface with these channels and
obtain classical data, the most general way for doing so is to
prepare a state ρRA of a reference system R and the channel
input system A, feed system A into the unknown channel,
and then perform a quantum measurement {ΛxRB}x∈X on the
channel output system B and the reference system R. To
be a legitimate quantum measurement, the set {ΛxRB}x∈X of
operators should satisfy

∑
x∈X ΛxRB = IRB and ΛxRB ≥ 0 for

all x ∈ X . The result of this procedure (preparation, channel
evolution, and measurement) is a classical outcome x ∈ X that
occurs with probability Tr[ΛxRBN 0

A→B(ρRA)] if the channel
N 0
A→B is applied, while the outcome x ∈ X occurs with

probability Tr[ΛxRBN 1
A→B(ρRA)] if the channel N 1

A→B is
applied. The error or difference between these probabilities
is naturally quantified by the absolute deviation∣∣Tr[ΛxRBN 0

A→B(ρRA)]− Tr[ΛxRBN 1
A→B(ρRA)]

∣∣ . (1)

We can then quantify the maximum possible error between the
channels N 0

A→B and N 1
A→B by optimizing (1) with respect

to all preparations and measurements:

sup
ρRA,{Λx

RB}x

∣∣Tr[ΛxRBN 0(ρRA)]− Tr[ΛxRBN 1(ρRA)]
∣∣

= sup
ρRA,

0≤ΛRB≤IRB

∣∣Tr[ΛRBN 0(ρRA)]− Tr[ΛRBN 1(ρRA)]
∣∣ ,

(2)

where it is implicit that the channels N 0 and N 1 above have
input system A and output system B. Mathematically, this
has the effect of removing the dependence on the preparation
and measurement such that the error is a function solely of
the two channels N 0

A→B and N 1
A→B . It is a fundamental and

well known result in quantum information theory [1], [2] that
the error in (2) is equal to the normalized diamond distance:

Eq. (2) =
1

2

∥∥N 0 −N 1
∥∥
� , (3)

where the diamond distance
∥∥N 0 −N 1

∥∥
� is defined as∥∥N 0 −N 1

∥∥
� := sup

ψRA

∥∥N 0
A→B(ψRA)−N 1

A→B(ψRA)
∥∥

1
.

(4)
In (4), the optimization is with respect to all pure bipartite
states ψRA with system R isomorphic to the channel input
system A, and the trace norm of an operator X is given by
‖X‖1 = Tr[|X|], where |X| :=

√
X†X . This interpretation

of normalized diamond distance as error between channels is
the main reason that it is employed in applications like fault-
tolerant quantum computation [9].

The other setting in which diamond distance arises is in
the context of symmetric hypothesis testing of quantum chan-
nels [5], [6]. We can also refer to this as “incoherent quantum
channel discrimination,” a name that shall become clear later.
This can be thought of as a guessing game between a prover
and a verifier [5], [12], and here we describe the game with
fully quantum-mechanical notation. Let us call it the “channel
guessing game.” The game begins with the verifier flipping
a fair coin described by the state 1

2 (|0〉〈0|R1
+ |1〉〈1|R1

).
Meanwhile the prover prepares a pure state ψRA and sends
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Fig. 1. In quantum channel discrimination, the prover prepares a pure
state |ψ〉RA and the verifier a mixed state π := (|0〉〈0| + |1〉〈1|) /2. The
verifier performs the controlled unitary in (11) that implements the conditional
channel in (5). The prover acts on the channel output system B and the
reference system R and sends back a single bit. The final controlled-NOT
and computational basis measurement implement the measurement in (6).

system A to the verifier. The verifier then performs the
conditional channel∑

i∈{0,1}

|i〉〈i|R1
(·)|i〉〈i|R1

⊗N i
A→B(·) (5)

on systems R1 and A, so that the resulting global state is
1
2

∑
i∈{0,1} |i〉〈i|R1

⊗ N i
A→B(ψRA). The verifier sends the

channel output system B to the prover, whose task it is
to guess which channel was applied by the verifier. The
prover can act on the systems in his possession, which are R
and B. The prover performs a quantum-to-classical channel∑
j∈{0,1} Tr[ΛjRB(·)]|j〉〈j|F , where ΛjRB ≥ 0 for j ∈ {0, 1}

and
∑
j∈{0,1} ΛjRB = IRB , and sends the system F back to

the verifier. Finally, the verifier performs the measurement

{|00〉〈00|R1F + |11〉〈11|R1F , |01〉〈01|R1F + |10〉〈10|R1F }
(6)

and declares “success” if the first outcome of the measurement
occurs. If success occurs, we interpret this outcome as meaning
that the prover is able to distinguish the channels. Running
through the calculation, the probability that the prover wins
(verifier declares “success”) is equal to

1

2

∑
i∈{0,1}

Tr[ΛiRBN i
A→B(ψRA)]. (7)

Figure 1 depicts the channel guessing game (in order to
understand it fully, it is necessary to read the next section).

The prover can optimize over all input states ψRA and
measurements {ΛjRB}j∈{0,1}, and a well known result in
quantum information [5] is that the optimal success probability
of incoherent channel discrimination is given by

pinc
s (N 0,N 1) := sup

ψRA,

{Λj
RB}j∈{0,1}

1

2

∑
i∈{0,1}

Tr[ΛiRBN i(ψRA)]

=
1

2

(
1 +

1

2

∥∥N 0 −N 1
∥∥
�

)
, (8)

thus endowing the normalized diamond distance
1
2

∥∥N 0 −N 1
∥∥
� with another operational meaning as

the relative bias away from random guessing in a channel
guessing game of the above form. That is, a random guessing
strategy leads to a success probability of 1/2 and can be
employed when the channels are the same or indistinguishable.
However, when the channels have some distinguishability so
that 1

2

∥∥N 0 −N 1
∥∥
� ∈ (0, 1], then the success probability

changes as a linear function of the normalized diamond
distance and reaches its peak value when the channels are
orthogonal to each other (perfectly distinguishable). This
guessing game is a basic channel discrimination task in
quantum information theory and has found application in the
setting of quantum illumination [7], [8], [13].

A useful fact about the diamond distance is that it can be
computed by means of a semi-definite program [14]:

1

2

∥∥N 0 −N 1
∥∥
� = inf

µ,ZRB≥0

{
µ : ZRB ≥ ΓN

0

RB − ΓN
1

RB ,
µIR ≥ TrB [ZRB ]

}
,

(9)
where ΓNRB := NA→B(ΓRA) is the Choi operator of the
channel NA→B , with ΓRA := |Γ〉〈Γ|RA and |Γ〉RA :=∑
i |i〉R|i〉A, for orthonormal bases {|i〉R}i and {|i〉A}i. Thus,

calculating the diamond distance is efficient in the dimensions
of the input A and output B.

II. COHERENT QUANTUM CHANNEL DISCRIMINATION

The main aim of the present paper is to introduce and
analyze a fully quantum or coherent version of the chan-
nel guessing game presented above. Let us call it coherent
quantum channel discrimination, in contrast to the incoherent
channel discrimination task presented above. The primary
modification that I make to it is to replace all classical steps of
the verifier with their coherent counterparts, much like what
was done previously in [15] to produce coherent versions of
basic protocols in quantum information such as superdense
coding and teleportation (see also [16] in this context). The
resulting protocol is related to the fully quantum reading
protocol from [17]. A recent series of works have considered
coherent control of quantum channels [18], [19], [20], [21],
but coherent quantum channel discrimination is different from
the protocols considered in these prior works.

I now briefly summarize coherent channel discrimination.
The main idea is to replace the initial state of the verifier
with |+〉R1

:= (|0〉R1
+ |1〉R1

) /
√

2, the conditional channel
of the verifier with a controlled unitary, and the final mea-
surement with a projection onto the Bell state |Φ〉R1F :=
(|00〉R1F + |11〉R1F ) /

√
2 (here and throughout the rest of the

paper, we refer to both state vectors and density operators
as states, as is conventional in the quantum information
literature). Later, we shall see that it is sensible to include
an uncomputing step to uncompute the controlled channel at
the end before performing the Bell projection.

The modifications of the guessing game presented here
could potentially have applications in quantum computation,
where gates are often promoted to controlled gates and used



in superposition. In particular, some works have recently
investigated the question of compiling quantum circuits on
quantum computers [22], [23]. The coherent games presented
here could be used as benchmarks to assess how well an
approximate implementation of a circuit could be used instead
of the ideal one, even when it is employed in superposition
(i.e., in controlled form). We do not investigate this particular
application here but instead leave it for future work.

Before presenting details of the coherent version of the
channel guessing game, let us recall some fundamental facts
about quantum channels (see, e.g., [24]). First, every quantum
channel NA→B has a Kraus representation as NA→B(ρA) =∑
j N

jρN j†, where
{
N j
}
j

is a set of Kraus operators
satisfying

∑
j N

j†N j = IA. Another fundamental fact is
that every quantum channel NA→B has an isometric ex-
tension. That is, to every quantum channel NA→B , there
exists an isometry UA→BE (satisfying U†U = IA) such
that NA→B(ρA) = TrE [UA→BE(ρA)(UA→BE)†] for all input
states ρA. Equivalently, there exists an environment system G
and a unitary WAG→BE such that

NA→B(ρA) = TrE [WAG→BE(ρA ⊗ |0〉〈0|G)(WAG→BE)†].
(10)

Thus, we can set UA→BE = WAG→BE |0〉G. Any two iso-
metric extensions of the original channel are related by an
isometry acting on the environment system E.

The coherent version of the channel guessing game proceeds
as follows. The verifier prepares the state |+〉R1

and the prover
prepares |ψ〉RA. The prover sends the system A to the verifier.
The verifier then adjoins the state |0〉G and performs the
controlled unitary∑

i∈{0,1}

|i〉〈i|R1
⊗W i

AG→BE , (11)

where W i
AG→BE is a unitary that extends the channel N i

A→B
as in (10). Let U iA→BE := W i

AG→BE |0〉G be the correspond-
ing isometric extension. The resulting state is then

1√
2

∑
i∈{0,1}

|i〉R1
W i
AG→BE |ψ〉RA|0〉G. (12)

The verifier transmits system B to the prover, who then adjoins
an environment system E′ in the state |0〉E′ , a qubit system
F in the state |0〉F , and performs a unitary VRBE′F . The
resulting state is then

1√
2

∑
i∈{0,1}

|i〉R1VRBE′FW
i
AG→BE |ψ〉RA|000〉GE′F . (13)

The prover sends systems B and F back to the verifier, who
uncomputes the controlled unitary in (11) by performing∑

i∈{0,1}

|i〉〈i|R1
⊗W i†

AG→BE . (14)

The state at this point is then

1√
2

∑
i∈{0,1}

|i〉R1
W i†VW i|ψ〉RA|000〉GE′F , (15)

R

A
Veri�er

Prover

G|0〉
R1

Wi
B

E

V
F|0〉

E’|0〉

R

BB

E’

F

Wi†
B

E

A

G

|+〉

F

Fig. 2. In coherent quantum channel discrimination, the prover prepares a
pure state |ψ〉RA and the verifier the state |+〉. The verifier performs the
controlled unitary in (11). The prover acts on the channel output system B and
reference system R and sends B back along with a single qubit. The verifier
uncomputes the controlled unitary and finally implements the measurement
in (16).

where we omit system labels for brevity. The verifier finally
performs the measurement

{ΦR1F ⊗ |0〉〈0|G, IR1FG − ΦR1F ⊗ |0〉〈0|G} (16)

on systems R1FG, where ΦR1F ≡ |Φ〉〈Φ|R1F , and declares
“success” (or “prover wins!”) if the first outcome occurs. The
probability of success is equal to

pcoh
s (N 0,N 1, |ψ〉RA, VRBE′F )

:=
1

2

∥∥∥∥∥∥〈Φ|R1F 〈0|G
∑

i∈{0,1}

|i〉R1
W i†VW i|ψ〉RA|000〉GE′F

∥∥∥∥∥∥
2

2

=
1

2

∥∥∥∥∥∥〈Φ|R1F

∑
i∈{0,1}

|i〉R1U
i†V U i|ψ〉RA|00〉E′F

∥∥∥∥∥∥
2

2

, (17)

where the second expression follows from the fact that
U iA→BE = W i

AG→BE |0〉G. Figure 2 depicts coherent quantum
channel discrimination.

We can already observe that the success probability in (17)
is independent of the particular isometric extension U i of the
original channel N i

A→B for both i = 0 and i = 1. It is
thus solely a function of the channels N 0

A→B and N 1
A→B ,

as well as the particular strategy {|ψ〉RA, VRBE′F } of the
prover (as indicated by the notation in (17)). This follows
because the unitary VRBE′F that the prover performs does
not act on the environment system E. Thus, letting Ũ i be
some other isometric extension of N i

A→B , it follows that
Ũ i†V Ũ i = U i†V U i by employing the previously stated fact
that there exists an isometry TE′ (satisfying T †T = IE′ ) such
that Ũ i = TE′U i.

Just as in the guessing game presented in Section I, the
prover can optimize the success probability in (17) with
respect to all possible strategies {|ψ〉RA, VRBE′F }. Let us
denote the resulting success probability as follows:

pcoh
s (N 0,N 1) := sup

|ψ〉,V
pcoh
s (N 0,N 1, |ψ〉RA, VRBE′F ). (18)



The main goal of this paper is to understand this quantity in
more detail and relate it to the success probability in other
forms of channel discrimination.

III. EXAMPLE

As a very simple example to demonstrate the task of coher-
ent channel discrimination, suppose that the first channel N 0

is the identity channel and the second N 1 is the deterministic

bit-flip channel, i.e., N 1(·) = X(·)X†, where X =

[
0 1
1 0

]
is the Pauli flip operator. These channels are orthogonal to
each other, and a simple strategy for distinguishing them
perfectly in incoherent channel discrimination is to input the
state |0〉 and perform a computational basis measurement
{|0〉〈0|, |1〉〈1|}. If the first channel is applied, the output state
is |0〉, while if the second channel is applied, then the output
state is |1〉, and these two states are perfectly distinguishable.

For coherent channel discrimination, the same input state is
optimal. To see this, consider that the initial state of the verifier
and prover’s systems is |+〉R1

|0〉A (there is no reference
system R needed in this case). The controlled unitary in
(11), implemented by the verifier, is then a controlled-NOT
gate |0〉〈0| ⊗ I + |1〉〈1| ⊗ X , and there is no environment
system E because the channels are unitary channels. The
resulting state after the controlled unitary is |Φ〉R1B . The
prover can then perform a controlled-NOT gate from sys-
tem B to system F , and the resulting state is a GHZ state:
(|000〉R1BF + |111〉R1BF )/

√
2. The verifier then performs

the inverse of the controlled-NOT gate (itself a controlled-
NOT), and the resulting state is |Φ〉R1F |0〉B , so that the
Bell projection at the end succeeds with probability one; we
thus arrive at the sensible conclusion that these channels are
perfectly distinguishable in coherent channel discrimination.

This key example illustrates the necessity and sensibility
of the uncomputing step in coherent channel discrimination.
Without it, in this example, the final Bell projection would
succeed only with probability 1/2, leading to the unreasonable
conclusion that these channels would not be perfectly distin-
guishable in coherent channel discrimination. Uncomputing is
commonly employed in reversible and quantum computation
as a “clean-up” step [25], [26], [27], and it serves the same
purpose here.

IV. RESULTS

All proofs of the ensuing results appear in appendices.

A. Alternate expression

Proposition 1: For quantum channels N 0
A→B and N 1

A→B ,
the success probability in (18) is equal to

pcoh
s (N 0,N 1) =1

2
sup

{P i}
i∈{0,1}

:∑
i P

i†P i=IRB

∥∥∥∥∥∥
∑

i∈{0,1}

(N i
A→B)†(P iRB→RBE′)

∥∥∥∥∥∥
∞


2

.

(19)

The operators P iRB→RBE′ act on the Hilbert space for RB
and take them to the Hilbert space for RBE′. The dimension
of E′ need not be any larger than 2 |A| |B|2.

In the above, the ∞-norm of an operator X is defined as
‖X‖∞ = sup|ϕ〉6=0

‖X|ϕ〉‖2
‖|ϕ〉‖2

and the adjoint N † of a quantum
channel N is defined to be the unique linear map satisfying
Tr[[N †(Y )]†X] = Tr[Y †N (X)] for all operators X and Y .

It is interesting to contrast the expression in (19) with the
following expression for the success probability of incoherent
channel discrimination:

pinc
s (N 0,N 1) =

1

2
sup

{Λi
RB}i∈{0,1}

∥∥∥∥∥∥
∑

i∈{0,1}

(N i
A→B)†(ΛiRB)

∥∥∥∥∥∥
∞

,

(20)
where

∑
i∈{0,1} ΛiRB = IRB and ΛiRB ≥ 0. This expression

comes about from that in (8) by employing the definition
of the ∞-norm and the adjoint of a quantum channel. Even
by examining these expressions, we can see how (19) is
a coherent version of (20). The expression in (19) is like
the square of a probability amplitude (the latter being the
expression inside the ∞-norm), and it involves operators for
which the sum of their squares is equal to the identity instead
of their sums being equal to the identity.

B. Bounds on success probability

Proposition 2: The following bounds hold for the success
probability in (18):

1/2 ≤ pcoh
s (N 0,N 1) ≤ 1. (21)

The upper bound is saturated if and only if the channels
are orthogonal (i.e., there exists a pure state ψRA such that
N 0
A→B(ψRA)N 1

A→B(ψRA) = 0). The lower bound is satu-
rated if the channels are identical (i.e., indistinguishable).

The upper bound is obvious since pcoh
s is a probability, and

the necessary and sufficient condition for saturation follows
by employing the bounds

pcoh
s (N 0,N 1) ≤ pinc

s (N 0,N 1) ≤
√
pcoh
s (N 0,N 1), (22)

discussed later. The lower bound follows by setting P i =√
1/2IRB ⊗ |0〉E′ for i ∈ {0, 1} in (19), which corresponds

to “not even trying to distinguish,” and the sufficient saturation
condition follows by direct evaluation.

C. Non-increase under a superchannel

A key property of the success probability pcoh
s (N 0,N 1) in

(18) is that it does not increase under the action of a quantum
superchannel. This is a basic property expected of any channel
distinguishability measure, and it was recently shown that the
diamond distance (and thus the success probability in (8))
satisfies this property [28].

To expand upon this statement, recall from [29] that a
quantum superchannel is a physical mapping of a quantum
channel to a quantum channel, and it should be this way even
when acting on one share of an arbitrary bipartite channel. In
more detail, a superchannel Θ(A→B)→(C→D) is a linear map



that completely preserves the properties of complete positivity
and trace preservation. Then for an arbitrary input bipartite
channel MRA→RB , the output Θ(A→B)→(C→D)(MRA→RB)
is a bipartite channel from systems RC to systems RD. The
fundamental theorem of superchannels is that any superchan-
nel has a physical realization in terms of a pre-processing
channel EC→AM and a post-processing channel DBM→D [29]:

Θ(A→B)→(C→D)(MRA→RB) =

DBM→D ◦MRA→RB ◦ EC→AM . (23)

With the fundamental theorem of superchannels in hand, we
can arrive at an operational proof that the success probability
in (18) does not increase under the action of a superchannel.
To see this, consider that a particular strategy of the prover
for coherently distinguishing the channels N 0 and N 1 is to
prepare a state |ψ〉RC and act with an isometric extension
UEC→AMM1

of the pre-processing EC→AM on system C. Then
the verifier performs the controlled unitary in (11), and the
prover performs an isometric extension UDBM→DM2

of the
post-processing DBM→D, the unitary VRBE′F , and the adjoint
of UDBM→DM2

(the last being implemented by a unitary and a
projection). The verifier finally performs the inverse of (11)
and the projective measurement in (16). Since the success
probability does not increase under the action of the adjoint
of UEC→AMM1

and since this is a particular strategy for
coherent discrimination of N 0 and N 1, while being a general
strategy for coherent discrimination of Θ(N 0) and Θ(N 1), we
conclude that the success probability does not increase under
the action of a superchannel:

Theorem 1: Let N 0
A→B and N 1

A→B be quantum channels,
and let Θ(A→B)→(C→D) be a quantum superchannel. Then the
success probability of coherent channel discrimination in (18)
does not increase under the action of Θ(A→B)→(C→D):

pcoh
s (N 0,N 1) ≥ pcoh

s (Θ(N 0),Θ(N 1)). (24)

A strictly mathematical proof of (24) is to employ (19),
the fundamental theorem of superchannels in (23), and the
fact that the ∞-norm does not increase under the action of a
completely positive unital map or a projection.

D. Computable by semi-definite programming

The success probability in (18) can be computed by means
of the following semi-definite program:

sup
σR1FBE ,

ρA

{
Tr[YR1FBEσR1FBE ] : TrBF [σR1FBE ] = ZρR1E

}
,

(25)
where σR1FBE and ρA are density operators and

YR1FBE :=
1

2

∑
i,j∈{0,1},k,`

|ii〉〈jj|R1F ⊗N i
kN

j†
` ⊗ |k〉〈`|E ,

ZρR1E
:=

1

2

∑
i,j∈{0,1},k,`

Tr[N j†
` N

i
kρA]|i〉〈j|R1

⊗ |k〉〈`|E ,

with {N i
k}k a set of Kraus operators for the channel N i

A→B
for i ∈ {0, 1}. This follows from the observation that coherent

channel discrimination is a quantum interactive proof, and the
acceptance probability of any quantum interactive proof can be
calculated by means of a semi-definite program [30], [10]. In
the above semi-definite program, the density operator ρA can
be understood as the reduction of the initial state of the prover
on system A, and the density operator ZρR1E

is the reduced
state from (12) on systems R1E. The projection YR1FBE

corresponds to the concatenation of the inverse unitary in (14)
followed by the projection in (16) onto the accepting subspace.
The equality constraint in (25) corresponds to the fact that the
state of the verifier on systems R1 and E should be the same
before and after the prover acts with the unitary VRBE′F .

The dual semi-definite program is given by

inf
λ,WR1E

λ subject to (26)

WR1E ⊗ IBF ≥ YR1EBF , (27)

λIA ≥
1

2

∑
i,j∈{0,1},k,`

wikj`R1E
N i†
k N

j
` , (28)

where λ ∈ R, the operator WR1E is Hermitian, and wikj`R1E
:=

〈i|R1
〈k|EWR1E |j〉R1

|`〉E . This follows by the standard La-
grange multiplier method.

V. INCOHERENT CHANNEL DISCRIMINATION WITH
UNCOMPUTING

Another variation of channel discrimination is to follow the
same protocol for coherent channel discrimination but have
the initial state be the maximally mixed state and the final
measurement be as in (6), with the first outcome indicating
success. So this is the main difference with coherent channel
discrimination, and the main difference with incoherent chan-
nel discrimination is that we include a step for uncomputing.
Let pinc,unc

s (N 0,N 1) denote the success probability for this
case. We then have the following bounds, implying (22):

pcoh
s ≤ pinc,unc

s ≤ pinc
s ≤

√
pcoh
s , (29)

where the channel arguments are left implicit for brevity.

VI. CONCLUSION

This paper has introduced a coherent version of quantum
channel discrimination and investigated various aspects of the
success probability. I have proven an alternate expression
for it in Proposition 1, some bounds in Proposition 2 and
Eq. (29), that it does not increase under the action of a quantum
superchannel, and that it can be calculated by means of a semi-
definite program. An intriguing open question is to determine
if pcoh

s − 1/2 is a metric on quantum channels. Consider that
pinc
s − 1/2 is, as is clear from (8).
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APPENDIX A
PROOF OF PROPOSITION 1

Let us begin with the expression in (17) for the unoptimized
success probability:

1

2

∥∥∥∥∥∥〈Φ|R1F

∑
i∈{0,1}

|i〉R1
U i†V U i|ψ〉RA|00〉E′F

∥∥∥∥∥∥
2

2

=
1

4

∥∥∥∥∥∥
∑

i,j∈{0,1}

〈jj|R1F |i〉R1
U i†V U i|ψ〉RA|00〉E′F

∥∥∥∥∥∥
2

2

(30)

=
1

4

∥∥∥∥∥∥
∑

i∈{0,1}

〈i|FU i†V U i|ψ〉RA|00〉E′F

∥∥∥∥∥∥
2

2

(31)

=
1

4

∥∥∥∥∥∥
∑

i∈{0,1}

〈i|FN i†(V )|ψ〉RA|00〉E′F

∥∥∥∥∥∥
2

2

, (32)

where we used the fact that U i†V U i can be expressed in terms
of the channel adjoint as N i†(V ) [24]. Let us write

VRBE′F =
∑

j,k∈{0,1}

Qj,kRBE′ ⊗ |j〉〈k|F , (33)

where the operators Qj,kRBE′ satisfy

Q0,0†
RBE′Q

0,0
RBE′ +Q1,0†

RBE′Q
1,0
RBE′ = IRBE′ , (34)

Q0,1†
RBE′Q

0,0
RBE′ +Q1,1†

RBE′Q
1,0
RBE′ = 0, (35)

Q0,0†
RBE′Q

0,1
RBE′ +Q1,0†

RBE′Q
1,1
RBE′ = 0, (36)

Q0,1†
RBE′Q

0,1
RBE′ +Q1,1†

RBE′Q
1,1
RBE′ = IRBE′ , (37)

in order for VRBE′F to be unitary. Then we find that

〈i|FN i†(V )|ψ〉RA|00〉E′F

=
∑

j,k∈{0,1}

〈i|F
[
N i†(Qj,kRBE′)⊗ |j〉〈k|F

]
|ψ〉RA|00〉E′F

= N i†(Qi,0RBE′)|ψ〉RA|0〉E′

= N i†(Qi,0RBE′ |0〉E′)|ψ〉RA (38)

which leads to

Eq. (32) =
1

4

∥∥∥∥∥∥
∑

i∈{0,1}

N i†(Qi,0RBE′ |0〉E′)|ψ〉RA

∥∥∥∥∥∥
2

2

. (39)

Now optimizing over all input states |ψ〉RA and unitaries
VRBE′F , while setting

P iRB→RBE′ := Qi,0RBE′ |0〉E′ , (40)

we find that

pcoh
s (N 0,N 1) =

sup

{P i}
i∈{0,1}

:∑
i P

i†P i=IRB

1

4

∥∥∥∥∥∥
∑

i∈{0,1}

N i†(P iRB→RBE′)

∥∥∥∥∥∥
2

∞

. (41)

Also, note that to any set
{
P i
}
i∈{0,1} satisfying

∑
i P

i†P i =

IRB , we can complete it to a unitary VRBE′F .
Since the unitary VRBE′F implements a quantum channel

from systems RB to BF , and since the dimension of the
environment of any quantum channel need not be larger than
the product of the input and output dimensions, it suffices to
take |E′| = |R| |B|2 |F |. Since |R| = |A| and |F | = 2, it
suffices to take |E′| = 2 |A| |B|2 as claimed.

APPENDIX B
PROOF OF PROPOSITION 2

The upper bound in (21) trivially follows because
pcoh
s (N 0,N 1) is a probability. The lower bound in (21) follows

by picking P iRB→RBE′ =
√

1/2IRB ⊗ |0〉E′ for i ∈ {0, 1}
and evaluating (19). Consider that1

2
sup

{P i}
i∈{0,1}

:∑
i P

i†P i=IRB

∥∥∥∥∥∥
∑

i∈{0,1}

(N i
A→B)†(P iRB→RBE′)

∥∥∥∥∥∥
∞


2

≥

1

2

∥∥∥∥∥∥
√

1

2

∑
i∈{0,1}

(N i
A→B)†(IRB ⊗ |0〉E′)

∥∥∥∥∥∥
∞

2

(42)

=

[
1

2
√

2
‖2(IRB ⊗ |0〉E′)‖∞

]2

(43)

=

[
1√
2

]2

=
1

2
. (44)

The first inequality follows by picking P iRB→RBE′ as indi-
cated. The first equality follows because (N i

A→B)† is a unital
map.

If the channels N 0
A→B and N 1

A→B are the same (so that
N 0
A→B = N 1

A→B = NA→B), then consider for
{
P i
}
i∈{0,1}

satisfying
∑
i∈{0,1} P

i†P i = IRB that1

2

∥∥∥∥∥∥
∑

i∈{0,1}

(N i
A→B)†(P iRB→RBE′)

∥∥∥∥∥∥
∞

2

=

1

2

∥∥∥∥∥∥(NA→B)†

 ∑
i∈{0,1}

P iRB→RBE′

∥∥∥∥∥∥
∞

2

(45)

≤

1

2

∥∥∥∥∥∥
∑

i∈{0,1}

P iRB→RBE′

∥∥∥∥∥∥
∞

2

(46)

=
1

4

∥∥∥∥∥∥
∑

i∈{0,1}

P iRB→RBE′

∥∥∥∥∥∥
2

∞

(47)

=
1

4

∥∥∥∥∥∥
 ∑
j∈{0,1}

P j†RB→RBE′

 ∑
i∈{0,1}

P iRB→RBE′

∥∥∥∥∥∥
∞
(48)

=
1

4

∥∥P 0†P 0 + P 1†P 1 + P 1†P 0 + P 0†P 1
∥∥
∞ (49)



≤ 1

4

∥∥2
(
P 0†P 0 + P 1†P 1

)∥∥
∞ (50)

= 1/2. (51)

The first equality follows from the assumption that the chan-
nels are the same. The first inequality follows because the op-
erator norm is non-increasing under the action of a completely
positive unital map [31]. The third equality follows because
‖A‖2∞ =

∥∥A†A∥∥∞. The second inequality follows because

P 1†P 0 + P 0†P 1 ≤ P 0†P 0 + P 1†P 1, (52)

which is equivalent to(
P 0† − P 1†) (P 0 − P 1

)
≥ 0. (53)

The final equality follows because
∑
i∈{0,1} P

i†P i = IRB
and ‖I‖∞ = 1. Since the lower bound in (21) always holds,
we conclude that pcoh

s (N 0,N 1) = 1/2 if N 0 = N 1.
If the channels N 0 and N 1 are perfectly distinguishable,

then this means that pinc
s (N 0,N 1) = 1. Applying the upper

bound in (22) implies that pcoh
s (N 0,N 1) = 1. If instead

pcoh
s (N 0,N 1) = 1, then the lower bound in (22) implies that
pinc
s (N 0,N 1) = 1. Then if pinc

s (N 0,N 1) = 1, it is known that
N 0 and N 1 are perfectly distinguishable. The bounds in (22)
are proved in Appendix E.

APPENDIX C
PROOF OF THEOREM 1

This appendix establishes a proof of Theorem 1, which
states that the success probability in (18) does not increase
under the action of a quantum superchannel.

First let us consider a more mathematical proof that re-
quires fewer steps. Let Θ(A→B)→(C→D) denote a quantum
superchannel. Exploiting the expression in (19), we can write
the success probability pcoh

s (Θ(N 0),Θ(N 1)) as

pcoh
s (Θ(N 0),Θ(N 1)) =1

2
sup
{Qi}

i
:∑

iQ
i†Qi=I

∥∥∥∥∥∥
∑

i∈{0,1}

(Θ(N i
A→B))†(QiRD→RDE′′)

∥∥∥∥∥∥
∞


2

.

(54)

Let
{
Qi
}
i∈{0,1} be an arbitrary set of operators satisfying∑

iQ
i†Qi = IRD. Then consider from the fundamental

theorem of superchannels in (23) that∥∥∥∥∥∥
∑

i∈{0,1}

(Θ(N i
A→B))†(QiRD→RDE′′)

∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥
∑

i∈{0,1}

((EC→AM )† ◦ (N i
A→B)† ◦ (DBM→D)†)(Qi)

∥∥∥∥∥∥
∞

≤

∥∥∥∥∥∥
∑

i∈{0,1}

((N i
A→B)† ◦ (DBM→D)†)(QiRD→RDE′′)

∥∥∥∥∥∥
∞

,

(55)

where the inequality follows from the fact that a completely
positive unital map does not increase the operator norm [31].
Let WBMG′→DM2 be a unitary extension of DBM→D, with
input environment G′ and output environment M2, so that

DBM→D(·) =

TrM2
[WBMG′→DM2

[(·)⊗ |0〉〈0|G′ ](WBMG′→DM2
)†]. (56)

Then it is well known [24] that

(DBM→D)†(·) =

〈0|G′(WBMG′→DM2)†[(·)⊗ IM2 ]WBMG′→DM2 |0〉G′ . (57)

Substituting above, we find that

Eq. (55)

=

∥∥∥∥∥∥
∑

i∈{0,1}

(N i
A→B)†(〈0|G′W †(Qi ⊗ IM ′)W |0〉G′)

∥∥∥∥∥∥
∞

≤

∥∥∥∥∥∥
∑

i∈{0,1}

(N i
A→B)†(W †(QiRD→RDE′′ ⊗ IM ′)W |0〉G′)

∥∥∥∥∥∥
∞

≤ sup
{P i}

i∈{0,1}
:∑

i P
i†P i=IRB

∥∥∥∥∥∥
∑

i∈{0,1}

(N i
A→B)†(P iRB→RBE′)

∥∥∥∥∥∥
∞

= 2
√
pcoh
s (N 0,N 1). (58)

The first inequality follows because a projection onto
〈0|G′ does not increase the operator norm, and the sec-
ond inequality follows because the set {W †(QiRD→RDE′′ ⊗
IM ′)W |0〉G′}i is a particular choice of

{
P i
}
i∈{0,1} satisfying∑

i P
i†P i = IRB . We then conclude the inequality in (24)

since
{
Qi
}
i∈{0,1} is an arbitrary set of operators satisfying∑

iQ
i†Qi = IRD.

A more operational proof of Theorem 1 goes along the lines
discussed in Section IV-C and is depicted in Figure 3. The
main idea behind this operational proof is that the strategy
depicted in Figure 3 is a particular strategy for coherent
channel discrimination of the channels N 0

A→B and N 1
A→B ,

but it is a general strategy for coherent channel discrim-
ination of the channels Θ(N 0

A→B) and Θ(N 1
A→B), where

Θ(A→B)→(C→D) is a quantum superchannel. Let W i
AG→BE

be a unitary extension of the channel N i
A→B , so that

N i
A→B(·) =

TrE [W i
AG→BE((·)⊗ |0〉〈0|E)(W i

AG→BE)†]. (59)

Let Θ(A→B)→(C→D) be a quantum superchannel, and by
the fundamental theorem of superchannels, it has a physical
realization as in (23). Let W ECL→AMM1

be a unitary extension
of the channel EA→BM , and let WDBMG′→DM2

be a unitary
extension of the channel DBM→D, so that

EA→BM (·) =

TrM1 [W ECL→AMM1
((·)⊗ |0〉〈0|L)(W ECL→AMM1

)†]. (60)
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Fig. 3. Depiction of the operational proof of Theorem 1. This is a particular strategy for coherent channel discrimination of the channels N 0
A→B and N 1

A→B ,
but it is a general strategy for coherent channel discrimination of Θ(N 0

A→B) and Θ(N 1
A→B), where Θ(A→B)→(C→D) is a quantum superchannel.

and

DBM→D(·) =

TrM2
[WDBMG′→DM2

((·)⊗ |0〉〈0|G′)(WDBMG′→DM2
)†].

(61)

From (32), we know that the success probability for coherent
channel discrimination of Θ(N 0

A→B) and Θ(N 1
A→B), for a

fixed strategy {|ψ〉RC , VRDFE′}, is given by

1

4

∥∥∥∥∥∥
∑

i∈{0,1}

〈i|FT i†V T i|ψ〉RC |00〉E′F

∥∥∥∥∥∥
2

2

, (62)

where for i ∈ {0, 1},

T iC→DM1M2E :=

WDBMG′→DM2
W i
AG→BEW

E
CL→AMM1

|0〉L|0〉G|0〉G′ . (63)

This follows because T iC→DM1M2E
is an isometric extension

of the channel Θ(N i
A→B) for i ∈ {0, 1}. Since the Euclidean

norm is non-increasing with respect to the projections onto
|0〉L and |0〉G′ , we find that

Eq. (62)

≤ 1

4

∥∥∥∥∥∥
∑

i∈{0,1}

〈i|F 〈0|GW E†W i†WD†V T i|ψ〉RC |00〉E′F

∥∥∥∥∥∥
2

2

=
1

4

∥∥∥∥∥∥
∑

i∈{0,1}

〈i|F 〈0|GW i†WD†V T i|ψ〉RC |00〉E′F

∥∥∥∥∥∥
2

2

, (64)

where for the last equality we used that W ECL→AMM1
is

unitary and not acting on any of the systems being pro-
jected out. Now we observe that W ECL→AMM1

|ψ〉RC |0〉L|0〉G′

is a particular pure state that the prover can use for co-
herent channel discrimination of N 0

A→B and N 1
A→B , and

(WDBMG′→DM2
)†VRDFE′WDBMG′→DM2

is a particular uni-
tary that the prover can use for the same purpose. So we
conclude that

Eq. (64) ≤ pcoh
s (N 0,N 1). (65)

Since the strategy employed for distinguishing Θ(N 0
A→B) and

Θ(N 1
A→B) is arbitrary, we conclude the operational proof of

Theorem 1.

APPENDIX D
PROOF OF SEMI-DEFINITE PROGRAMMING FORMULATION

IN EQ. (25)

Here I establish the particular form of the success proba-
bility in (25), which demonstrates that (18) can be calculated
by means of a semi-definite program. As stated previously,
this follows from the fact that coherent channel discrimination
is a quantum interactive proof system, and the acceptance
probability of any quantum interactive proof system can be
calculated via a semi-definite program [30], [10]. In particular,
coherent channel discrimination is a three-message quantum
interactive proof system. Recall from [10, Section 4.3] that a
three-message interactive proof system is specified by two lin-
ear isometries T 1

Y0→Z1X1
and T 2

Z1Y1→Z2
for the initial circuit

of the verifier and the final circuit of the verifier before the
measurement, respectively (in particular, see [10, Figure 4.5]).
Then the semi-definite program for the acceptance probability
is given by [10, Figure 4.6] as

sup Tr[T 2†ΠT 2σ1], (66)

subject to

Tr[σ0] = 1, (67)

TrY1 [σ1] = TrX1 [T 1σ0T
1†], (68)

where Π is the projection onto the accepting subspace and
σi is positive semi-definite for i ∈ {0, 1}. The constraints
correspond to the fact that the initial reduced state σ0 of the
prover should be a density operator and that the reduced state



of the verifier on system Z1 should be the same before and
after the prover acts.

In our case, the initial reduced state σ0 is on system A and
so we can call it ρA. The isometry T 1

Y0→Z1X1
corresponds to

the action in (12):

|ϕ〉A →
1√
2

∑
i∈{0,1}

|i〉R1
U iA→BE |ϕ〉A, (69)

where U iA→BE = W i
AG→BE |0〉G and system Y0 is A, Z1 is

R1E, and X1 is B. The right-hand side above can be rewritten
using Kraus operators for channel N i

A→B as

1√
2

∑
i∈{0,1},k

|i〉R1
N i
k|ϕ〉A|k〉E . (70)

So we find that

TrX1
[T 1σ0T

1†]

=
1

2
TrB

 ∑
i,j∈{0,1},k,`

|i〉〈j|R1
⊗N i

kρAN
j†
` ⊗ |k〉〈`|E


=

1

2

∑
i,j∈{0,1},k,`

Tr[N i
kρAN

j†
` ]|i〉〈j|R1

⊗ |k〉〈`|E

=
1

2

∑
i,j∈{0,1},k,`

Tr[N j†
` N

i
kρA]|i〉〈j|R1

⊗ |k〉〈`|E

= ZρR1E
, (71)

as defined after (25). The state σ1 of the prover on systems
Z1 and Y1 is denoted by σR1EFB , with Z1 being R1E and
Y1 being FB. The isometry T 2

Z1Y1→Z2
corresponds to the

action in (14) (the inverse controlled unitary), with Z2 being
R1AGF . The projection Π onto the accepting subspace is
ΦR1F ⊗ IA ⊗ |0〉〈0|G. So we find that

T 2†ΠT 2

=

 ∑
i∈{0,1}

|i〉〈i|R1
⊗W i

AG→BE

ΦR1F ⊗ IA ⊗ |0〉〈0|G

×

 ∑
j∈{0,1}

|j〉〈j|R1
⊗ (W j

AG→BE)†


=

∑
i,j∈{0,1}

|i〉〈i|R1
ΦR1F |j〉〈j|R1

⊗N i
kN

j†
` ⊗ |k〉〈`|E

=
1

2

∑
i,j∈{0,1}

|ii〉〈jj|R1F ⊗N i
kN

j†
` ⊗ |k〉〈`|E

= YR1FBE , (72)

as defined after (25). This concludes the proof of (25).
The dual program in (26) follows from standard techniques

(Lagrange multiplier method) or by plugging into [10, Fig-
ure 4.7].

APPENDIX E
PROOF OF BOUNDS RELATING SUCCESS PROBABILITIES IN
COHERENT AND INCOHERENT CHANNEL DISCRIMINATION

This appendix establishes a proof of the bounds in (29). Let
us begin by establishing an expression for pinc,unc

s (N 0,N 1):
Proposition 3: LetN 0

A→B andN 1
A→B be quantum channels.

Then the success probability of incoherent channel discrimi-
nation with uncomputing can be written as

pinc,unc
s (N 0,N 1) =

1

2
sup

{P i}
i∈{0,1}

:∑
i P

i†P i=IRB

∥∥∥∥∥∥
∑

i∈{0,1}

N i†(P i†)N i†(P i)

∥∥∥∥∥∥
∞

, (73)

where the operators are written without abbreviation as
P iRB→RBE′ .
Proof. The analysis is similar to that given in Appendix A.
Considering that the initial state of the verifier, the maximally
mixed state, can be purified by the maximally entangled state
|Φ〉R2R1

and by running through a calculation similar to that
given in (11)–(17), we find that the unoptimized success
probability for a fixed strategy of the prover is equal to

1

2

∥∥∥∥∥∥ΠR1F

∑
i∈{0,1}

|i〉R2
|i〉R1

U i†V U i|ψ〉RA|00〉E′F

∥∥∥∥∥∥
2

2

=
1

2

∥∥∥∥∥∥ΠR1F

∑
i∈{0,1}

|i〉R2
|i〉R1

N i†(V )|ψ〉RA|00〉E′F

∥∥∥∥∥∥
2

2

(74)

where
ΠR1F :=

∑
j∈{0,1}

|jj〉〈jj|R1F . (75)

This leads to

Eq. (74)

=
1

2

∥∥∥∥∥∥
∑

i∈{0,1}

|iii〉R2R1F 〈i|FN i†(V )|ψ〉RA|00〉E′F

∥∥∥∥∥∥
2

2

(76)

=
1

2

∥∥∥∥∥∥
∑

i∈{0,1}

|iii〉R2R1FN i†(P iRB→RBE′)|ψ〉RA

∥∥∥∥∥∥
2

2

(77)

=
1

2

∑
i∈{0,1}

〈ψ|RAN i†((P i)†)N i†(P i)|ψ〉RA, (78)

where in the second line we made use of (38) and (40), and
the last line follows by direct evaluation of the norm. Now
optimizing over all strategies of the prover and employing the
definition of the operator norm, we conclude (73).

We can now establish (29). Let us start by proving

pcoh
s (N 0,N 1) ≤ pinc,unc

s (N 0,N 1). (79)



Starting from (19), let
{
P iRB→RBE′

}
i∈{0,1} be arbitrary op-

erators satisfying
∑
i P

i†P i = IRB . Then

1

4

∥∥∥∥∥∥
∑

i∈{0,1}

N i†(P i)

∥∥∥∥∥∥
2

∞

(80)

=
1

4

∥∥∥∥∥∥
 ∑
j∈{0,1}

N j†(P j†)

 ∑
i∈{0,1}

N i†(P i)

∥∥∥∥∥∥
∞

(81)

≤ 1

2

∥∥∥∥∥∥
∑

i∈{0,1}

N i†(P i†)N i†(P i)

∥∥∥∥∥∥
∞

(82)

≤ pinc,unc
s (N 0,N 1) (83)

The equality follows because ‖X‖2∞ =
∥∥X†X∥∥∞ for any

operator X . The first inequality follows from the same
reasoning as in (52). Since

{
P iRB→RBE′

}
i∈{0,1} satisfying∑

i P
i†P i = IRB is arbitrary, we conclude (79).

Now let us prove that

pinc,unc
s (N 0,N 1) ≤ pinc

s (N 0,N 1). (84)

Let
{
P iRB→RBE′

}
i∈{0,1} be arbitrary operators satisfying∑

i P
i†P i = IRB . Then consider that∑
i∈{0,1}

N i†(P i†)N i†(P i) ≤
∑

i∈{0,1}

N i†(P i†P i), (85)

as a direct consequence of the Kadison–Schwarz inequality
(see [32, Exercise 6.7]). Then set ΛiRB = P i†P i and these
operators satisfy ΛiRB ≥ 0 for i ∈ {0, 1} and

∑
i∈{0,1} ΛiRB =

IRB . Thus,

1

2

∥∥∥∥∥∥
∑

i∈{0,1}

N i†(P i†)N i†(P i)

∥∥∥∥∥∥
∞

≤ 1

2

∥∥∥∥∥∥
∑

i∈{0,1}

N i†(P i†P i)

∥∥∥∥∥∥
∞

(86)

≤ pinc
s (N 0,N 1), (87)

where in the last line we exploit (20).
Let us finally establish

pinc
s (N 0,N 1) ≤

√
pcoh
s (N 0,N 1). (88)

By picking P iRB→RBE′ =
√

ΛiRB ⊗ |0〉E′ , where ΛiRB ≥ 0
for i ∈ {0, 1} and

∑
i∈{0,1} ΛiRB = IRB , and exploiting (19),

we find that

2
√
pcoh
s (N 0,N 1)

= sup
{P i}

i∈{0,1}
:∑

i P
i†P i=IRB

∥∥∥∥∥∥
∑

i∈{0,1}

(N i
A→B)†(P iRB→RBE′)

∥∥∥∥∥∥
∞

(89)

≥

∥∥∥∥∥∥
∑

i∈{0,1}

(N i
A→B)†

(√
ΛiRB ⊗ |0〉E′

)∥∥∥∥∥∥
∞

(90)
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Fig. 4. Comparison of the success probabilities of coherent and incoherent
channel discrimination for a generalized amplitude damping channel with
damping parameter γ = 0.1 and another with damping parameter γ = 0.9.
The channels have the same value of the noise parameter N , which is varied
in the plot.

=

∥∥∥∥∥∥
∑

i∈{0,1}

(N i
A→B)†

(√
ΛiRB

)∥∥∥∥∥∥
∞

(91)

≥

∥∥∥∥∥∥
∑

i∈{0,1}

(N i
A→B)†(ΛiRB)

∥∥∥∥∥∥
∞

, (92)

where the last inequality follows because
√

Λ ≥ Λ for 0 ≤
Λ ≤ I . Since {ΛiRB}i∈{0,1} is arbitrary, we conclude (88)
after making use of (20).

APPENDIX F
COMPARISON OF COHERENT AND INCOHERENT CHANNEL

DISCRIMINATION FOR GENERALIZED AMPLITUDE DAMPING
CHANNELS

In this final appendix, I perform a comparison of the success
probability of coherent and incoherent channel discrimination
for generalized amplitude damping channels. The generalized
amplitude damping channel is a simple model of relaxation
and thermal noise that can affect a qubit [27]. It is governed
by a damping parameter γ ∈ [0, 1] and a noise parameter
N ∈ [0, 1]. When the noise parameter N = 0, it reduces to
the standard amplitude damping channel. It is defined by the
following four Kraus operators [27]:

√
1−N

(
|0〉〈0|+

√
1− γ|1〉〈1|

)
, (93)√

γ(1−N)|0〉〈1|, (94)
√
N
(√

1− γ|0〉〈0|+ |1〉〈1|
)
, (95)√

γN |1〉〈0|. (96)

Using these Kraus operators and the semi-definite pro-
gramming formulation of the success probability of coherent
channel discrimination from (25), we can calculate it for
generalized amplitude damping channels (Matlab files for



0 0.1 0.2 0.3 0.4 0.5

Noise parameter N

0.5

0.51

0.52

0.53

0.54

0.55
S

u
c
c
e
s
s
 p

ro
b
a
b
ili

ty
Incoherent Channel Discrimination

Coherent Channel Discrimination

Fig. 5. Comparison of the success probabilities of coherent and incoherent
channel discrimination for a generalized amplitude damping channel with
damping parameter γ = 0.2 and another with damping parameter γ = 0.3.
The channels have the same value of the noise parameter N , which is varied
in the plot.

doing so are available with the arXiv posting of this paper). We
can also calculate the success probability of incoherent channel
discrimination of the same channels by using the semi-definite
programming formulation of the diamond distance from [14]
and combining with (8).

Figures 4 and 5 compare the success probabilities of co-
herent and incoherent channel discrimination for generalized
amplitude damping channels with different values of the
damping parameter γ and the noise parameter N .
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