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Abstract

In digital systems such as fiber optical communications, the ratio between prob-

ability of errors of type 1 → 0 and 0 → 1 can be large. Practically, one can

assume that only one type of error can occur. These errors are called asym-

metric. Unidirectional errors differ from asymmetric type of errors; here both

1 → 0 and 0 → 1 type of errors are possible, but in any submitted codeword all

the errors are of the same type. This can be generalized for the q-ary case.

We consider q-ary unidirectional channels with feedback and give bounds

for the capacity error function. It turns out that the bounds depend on the

parity of the alphabet q. Furthermore, we show that for feedback, the capacity

error function for the binary asymmetric channel is different from the symmetric

channel. This is in contrast to the behavior of the function without feedback.
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1. Introduction

Shannon analyzed the capacity of a channel based on probabilistic notions.

The arguably easiest example is a binary symmetric channel (BSC) with crossover

probability ε. In a probabilistic model the number of errors in a block of symbols

can be (having different probability) any number between 0 and the blocklength

n. In this paper we analyze the situation when the fraction of erroneous symbols

is upper bounded by τ = t
n , where t denotes the maximal number of errors per

block. Our focus in this work lies in the analysis of the capacity error function

of unidirectional channels.

The analysis in this paper is purely combinatorial. That means that we are

not distinguishing between likely and unlikely errors. We only consider whether

a certain output may occur given that a certain symbol was chosen at the input

of the channel.

The difference between symmetrical, asymmetrical and unidirectional er-

rors is described in [12]. A unidirectional channel is composed of two special

asymmetric channels. During the transmission of each codeword, one of the

two channels is randomly selected. Within the transmission of those codeword

symbols, the channel behaves like the selected channel and remains unchanged.

After each transmitted codeword, the channel is reselected. Precise definitions

are given in Section 2.

Asymmetrical channels model photon communication systems better than

symmetrical channels. Due to losses within the transmission medium, photons

may not reach the receiver. However, the channel cannot generate photons on its

own. Therefore the channel is of asymmetric nature [12, 1.3]. For a transmission

without feedback, the binary Z-channel (Figure 3) has the same capacity error

function as the symmetric channel (Figure 2). This has already been shown

by Bassalygo in [3]. Asymmetric and unidirectional channels without feedback

are analyzed in numerous publications. The major results and references can

be found in [10] and [12]. In this paper we give lower and upper bounds on

the capacity error function of asymmetric and unidirectional channels in the
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presence of noiseless feedback. For a wide range of τ , we show that the capacity

error function for the unidirectional channel composed out of a Z-channel and

an inverse Z-channel is larger compared to the one of the symmetric channel .

2. Q-ary codes with feedback

In our transmission scheme, a sender wants to transmit a finite number of

messages over a channel with noiseless feedback (see Figure 1). The discrete

channel has a q-ary alphabet X = Q = {0, . . . , q − 1} at its input and at its

output, Y = Q. Each message m is encoded into a block of length n. For

channels without feedback, the codeword c to be transmitted over the channel

only depends on the message m. In a feedback channel the situation is different.

SENDER CHANNEL RECEIVER

feedback

noise

Figure 1: Channel with feedback

Definition 1. 1. Let the set of possible messages be denoted as M = {1, . . . ,M}.
Then an encoding algorithm for a feedback channel with blocklength n is a

set of functions

ci : M×Qi−1 → Q, i ∈ {1, . . . , n} . (1)

The respective coding algorithm is then constructed as

c(m, yn−1) = ((c1(m), c2(m, y1), . . . , cn(m, yn−1)) , (2)

where yk = (y1, . . . , yk).
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2. An encoding algorithm is (n,M, t)f -successful if the corresponding decoder

decodes correctly for any transmitted message m and any error pattern with

less than or equal t errors caused by the channel.

Definition 1 shows that the encoder may adjust its algorithm for sending the

kth symbol ck according to the previously received symbols yk−1. This extra

flexibility can be used to increase the achievable rate of the system.

Definition 2. Let 2 ≤ q ∈ N. The capacity error function Cf
q (Γ, τ) of a chan-

nel Γ with noiseless feedback denotes the supremum on the rates for which a

successful algorithm exists depending on τ = t
n as the blocklength n goes to in-

finity. t denotes the maximum number of errors inflicted by the channel noise

and q specifies the alphabet size of the channel.

The capacity error function for τ = 1 is denoted as Cf
q,0(Γ) and was intro-

duced by Shannon in [11] under the term zero error capacity of the channel.

If the sender and the receiver share a channel with noiseless passive feedback

(Figure 1), the capacity error function of the symmetric channel is only com-

pletely known for the binary case.

The most frequently analyzed communication channels are of symmetric

nature. As an example, we give the previously mentioned symmetric channel

Γ2 (Figure 2). In this case it is possible to receive a 1 when a 0 was transmitted

and a 0 when a 1 was transmitted. Both events denote an error, because the

correct reception of a symbol is considered to be the event that the sent symbol

matches the received symbol. In the binary case, the capacity error function of

the symmetric channel was found by Berlekamp [4] and Zigangirov [13]

Cf
2 (Γ

2, τ) =























1− h(τ) if 0 ≤ τ ≤ (3 +
√
5)−1

(1− 3τ) log
(

1+
√
5

2

)

if (3 +
√
5)−1 ≤ τ ≤ 1

3

0 if τ > 1
3 .

(3)

In general, discrete channels can be specified by bipartite graphs.
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Definition 3 (Discrete channel/bipartite graph). A discrete channel cor-

responds to a bipartite graph in the following way. Let Vin denote the set of

possible input symbols and let Vout denote the set of possible output symbols.

Then if it is possible that the channel maps input symbol i ∈ Vin to output

symbol j ∈ Vout, the pair (i, j) is part of the set of edges E ⊂ Vin × Vout. Con-

versely, a bipartite graph between input symbols Vin and Vout defines a discrete

channel. We denote by (x1, x2, . . . , xn) the sequence of input symbols and by

(y1, y2, . . . , yn) the sequence of output symbols, where xi depends on the mes-

sage and (y1, . . . , y
i−1) (see Definition 1).

We define (e1, e2, . . . , en) as the corresponding error vector, where ei = yi −
xi.

Discrete channels with finite input and output alphabets correspond to their

respective bipartite graphs by a one to one mapping. Therefore, in this paper

we frequently speak about the graphs when we mean the respective channels

and vice versa.

Definition 4 (Asymmetric channel). An asymmetric channel is a discrete

channel whose specifying bipartite graph is not the full graph in the sense that

the set of edges E 6= Vin × Vout.

As an example for an asymmetric channel we propose the Z-channel which

is specified by the bipartite graph on the left hand side of Figure 3.

Definition 5 (Unidirectional channel). A unidirectional channel is speci-

fied by two asymmetric channels having the same set of input symbols Vin and

output symbols Vout. One of the channels allows only positive error vectors

(ei ≥ 0 ∀i), whereas the other one only allows negative error vectors (ei ≤ 0 ∀i).
Within each transmission of a codeword, the channel is specified by one of the

asymmetric channel. Sender and receiver know both channels, but they do not

know to which asymmetric channel the unidirectional channel corresponds. This

may change for each codeword.
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0 0

1 1

Figure 2: Symmetric Channel Γ2

0 0

1 1

0 0

1 1

Figure 3: binary Z-channel and inverse Z-channel

In Figure 3 the binary unidirectional channel is shown. It is denoted as

Γ2
U and is composed of the binary Z-channel and its counterpart, the inverse

Z-channel.

Definition 6 (Generalized Z/inverse Z-channel). The generalized Z-channel

Γq
Z is specified by the bipartite graph with input nodes Vin = Vout = {0, . . . , q−1}

and the set of edges Eq
Z = {(i, i − 1) : i ∈ {1, . . . , q − 1}} ∪ {(i, i) : i ∈

{0, . . . , q − 1}}.
The inverse Z-channel Γq

Z
is specified by the bipartite graph with input nodes

Vin = Vout = {0, . . . , q− 1} and the set of edges Eq

Z
= {(i, i+1) : i ∈ {0, . . . , q−

2} ∪ {(i, i) : i ∈ {0, . . . , q − 1}}.

Remark 1. The capacity error function of the generalized Z-channel Γq
Z is

equal to the capacity error function of the inverse generalized Z-channel Γq

Z
.

Proof: The inverse Z-channel Γq

Z
can be obtained from the Z-channel Γq

Z by

a bijective mapping. The labelling of the nodes at the input and the output is

simply in reversed order. �

Both channels are depicted in Figure 4. Combined they form a unidirectional

channel which we denote as Γq
U .

The symbols 0 and q− 1 are of special interest for the generalized Z-channel

and the inverse generalized Z-channel. For the generalized Z-channel, the symbol
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0 0

1 1

2 2

...
...

...

q − 2 q − 2

q − 1 q − 1

0 0

1 1

2 2

...
...

...

q − 2 q − 2

q − 1 q − 1

Figure 4: Generalized Z-channel and generalized inverse Z-channel

0 has the property that the sender knows that this symbol cannot be changed

by the channel. If the symbol q − 1 is received, the receiver knows that the

transmitter indeed sent this symbol. The properties of 0 and q− 1 are swapped

for the inverse generalized Z-channel compared to the generalized Z-channel.

All other symbols do not have these special properties.

3. Zero-error capacity of the generalized Z-channel

The method we use to obtain the zero error capacity of the generalized Z-

channel was already introduced by Shannon in [11, Theorem 7].

The idea is to split the input symbols into sets according to their connected

outputs.

Theorem 1 (Shannon [11]). Let the set Sj denote the set of input symbols

which are connected to the channel output j ∈ {0, . . . , q − 1} and let Pi denote

the probability of symbol i at the input of the channel. Let Po be defined as

Po := min
Pi

max
j

∑

i∈Sj

Pi (4)

over all possible input distributions Pi.

The zero error capacity Cf
0,q is then obtained by

Cf
0,q = logq

(

1

Po

)

. (5)
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Theorem 1 suggests that in order to find the zero error capacity, it is possible

to find the input distribution which minimizes equation (4) and to take the

logarithm of the reciprocal of the result.

Property 1. The zero error capacity of the generalized Z-channel and the in-

verse generalized Z-channel is

Cf
0,q(Γ

q
Z) = Cf

0,q(Γ
q

Z
) = logq

(⌈q

2

⌉)

. (6)

Proof: We apply Theorem 1 to the inverse generalized Z-channel Γq

Z
shown in

Figure 4.

S0 = {0}

S1 = {0, 1}

S2 = {1, 2}
...

Sq−1 = {q − 2, q − 1}

Consider now an arbitrary distribution on the set of input letters

{0, . . . , q − 1}. It is obvious that

∑

i∈S0

Pi ≤
∑

i∈S1

Pi (7)

with equality if and only if P1 = 0. Assuming that P1 > 0, we get an input

probability which is at least as good as before according to equation (4) if we

change the input probability to

P ′
0 = P0 + P1

P ′
1 = 0

P ′
2 = P2

...

P ′
q−1 = Pq−1 .
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This is because
∑

i∈S2
Pi = P1 + P2 can only get smaller, while for j ∈

{3, . . . , q − 1},∑i∈Sj
Pi remains unchanged. Now we consider the distribution

P ′. As P ′
1 = 0, the set S2 effectively only contains the element 2. As S3 = {2, 3}

we can use the same method as before to show that the zero error capacity

cannot get smaller if we change the distribution such that P ′′
2 = P ′

2 + P ′
3 and

P ′
3 = 0 while all other input probabilities remain the same.

Using this procedure inductively gives us the result that it is optimal to only

have non-zero probability for every second input symbol. Looking at equation

(4) it is easy to see that the optimal input distribution is the uniform distribution

over all input symbols k fulfilling k ≡ 0 mod 2. Therefore, the zero error

capacity of the inverse generalized Z-channel is

Cf
0,q(Γ

q

Z
) = logq

(⌈ q

2

⌉)

. (8)

Remark 1 implies that the zero error capacities of the generalized Z-channel

and the inverse generalized Z-channel are equal. �

Furthermore, Property 1 can be used to show the following.

Corollary 1. It holds Cf
0,q(Γ

q
U ) = logq

(⌈

q
2

⌉)

.

Proof: Because of Property 1, it holds that Cf
0,q(Γ

q
Z) = Cf

0,q(Γ
q

Z
) = logq

(⌈

q
2

⌉)

.

Therefore, Cf
0,q(Γ

q
U ) ≤ logq

(⌈

q
2

⌉)

. It remains to be shown that Cf
0,q(Γ

q
U ) ≥

logq
(⌈

q
2

⌉)

. In order to prove this, we propose the following encoding and strate-

gies.

For this we define the set S := {k ∈ {0, . . . , q − 1} : k ≡ 0 (mod 2)}.
The encoding function

c : M → Sn−1 (9)

can be any bijective function between M and Sn−1. If the sender would like to

send message m ∈ M, he computes xn−1 = c(m) and sends it over the channel.

In order to send the last symbol, the sender distinguishes two cases:

1. The channel caused an error within at least one of the previously transmit-

ted symbols. In this case the sender knows the channel and sends xn = 0

if the active channel is Γq
Z and q − 1 otherwise.
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2. No error has occurred within the transmission. In this case the sender

sends xn = 0.

We denote the vector of symbols at the channel output as yn. In order to

determine which channel was active during the transmission, the decoder checks

the value of yn. There are three cases to be distinguished:

1. yn = 0: Either no transmission error occurred at all or the active channel

was Γq
Z .

2. yn = q − 1: The active channel was Γq

Z
.

3. yn = 1: No error occurred within the first n − 1 symbols and the active

channel was Γq

Z
.

Let Ki denote the set of possible outputs for the channel if the symbol i is trans-

mitted. The sets Ki for different inputs are disjoint for Γq
Z and Γq

Z
, respectively.

From the last symbol yn, the decoder knows which channel has been active.

Therefore our coding strategy is successful for a message set M of size

|M| =
⌈q

2

⌉n−1

achieving asymptotically the rate

R := logq

(⌈ q

2

⌉)

.

4. An upper bound on capacity error functions

The analysis in the previous section deals with the zero error capacity, as-

suming that the number of errors in a block of length n can be from 0 to n.

This section deals with the problem of allowing the channel to only change a

fraction of the symbols during the transmission. Let this fraction be denoted as

τ = t
n , where t denotes the number of possible errors.

An upper bound on the capacity error function of the Z-channel can be

obtained by using an upper bound on the maximal set of messages, which can

successfully be transmitted over the channel Γq∗ depicted in Figure 5.
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Definition 7. The channel Γq∗ is specified by the graph with nodes Vin =

Vout = {∗}∪{0, . . . , q− 1} and the set of edges E = {(∗, ∗), (i, i) : i ∈ {0, . . . , q−
1}} ∪ {(i, i+ 1) : i ∈ {0, . . . , q − 2}} ∪ {(∗, q − 1), (0, ∗)}}.

Let MZ
q (n, t) denote a maximal set of messages which can successfully be

transmitted over Γq
Z , let MU

q (n, t) denote the maximal set of messages which

can successfully be transmitted over Γq
U and let Mq∗(n, t) denote the maximal

set of messages which can successfuly be transmitted over Γq∗.

Theorem 2.

Cf
q (Γ

q
U , τ) ≤ 1 + hq

(

min

(

τ,
1

q + 1

))

−min

(

τ,
1

q + 1

)

− hq

(

min

(

τ,
1

2

))

,

where hq denotes the binary entropy function with logarithms to the base q.

Proof: We will show that the following inequalities hold:

MU
q (n, t)

(a)

≤ MZ
q (n, t)

(b)

≤ Mupper
q (n, t) , (10)

where

Mupper
q (n, t) :=

∑t
i=0

(

n
i

)

qn−i

∑t
i=0

(

n
i

) . (11)

(a) follows because every successful algorithm for Γq
U is also a successful algo-

rithm for Γq
Z . In order to show (b), we first note that every successful strategy

on Γq
Z is also successful on Γq∗ by not using the symbol * at the input and

interpreting each * at the output as 0. At the output of Γq∗, there are at most t

∗-symbols using such an encoding strategy. In order to compute the cardinality

of the set of output sequences S, they are partitioned into the sets S0, . . . ,St,

where Si denotes the set of output sequences containing ∗ exactly i times. The

cardinality of these sets is

|Si| =
(

n

i

)

qn−i . (12)

(b) results from the fact that the Si are disjoint and a sphere packing argument.

We define

Cupper
q (τ) := 1 + hq

(

min

(

τ,
1

q + 1

))

−min

(

τ,
1

q + 1

)

− hq

(

min

(

τ,
1

2

))

.
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Next we show that limn→∞
Mupper

q (n,t)

n = Cupper
q (τ).

This limit is determined by the largest terms in both sums of equation (11).

The largest term of the sum in the denominator is equal to
(

n
min(t,n/2

)

. In

order to deal with the sum in the numerator, we use Stirling’s approximation

to estimate the binomial coefficients of

lim
n→∞

logq

(

∑t
i=0

(

n
i

)

qn−i
)

n
,

neglecting terms which are asymptotically irrelevant. The sum in the numerator

omitting all asymptotically irrelevant terms and using Stirling’s approximation

is given by

qn
t
∑

i=0

qn(hq(ξi)−ξi) ≤ qnτn max
ξi∈[0,τ ]

qn(hq(ξi)−ξi) , (13)

where we defined i := ξin and τ := t
n .

Using elementary differential calculus, one obtains that the exponent is max-

imized for ξi = min
(

τ, 1
q+1

)

.

Therefore,

lim
n→∞

logq(
∑t

i=0

(

n
i

)

qn−i)

n
= 1+hq

(

min

(

τ,
1

q + 1

))

−min

(

τ,
1

q + 1

)

. (14)

As n goes to infinity, the error due to Stirling’s approximation vanishes and

using similar arguments for the sum in the denominator, we get

lim
n→∞

logq(Mupper
q (n, t))

n

= 1 + hq

(

min

(

τ,
1

q + 1

))

−min

(

τ,
1

q + 1

)

− hq

(

min

(

τ,
1

2

))

,

completing the proof. �

Remark 2. The proof of Theorem 2 even shows that

Cf
q (Γ

q
Z , τ) ≤ 1 + hq

(

min

(

τ,
1

q + 1

))

−min

(

τ,
1

q + 1

)

− hq

(

min

(

τ,
1

2

))

.

Remark 3. In the theorem, we follow the idea of Hamming to get an upper

bound. The new idea we use is to extend the channel without using all symbols

at the input. Therefore we reduce the number of output sequences, obtaining a

12



∗ ∗

0 0

1 1

2 2
...

...

q − 2 q − 2

q − 1 q − 1

Figure 5: Bipartite graph Γq∗

better upper bound on the number of messages using the sphere packing argu-

ment. To the best of our knowledge, this method is new. Perhaps it can be used

for other problems to get new upper bounds.

5. Lower bound on the capacity error function

In this section a method introduced in [8, Lemma 2] is recapitulated. It is

then used to construct a lower bound on the capacity error function of Γq
Z and

Γq

Z
. In the following, the set of graphs with vertices Vin = Vout = {0, . . . , q− 1}

all having at most degree 2 is denoted as Γ̃2(q).

Lemma 1 (DL A[8]). Let R > 0 be the rate of a successful algorithm for a

channel ∆ ∈ Γ̃2(q) and τ = 1. Then there exists a successful algorithm with

rate 1− logq(2) for all τ .

Lemma 2 (DL B[8]). If there exists a successful algorithm for a channel ∆ ∈
Γ̃2(q) with rate R > 0 for all τ , then there exists a successful algorithm with rate

1 − h(τ) logq(2) for ∆ and 0 ≤ τ ≤ 1
2 , where h(·) denotes the binary entropy

function.

We omit the proof of Lemma 1 and give only the idea of the construction

achieving the rate proposed in Lemma 2. A full proof is given in [8].
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Proof sketch: The strategy of the proof of [8] is to give an algorithm which

can transmit qn

(nt)
messages. This algorithm then achieves the rate claimed in

the Lemma. The algorithm uses the first k1 = n− logq
(

n
t

)

symbols to transmit

the information symbols and to use the rest of the block to correct potential

errors caused by the channel. It is sufficient for the receiver to know the error

positions because the nodes at the receiving side of the graph only have a degree

of at most 2. Let t1 denote the number of errors within the information symbols

and n1 := n− k1 = logq
(

n
t

)

.

If
(

k1

t1

)

≤ qRn1 , then the successful algorithm for τ = 1 can be used to

transmit the error positions, and since this works for any number of errors, the

receiver can decode the message correctly. Otherwise, let k2 = logq
(

k1

t1

)

and

use the interval [k1 + 1, k1 + k2] to send the error positions of the t1 errors

within the first interval. This process continues by defining ki+1 = logq
(

ki

ti

)

and ni+1 = ni − ki+1 and is stopped when
(

ki

ti

)

≤ qRni . Then the successful

algorithm for τ = 1 can be used to transmit the error positions with certainty.

In the last block, the kis have to be transmitted as well. The amount of symbols

that need to be reserved in order to do this is of order O(log(n) log(t)). This

does not change the asymptotically achievable rate of the algorithm. �

The capacity error function for the Z-channel Γq
Z with an additional edge

(0, q − 1) was analyzed by Deppe and Lebedev in [8] for q > 3. We denote

this channel as Γq
DL and its error capacity function as Cf

q (Γ
q
DL, τ). Since the

additional edge can only make the channel worse,

Cf
q (Γ

q
Z , τ) ≥ Cf

q (Γ
q
DL, τ). (15)

We denote the asymptotic rate of the algorithm achieving Cf
q (Γ

q
DL, τ) as

Rq
DL :=











1− h(τ) logq 2 if 0 ≤ τ ≤ 1
2

1− logq 2 if τ > 1
2 .

(16)

The algorithm achieving Rq
DL uses the methods of the proofs of Lemma 1

and Lemma 2. The algorithm in the proof of Lemma 2 requires the possibility

14



of error-free transmission at a positive rate for τ = 1. For the channel Γ3
DL, this

is not possible. However for Γ3
U the proposed method works, as it is possible to

transmit data with a positive rate for τ = 1 by Corollary 1.

Corollary 2. Let q ≥ 3. Then the capacity error functions of Γq
Z , Γq

Z
and Γq

U

are lower bounded by Rq
DL.

Cf
q (Γ

q
Z , τ) ≥ Cf

q (Γ
q
U , τ) ≥ Rq

DL (17)

We note that Corollary 2 does not give information on the capacity error

functions for the binary channels.

Corollary 3. For odd q the following equations hold for τ ≥ 1
2 :

Cf
q (Γ

q
Z , τ) = Cf

q (Γ
q
U , τ) = Cf

0,q(Γ
q
Z) = Cf

0,q(Γ
q
U ) (18)

Proof: In accordance with the definition in the proof of Theorem 2, it holds that

Cupper
q (Γq

Z , τ) = logq
(

q+1
2

)

for τ ≥ 1
2 , which is equal to logq(⌈ q

2⌉) = Cf
0,q(Γ

q
U )

for odd q by Property 1. �

Figure 6 illustrates the results obtained in Theorem 2, Property 1 and Corol-

laries 2 and 3. Property 1 shows that the methodology proposed in [8] (Lemma 1

in this work) only achieves the zero error capacity of Γq
Z if q is even. However,

the strategy proposed in the proof of Corollary 1 is able to achieve the zero error

capacity for Γq
U and Γq

Z for any q. The results in Figure 6 are in accordance with

Corollary 3 for q = 5. For even q we only know the zero error capacity which is

achieved by the lower bound. For τ 6= 1 our results do not show whether upper

and lower bounds on Cf
q (Γ

q
U , τ) are tight. q = 6 was chosen as an example for

even q.

6. Constructing lower bounds using rubber methods

The rubber method was developed in [2]. It is used to determine a lower

bound on the capacity error function of a channel. Basically it reserves a se-

quence of symbols to notify the receiver that his previously received symbol
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Figure 6: Lower and upper bound on the capacity error function of the unidirectional channels

Γ5

U and Γ6

U

has been an erroneous one. Therefore, after receiving the rubber sequence, the

receiver deletes the rubber plus the previous symbol. In [2], a rubber sequence

consists of r equal rubber symbols b ∈ Q. The sender then retransmits the

previously erroneous symbol again. Because the number of errors t is fixed and

smaller than the blocklength n, he will succeed after at most t trials. In [2] it is

shown that that the rubber method is a successful algorithm. This means the

decoder is able to decode each message correctly. In the error analysis in [2],

the authors consider two kinds of errors: a standard error (which means a

symbol is changed to another symbol and the sender sends the rubber sequence)

and a towards rubber error (which means a symbol is changed to a rubber

symbol such that the receiver obtains a rubber sequence). If a towards rubber

error occurs, a correctly received symbol is deleted and has to be sent again.

For the generalized Z-channel Γq
Z , a towards rubber error is not possible if

we use r times q − 1 as the rubber sequence. Also, for the inverse generalized

Z-channel Γq

Z
, a towards rubber error is not possible if we use r times 0

as the rubber sequence. Therefore, the sender does not have to retransmit the

16



previously erroneous symbol again, because for those channels there is only the

possibility of a standard error. We denote this modified algorithm (without

retransmissions) by A(r, b) if we use br = (b, . . . , b) as the rubber and we get:

Lemma 3. The modified rubber strategy A(r, q − 1) [A(r, 0)] is a successful

algorithm for the the generalized [inverse] Z-channel Γq
Z [Γq

Z
].

In the following, we denote this rubber method without retransmission as

the modified rubber method.

To calculate the rate of this algorithm we need, as in [2], the following

definitions. Let zr+1
r = qzrr −q+1. It is well known that for n → ∞ the number

of sequences of length n not containing a block br = (b, . . . , b) is asymptotically

equal to znr (see [2, 5], how to choose the initial value for the iteration).

Theorem 3. Let zr be defined as above. Then for the generalized [inverse]

Z-channel Γq
Z [Γq

Z
] for q ≥ 2 we get

Cf
q (Γ

q
Z , τ) ≥ Rmr :=











max
2≤r∈N

(1 − rτ) logq zr if 0 ≤ τ ≤ 1
2

0 if τ > 1
2 .

Proof: The modified r-rubber method can be used to transmit information vec-

tors not containing the rubber sequence. The blocklength is n and the number

of erroneous symbols is at most t. For each error we require r symbols for cor-

rection. Therefore the length of the information vectors can be at most n− rt.

The number of these sequences is asymptotically equal to zn−rt
r . Therefore the

asymptotic rate achieved by the modified r-rubber method is

(1 − rτ) logq zr.

This gives the following lower bound on the capacity error function

Cf
q (Γ

q
Z , τ) ≥ (1− rτ) logq zr.

We use the modified rubber method with the rubber length r that achieves the

highest asymptotic for the respective value of τ and obtain the lower bound

Rmr. �
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Remark 4. For the generalized Z-channel Γq
Z , the modified rubber method with

a single 0 as the rubber symbol achieves the rate

R = (1 − τ) logq(q − 1) . (19)

Proof: Using Lemma 3, it is easy to see that for every erroneous symbol one

extra symbol has to be transmitted in order to achieve error free transmission.

Therefore it is possible to achieve a message set M of cardinality

M = (q − 1)n−t , (20)

leading to a rate

R = (1 − τ) logq(q − 1) . (21)

�

By an adjustment of the modified rubber method for the channels Γq
Z and

Γq

Z
we obtain the following result:

Theorem 4. Let Γq
U be a unidirectional channel consisting of the generalized

Z-channel Γq
Z and the inverse generalized Z-channel Γq

Z
(q ≥ 2). Then we have

Cf
q (Γ

q
U , τ) ≥ Rmr.

Proof: We adapt the modified rubber method to make it usable for Γq
U . Fur-

thermore, we show that this method is successful and achieves the same asymp-

totic rate as the modified rubber method. The sender starts by using the en-

coding strategy for the generalized Z-channel Γq
Z and then adapts if he discovers

that the active channel is Γq

Z
. After all the data symbols are transmitted, an

extra symbol (either 0 or q − 1 according to the channel) is added to tell the

receiver which channel was present. The receiver can thus adjust his decoding

algorithm accordingly. The previously described steps are now elaborated in

more detail.

The only additional difficulty compared to the situation in Theorem 3 is that

it is not known to the sender and the receiver whether Γq
Z or Γq

Z
is used for the
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transmission of each codeword but once the first error occurs the sender knows

which channel is in action.

At the start of the transmission, the sender assumes that Γq
Z is the active

channel of Γq
U . He therefore uses the modified rubber method for Γq

Z of length

r as his encoding strategy.

When the channel inflicts the first error to the transmission, the sender knows

which channel is active. We denote the transmitted symbol corresponding to

the first error with xfe. According to the actual channel, the sender adjusts his

encoding strategy henceforth. We distinguish two cases:

1. The active channel is Γq
Z . In this case the channel keeps its encoding

strategy as it is. After the sender knows that the all information symbols

can be correctly retrieved by the decoder, he fills the remaining block

with 0 symbols. Notice that this last step involves knowledge about the

decoding algorithm at the sender.

2. The active channel is Γq

Z
. In this case there are two cases to be distin-

guished

(a) A standard error occurred: In this case the transmitter sends r

times the symbol q − 1. If there are not enough symbols left in the

block, the sender sends q − 1 for the remaining symbols.

(b) a towards rubber error occurred: In this case the transmitter

sends r − 1 times the symbol q − 1. If there are not enough symbols

left in the block, the sender sends q − 1 for the remaining symbols.

The modified rubber method for Γq

Z
is used from now on to retransmit

xfe and to send the remaining information symbols. But before sending

them, they are adapted to the channel Γq

Z
by using the mapping

f : Q → Q

k 7→ k + 1 mod q.

Potential remaining symbols within the block are filled by sending q − 1

symbols.

19



Let the received sequence be denoted as yn = (y1, . . . , yn). The decoding

strategy depends on the symbol yn:

1. yn = 0: The decoder uses the decoding procedure for the modified rubber

method for Γq
Z until he retrieves the message m. Potential remaining

symbols within the block are ignored by the decoder.

2. yn = q − 1: The decoder checks for the first occurrence of the sequence r

times q−1. All previously sent symbols, with exception of the symbol that

was sent right before this sequence, have been received correctly. If those

information symbols are sufficient to obtain the message with certainty,

the decoder outputs the message m. Otherwise, the receiver continues

its decoding procedure by using the decoding algorithm of the modified

rubber method for Γq

Z
on the remaining symbols. The function

f−1 : Q → Q

k 7→ k − 1 mod q

is then to be applied on all information symbols which were sent after the

first occurrence of the sequence r times q − 1 to obtain the information

vector. This vector uniquely determines the message m.

If the first error occurs within the last r symbols, this error cannot be corrected

anymore, but the receiver knows that all previous symbols have been received

correctly. Those contain the information about the message, and thus this case

is not problematic for successful decoding. �

The following result follows directly from Remark 4 and Theorem 4.

Corollary 4. The asymptotic rate achieved by using the modified rubber method

on the unidirectional channel Γq
U using a single symbol rubber is

R = (1 − τ) logq(q − 1) . (22)

Remark 5. The values for zr in Theorem 3 and Theorem 4 can be computed.

An important case is q = 2. It was proved that

Cf
2 (Γ

2, τ) = (1− 3τ) log2

(

1 +
√
5

2

)
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for (3 +
√
5)−1 ≤ τ ≤ 1/3 (see equation (3)). In [2] it was shown that this

capacity can be achieved with the rubber method.

If we apply the modified rubber method to the binary case we get the fol-

lowing result. The capacity error function of the unidirectional channel is lower

bounded by

Cf
2 (Γ

2
U , τ) ≥











max
2≤r∈N

(1− rτ) log2 zr if 0 ≤ τ ≤ 1
2

0 if τ > 1
2 .

The result for r = 2 is

(1 − 2τ) log2

(

1 +
√
5

2

)

.

The major change compared to the result given in equation (3) is the change of

the factor (1−3τ) to (1−2τ). It occurs because retransmissions after erroneous

symbols are unnecessary. Figure 7 shows the lower bound on Cf
2 (Γ

2
U , τ) obtained

by using the modified rubber method and Cf
2 (Γ

2, τ) for comparison. This result

is different without feedback, since the capacity error functions of symmetrical

and unidirectional channels are the same in that case.

7. Conclusion

In this work we have analyzed channels with feedback with a fixed maximal

fraction of erroneous symbols. A major focus of this work has been asymmetric

and unidirectional channels. Notably, we have shown that the capacity error

function with feedback for the unidirectional channel composed of Z-channel

and inverse Z-channel is larger than the capacity error function of the symmetric

channel for a significant proportion of the possible values of τ . This is not the

case for the same channels without feedback. The channels analyzed in this work

have at most two input symbols connected to each output. As the knowledge of

an erroneous position at the receiver implies knowing the value of the respective

symbol, retransmissions are not necessary if the encoding strategy is chosen in

a way such that the receiver is able to obtain the error positions. This can be
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used to create encoding strategies achieving a higher rate for many channels

using the modified rubber method. Furthermore it was shown how to change

the modified rubber method for unidirectional channels. The method proposed

shows that it is possible to achieve the same rate for the unidirectional channel

consisting of the generalized Z-channel and the inverse generalized Z-channel as

for its components. Obtaining tighter bounds on the capacity error functions for

several of the channels analyzed in this paper is an interesting topic for further

research.
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